
An Efficient Service Selection Approach with Time-Dependent QoS

Ikbel Guidara1,2,3

1CNRS, LAAS, 7 avenue du colonel Roche

F-31400 Toulouse, France
2Univ de Toulouse, UT1, LAAS

F-31400 Toulouse, France

iguidara@laas.fr

Tarak Chaari3 and Mohamed Jmaiel3

3ReDCAD Laboratory, University of Sfax

National Engineering School of Sfax

B.P. 1173, 3038 Sfax, Tunisia

tarak.chaari@redcad.org

mohamed.jmaiel@enis.rnu.tn

Abstract—In advanced service-oriented computing, complex
applications are usually specified as abstract business processes.
The execution of these applications requires the selection of
a set of services to invoke abstract business tasks. With the
growing number of alternative services of each business task
that differ in their QoS, the selection of the best combination
of services that satisfies business process constraints and
end-to-end users’ requirements becomes a complex decision
problem. Current selection approaches consider only static
QoS and ignore the fact that QoS values can depend on
temporal properties. In this paper, we propose a novel service
selection approach considering time-dependent QoS attributes.
The proposed approach introduces two search space reduction
mechanisms that combine QoS and temporal constraints. The
application of these mechanisms improves the performance of
the selection process which is demonstrated by experimental
results.

Keywords-Service selection; Time-dependent QoS; Search
space reduction.

I. INTRODUCTION

Service selection for business process tasks has been

widely treated in both research and industry communities.

Usually, service selection approaches search for the optimal

combination of services that meets user end-to-end QoS

requirements while optimizing the overall utility. With the

increasing amount of available candidate services for each

task providing the same functionalities but differ on their

quality values, the selection of the optimal solution that

fulfills global QoS constraints specified in the user require-

ments becomes a very complex task.

Generally, users requirements are considered as global

constraints of the composite service. Several methods have

been proposed to tackle the selection problem while dealing

with global QoS constraints. These methods fall in two

categories. The first one consists in searching candidate

services that optimize the QoS of composite service while

satisfying global QoS constraints [1], [2], [3]. The second

category assumes that global constraints can be considered

as the aggregation of a set of local ones [4], [5], [6]. Based

on these latter, local optimization algorithms are applied to

select the best service for each abstract task. The aim of these

works is to reduce the complexity of the service selection

Figure 1. An example of a business process and candidate services of
abstract tasks

Table I
QOS VALUES OF SOME CANDIDATE SERVICE INSTANCES

Ser Ins Dur Cst Ser Ins Dur Cst Ser Ins Dur Cst

SA11 5 20 SB11 3 15 SC11 4 23

SA12 6 18 SB21 4 20 SC21 3 15

SA21 4 25 SB31 5 25 SD11 3 20

SA31 2 10 SB32 3 35 SD21 3 30

problem while increasing the performance of the proposed

algorithm.

However, existing approaches overlooked a commonly

important aspect in reality: most QoS values offered by

service providers are not static and can change over time

[7], [8], [9]. As a result, within different time periods, QoS

attributes of candidate services can have different values. For

instance, the invocation of the service during business hours

is more expensive than invoking it outside these peak hours.

Considering time-dependent QoS values makes the selection

of the best solution more complex since the selection of one

service may influence or be influenced by other services.

To better illustrate this issue, let us consider the example

presented in Figure 1, where the business process has four

tasks. Each abstract task has several candidate services and

some of them have more than one service instance (e.g., SA1

and SB3) according to the values of quality attributes (Table

I). For instance, the values of the execution duration and the

cost offered by the service SA1 are 5 and 20 respectively

when the service is available from 10 to 15 units of time



and they are equal to 6 and 18 when it is available from 18

to 24 units of time. In this example, we suppose that the

user requires three global constraints: (1) the price must not

exceed 110 cost units, (2) the execution duration must be

lesser than 15 units of time, and (3) the deadline must not

exceed 11 PM (i.e., 23 units of time in our example).

If we assume that QoS values are static, the best combi-

nation of services can be C = (SA31, SB11, SC21, SD11)

since all selected services are not dominated by any other

services for all QoS attributes. Nevertheless, this solution can

not be valid when dealing with time-dependent QoS. In fact,

the service instance SC21 is valid in a time span before that

of the service SA31 and thus these two service instances can

not be part of the same solution. However, the combination

C
′

= (SA11, SB21, SC11, SD21) where availability intervals

are respectively [10,15], [15,19], [15,19] and [19,22] is a

valid solution.

Considering time-dependent QoS values is not a trivial

task and makes the selection problem more complex. In

this paper, we propose two search space reduction mech-

anisms based on both QoS and temporal constraints. These

mechanisms are applied prior to the selection process to

narrow the number of candidate services while ensuring that

only service combinations which are guaranteed to violate

one or more constraints are not considered in the selection

process. The rest of the paper is organized as follows.

In the next section, we give a formal description of the

service selection model. Section III details our search space

reduction approach based on QoS and temporal constraints

and Section IV presents our selection algorithm. In Section

V, we give an evaluation of our approach. Finally, in Section

VII, we discuss the related work and Section VII concludes

the paper.

II. SERVICE SELECTION MODEL

In this paper, we are interested in service selection prob-

lem which consists in finding the adequate services so that

constraints at business and service level and global user

constraints are satisfied. Hereafter, we present the different

constraints we consider.

A. Business Level Constraints

A business process is usually defined by a set of abstract

tasks A = {A1, ..., An}. In this paper, we consider two

types of structural dependencies between tasks (Sequential

and Parallel). We denote by Pd(Ai) the set of predecessors

of the activity Ai.

B. Service Level Constraints

Apart from constraints specified at the business level,

some constraints can also be defined at service level. Each

activity Ai of the business process has a set Si of potential

candidate services. The candidate services of an activity Ai

are functionally equivalent and can be distinguished by their

QoS attributes. Each QoS attribute q ∈ QS has either an

increasing value direction (the quality is better when the

attribute value increases) or a decreasing value direction

(the quality is better when the attribute value decreases).

For the sake of simplicity, henceforth we consider only QoS

attributes with decreasing value direction.

Each service Sij ∈ Si is characterized by a set Tij of

disjoint intervals during which it offers different QoS values

(Figure 1). To represent QoS variations related to these time-

dependent QoS, we consider one or several instances of each

service. Each instance is associated to a time interval which

specifies its start and end times. We denote by Sijk the

kth instance of the service Sij corresponding to the time

interval Tijk ∈ Tij . The boundaries of each time span Tijk

are denoted by tmin
ijk and tmax

ijk . We denote by Q(Sijk, q) the

value of the qth QoS attribute offered by the service Sij

at the time span Tijk. The specification of time-dependent

QoS models can be achieved using existing QoS prediction

methods [8].

C. Global User Constraints

In order to select the best composite service CS (i.e.,

the best combination of services), the user specifies in his

request a set of global constraints on QoS attributes. Let

Q(q) denotes the global constraint value for the qth QoS

attribute of the composite service specified by the user (e.g.,

Q(cost) = 70 indicates that the cost of the required service

has to be less than 70 cost units). Note that since we consider

only quality attributes with decreasing value direction, only

upper bound QoS constraints are taken into account when

dealing with global user constraints. In addition, the user

may specify a weight for each QoS attribute q denoted by

Wq to represent its preferences, s.t.
∑

q∈QS Wq = 1.

III. SEARCH SPACE REDUCTION APPROACH

Intuitively, to select the best services to implement a

business process, all candidate services can be taken into

account. However, this is impracticable when the number of

services and constraints increases since the time needed to

solve the service selection problem becomes exponential. In

fact, not all services are potential candidates for the feasible

solution. To overcome this problem, we propose a search

space reduction approach to reduce the number of candidate

services of each task and thus, reducing the number of

possible uninteresting combination of services so that the

optimal solution still be found.

The basic idea of our search space reduction approach

is to avoid discarding any candidate service that might be

part of a feasible solution. This is done by computing local

thresholds of each task while ensuring that these thresholds

are relaxed as much as possible. We propose two search

space reduction techniques: (1) QoS constraints based reduc-

tion space and (2) time constraints based reduction space.



In the following, we detail how we measure thresholds using

these two techniques.

A. QoS Constraints based reduction space

The QoS based reduction space strategy allows computing

QoS thresholds for individual tasks for each QoS attribute q
that will be considered as local upper bound constraints such

that the unsatisfaction of at least one of these constraints by

a candidate service guarantees the violation of the global

constraints and thus this service can be removed from the

set of candidate services.

The value of a particular QoS attribute q for the com-

posite service CS denoted by Q(CS, q) is computed by

the aggregation of the corresponding quality values of its

component services. The aggregation function Agg depends

on the considered quality attribute and the structure of

the business process [10]. In this paper, we consider the

aggregation functions of four categories of QoS attributes:

Additive, Average, Multiplicative and Max-Operator. Thus,

Q(CS, q) = AggAi∈A(Q(Ai, q)) with Q(Ai, q) denotes the

value of the quality attribute q of the component service

corresponding to the task Ai. We denote by Q(Ai, q)
max

and Q(Ai, q)
min respectively the minimum and maximum

value of the qth quality attribute of the task Ai with

Q(Ai, q)
max = max{Q(Sijk, q), ∀Sij ∈ Si, ∀Tijk ∈ Ti,j}

and Q(Ai, q)
min = min{Q(Sijk, q), ∀Sij ∈ Si, ∀Tijk ∈

Ti,j}.

A local threshold QLT (Ai, q) for the qth attribute of the

task Ai depends on both the global constraint of the user

Q(q) and the minimum value of this QoS attribute offered

by the candidate services of the task Ai (i.e., Q(Ai, q)
min).

The main idea is to compute for each task its maximum

value (i.e., the worst case) considering the minimum quality

values of all other tasks (i.e., their best cases) such that

the global constraint is satisfied. Computing these thresholds

needs to consider both the structure of the business process

and the distinctive characteristics for each QoS attribute. In

the following, we present a set of formulas to compute local

thresholds for each business task.

1) Additive Attributes: The value of an additive attribute

(e.g., the execution cost) for the composite service can be

determined through the sum of the values of this attribute for

all the component services. To measure the local threshold

of an additive attribute, we define Formula (1).

QLT (Ai, q) = Q(q)−
∑

Aj∈A,j 6=i

Q(Aj , q)
min, ∀Ai ∈ A (1)

For instance, given the example presented in the Figure 1

with Q(cost) = 70, the thresholds of the tasks A1, A2, A3

and A4 are respectively 20, 25, 25 and 30. Therefore, the

number of candidate services is restricted. For example, all

service instances that have a cost greater than 20 cost units

for the first task will be eliminated (e.g., the service SA21).

2) Average Attributes: In this category, the value of the

attribute (e.g., the availability) for the composite service is

measured by the average of the values of the attribute of

its atomic services. Formula (2) indicates how to compute

local thresholds of average attributes. Let n be the number

of business tasks.

QLT (Ai, q) = Q(q) ∗ n−
∑

Aj∈A,j 6=i

Q(Aj , q)
min, ∀Ai ∈ A

(2)

3) Multiplicative Attributes: Multiplicative attributes of

composite services (e.g., the reputation) can be computed

by multiplying the values of the attribute of the component

services. Formula (3) allows computing the local thresholds

of multiplicative attributes for a sequential and parallel

structures.

QLT (Ai, q) = Q(q)/
∏

Aj∈A,j 6=i

Q(Aj , q)
min, ∀Ai ∈ A (3)

4) Max-Operator Attributes: These attributes differ from

other attribute categories in that different aggregation func-

tions are used in sequential and parallel structures (e.g.,

the execution time). Max-operator attributes for a composite

service are measured by the sum of attribute values of its

atomic services in a sequential structures, and the highest

branch value in each parallel structure. Thus, to compute

local thresholds for each task in the business process, two

cases are considered:

• If Ai belongs to a sequential structure S:

QLT (Ai, q) = Q(q)−
∑

Aj∈S,j 6=i

Q(Aj , q)
min

−

m∑

l=1

maxAj∈Pl
{Q(Aj , q)

min}, ∀Ai ∈ A (4)

With m is the number of parallel structures and Pl

denotes the parallel structure number l.

• If Ai belongs to a parallel structure Pq:

QLT (Ai, q) = Q(q)−
∑

Aj∈S

Q(Aj , q)
min

−

m∑

l=1,l 6=q

maxAj∈Pl
{Q(Aj , q)

min}, ∀Ai ∈ A (5)

B. Time Constraints based reduction space

Although QoS constraints based reduction space allows

the elimination of services which are guaranteed to violate

one or more global QoS constraints, further services can

be removed when considering time-dependent QoS values.

In the following, we detail how we consider temporal con-

straints to further reduce the number of candidate services

based on the time span of each abstract task and the required

deadline.



The main idea is to compute the earliest possible start time

sti and the latest possible finish time fti of each business

task Ai ∈ A based on the deadline required by the user

while satisfying structural constraints. These time intervals

will be considered as local thresholds for the start and finish

time of each task such that all service instances whose time

intervals do not belong to the computed time spans will be

pruned. Nevertheless, the specification of the largest time

spans of business tasks is not a trivial task when dealing

with complex business processes.

To deal with this issue, we propose a constraint optimiza-

tion model that computes the largest time span of each task

so that all structural constraints are fulfilled and the deadline

of the entire process is respected. To ensure that the local

thresholds do not exclude any candidate service that can

be part of a feasible solution, we consider the following

objective function:

maximize
∑

Ai∈A

fti −
∑

Ai∈A

sti (6)

Constraint (7) guarantees that the finish time of each task

is represented by the sum of its start time and its duration.

fti = sti +Q(Ai, dur), ∀Ai ∈ A (7)

Each task Ai ∈ A has a duration within the

interval [Q(Ai, dur)
min, Q(Ai, dur)

max] and its start

and finish times (i.e., sti, fti) belong to the interval

[mink∈Tijk
{tmin

ijk },maxk∈Tijk
{tmax

ijk }]. To guarantee that

the deadline is not violated, we add Constraint (8):

ftn ≤ deadline (8)

To deal with structural dependencies, we propose the

following constraints which guarantee that the earliest start

time of each task Aj occurs after the earliest start time and

the minimum duration of each of its predecessor tasks. In

addition, the latest finish time of each task Aj has to be

greater than or equal to the sum of its minimum execution

duration and the latest finish time of all its predecessor tasks.

sti +Q(Ai, dur)
min ≤ stj , ∀Aj ∈ A, Ai ∈ Pd(Aj) (9)

fti +Q(Aj , dur)
min ≤ ftj , ∀Aj ∈ A, Ai ∈ Pd(Aj) (10)

A solution of the optimization problem is then a set of the

largest possible time intervals of all tasks. For instance, given

the example presented in Figure 1, the largest time intervals

of all tasks when considering all structural and temporal

constraints and with a deadline equals to 23 are respectively:

[8,16], [10,20], [10,20] and [14,23]. Based on these intervals

some service instances have to be pruned (e.g., SA12 and

SB31) or some restrictions have to be performed to their

intervals (e.g., SD31).

IV. SERVICE SELECTION

Once the search space reduction process is finished and

the relevant candidate services are selected, we proceed to

the selection of the best service combination to handle the

user requirements. To do so, we model the selection problem

as a constraint optimization problem. The proposed model

selects exactly one atomic service of each abstract task with

the corresponding start and finish times (i.e., sti, fti) while

optimizing the overall utility and satisfying all constraints.

Therefore, the objective function of our optimization model

is as follows:

maximize
∑

q∈QS

Wq ∗
Q(q)max −Q(CS, q)

Q(q)max −Q(q)min
(11)

Such that for each q ∈ QS:

Q(CS, q) = AggAi∈A(
∑

Sij∈Si

∑

Tijk∈Tij

aijk ∗Q(Sijk, q))

(12)

Q(q)max = AggAi∈A(Q(Ai, q)
max) (13)

Q(q)min = AggAi∈A(Q(Ai, q)
min) (14)

We note that in this step, only preselected services af-

ter the pruning step are considered. Thus, the minimum

and maximum values of each attribute (i.e., Q(q)min and

Q(q)max) have to be recomputed to consider only pre-

selected services of each task with Q(Ai, q) belongs to

the interval [Q(Ai, q)
min, Q(Ai, q)

max], ∀Ai ∈ A and

∀q ∈ QS . To guarantee that only one service will be selected

for each task we define the following constraint:
∑

Sij∈Si

∑

Tijk∈Tij

aijk = 1, ∀Ai ∈ A, aijk ∈ {0, 1} (15)

Since all global constraints have to be satisfied when

selecting the optimal solution, we add Constraint (16):

Q(CS, q) ≤ Q(q), ∀q ∈ QS (16)

Moreover, we should ensure that the end and start times

of each task belong to the time span of the same selected

service instance. To achieve this, for each task Ai ∈ A, we

propose the following constraints:
∑

Sij∈Si

∑

Tijk∈Tij

aijk ∗ tmin
ijk ≤ sti (17)

sti ≤
∑

Sij∈Si

∑

Tijk∈Tij

aijk ∗ (tmax
ijk −Q(Sijk, dur)) (18)

fti = sti +
∑

Sij∈Si

∑

Tijk∈Tij

aijk ∗Q(Sijk, dur) (19)

The start and finish times of each task Ai belong to the

interval [mink∈Tijk
{tmin

ijk },maxk∈Tijk
{tmax

ijk }]. Finally, to

check the satisfaction of structural constraints, we add the

following constraint:

ftj ≤ sti, ∀Ai ∈ A, Aj ∈ Pd(Ai) (20)



Figure 2. Performance vs. Number of candidate services

Figure 3. Computation time to find the first solution

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results of

our approach focusing on its performance in terms of the

computation time. In these experiments, the time-dependent

QoS attributes of all candidate services and all constraints

were randomly chosen. The QoS attributes for each service

instance were generated for a time horizon with 150 time

points and distributed in the range between 1 and 100. The

computation time of each selection algorithm was averaged

over 50 randomly generated problem instances. Experiments

have been performed on a laptop with a 32 bit Intel Core

2.20 GHz CPU and 4GB RAM and Windows 7 as operating

system. To implement our approach, we use Choco1 as

constraint solver.

First, experiments were conducted in relation to the

computation time required to find the optimal solution.

The number of candidate service instances per task varies

from 100 to 700 with 5 business tasks. Here, each service

instance is associated with 3 QoS values (price, execution

duration and reliability). The results provided in Figure 2

show that while the computation time of the basic algorithm

(i.e., no preprocessing techniques are applied) increases

exponentially by increasing the number of candidate services

per task, the time of our algorithm increases very slowly

even when the number of services is very high. This is an

1http://www.emn.fr/z-info/choco-solver/

expected behavior since the number of eliminated services

grows especially when the number of candidate services

increases.

Figure 3 shows the computation time required to find

a feasible solution with respect to the number of candi-

date services per task which varies between 200 and 700.

The results indicate that the performance of the selection

process increases significantly when applying our search

space reduction mechanisms prior to the selection process

compared to the basic algorithm. We note that the time

needed to compute local thresholds is negligible compared

to the computation time of the selection process. This is

explained by the fact that the search space reduction process

is independent on the number of candidate services.

VI. RELATED WORK

Several works have been proposed to tackle the problem

of the selection of the best combination of services that

satisfies users global QoS constraints while maximizing the

overall utility. Some approaches adopt exhaustive methods to

find the optimal solution. In [1], Zeng et al. use mixed linear

programming techniques to select the optimal component

services for the composition and achieve global optimization

of QoS attributes. This work has been extended in Ardagna

et al. [2] to include local constraints and loop peeling to

deal with composition structures with cycles. In [11], Ben

Hassine et al. discuss a web service composition approach

using constraint programming. Nevertheless, these methods

are only suitable for small problems, as the complexity of

the selection algorithm increases exponentially when the

problem size increases.

To deal with scalability issues, other researchers adopt

approximate methods to find a near-to-optimal solution more

efficiently than exact solutions. Yu et al. [12] introduced two

alternative models for the QoS-based service composition

problem: the combinatorial model and the graph model.

Based on these models, authors propose heuristic algorithms

to find a solution to the selection problem. In [3], Canfora et

al. model and resolve the service selection problem based on

genetic algorithms. These approaches, consider only static

QoS values and do not provide strategies to reduce the search

space before selection.

To reduce the computational time of service selection

algorithms, an alternative proposal is to narrow the search

space. For instance, Alrifai et al. [4] decompose global

constraints into local ones using mixed integer programming.

Then, a local selection strategy is applied to select the best

service for each task. As a step forward, Qi et al. [5] suggest

a local optimization method to further reduce the number of

candidate services based on QoS levels and enumeration.

Similar works are proposed to identify local constraints

based on global ones. In [13], Sun et al., introduce a QoS

decomposition approach based on the mean and the standard

deviation of each QoS attribute while considering several



composition structures. Another approach has been proposed

in [6] to define local constraints using genetic algorithm.

Although the proposed solutions scale better when dealing

with large problems, they rely on greedy pruning methods

when computing local constraints that can affect the ability

to find an optimal solution. In [14], Barakat et al. introduce

two space reduction techniques to reduce the number of can-

didate services and the number of alternative abstract plans.

In contrast to our approach, all the previous approaches are

not able to handle time-dependent QoS attributes.

Temporal properties have been considered by some works

when selecting the best service composition. In [15], Liang

et al. propose a penalty-based genetic algorithm to select ser-

vices under temporal constraints. However, authors assume

that QoS values do not depend on the time of the execution.

In addition, the proposed approach does not guarantee that

the optimal solution will be found. Wagner et al. [7] propose

a service selection approach with time- and input-dependent

QoS attributes. Authors define a multi-objective optimization

based approach that selects the best combination of services

while specifying the start and finish time of each service

according to the QoS values at each time period. In [16],

Klopper et al. take into consideration time-dependent QoS

values when selecting the best service instances. In this

work, authors suppose that all QoS attributes are mono-

tonically decreasing. Moreover, these works do not provide

any search space reduction techniques prior to the selection

process.

VII. CONCLUSION

In this paper, we presented a novel service selection ap-

proach taht allows the selection of the optimal solution (i.e.,

the best combination of services) while taking into account

time-dependent QoS values. The proposed approach relies

on two search space reduction mechanisms: QoS constraints

and temporal constraints based Pruning. To reduce the

number of candidate services based on QoS attributes, we

proposed a set of formulas that allows computing local QoS

thresholds while considering several categories of QoS at-

tributes. In addition, we introduced a constraint optimization

model to compute local time thresholds for each business

task. Our evaluations show a significant gain in performance

when applying our approach which scales better than the

traditionally algorithm where all candidate services are con-

sidered. The accuracy of the proposed approach is more

obvious with complex selection problems where the number

of candidate services is very high. In the future work,

we plan to consider further constraints at business level

(e.g., temporal dependencies between business tasks, local

temporal constraints) and investigate correlations between

services when pruning uninteresting service instances. We

also aim to study more complex composition structures and

evaluate our approach based on real world scenarios.

REFERENCES

[1] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “Qos-aware middleware for
web services composition,” IEEE Trans. Software Eng.,
vol. 30, no. 5, pp. 311–327, 2004.

[2] D. Ardagna and B. Pernici, “Adaptive service composition in
flexible processes,” IEEE Trans. Software Eng., vol. 33, no. 6,
pp. 369–384, 2007.

[3] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani, “An
approach for qos-aware service composition based on genetic
algorithms,” in GECCO, 2005, pp. 1069–1075.

[4] M. Alrifai and T. Risse, “Combining global optimization with
local selection for efficient qos-aware service composition,”
in WWW, 2009, pp. 881–890.

[5] L. Qi, Y. Tang, W. Dou, and J. Chen, “Combining local
optimization and enumeration for qos-aware web service
composition,” in ICWS, 2010, pp. 34–41.

[6] F. Mardukhi, N. Nematbakhsh, K. Zamanifar, and A. Barati,
“Qos decomposition for service composition using genetic
algorithm,” Appl. Soft Comput., vol. 13, no. 7, pp. 3409–3421,
2013.

[7] F. Wagner, A. Klein, B. Klöpper, F. Ishikawa, and S. Honiden,
“Multi-objective service composition with time- and input-
dependent qos,” in ICWS, 2012, pp. 234–241.

[8] L. Chen, J. Yang, and L. Zhang, “Time based qos modeling
and prediction for web services,” in ICSOC, 2011, pp. 532–
540.

[9] S. Son and K. M. Sim, “A price- and-time-slot-negotiation
mechanism for cloud service reservations,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B, vol. 42, no. 3,
pp. 713–728, 2012.

[10] M. C. Jaeger, G. Rojec-goldmann, and G. Muehl, “Qos
aggregation for web service composition using workflow
patterns,” in EDOC. IEEE CS Press, 2004, pp. 149–159.

[11] A. B. Hassine, S. Matsubara, and T. Ishida, “A constraint-
based approach to horizontal web service composition,” in
International Semantic Web Conference, 2006, pp. 130–143.

[12] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for web
services selection with end-to-end qos constraints,” TWEB,
vol. 1, no. 1, 2007.

[13] S. X. Sun and J. Zhao, “A decomposition-based approach for
service composition with global qos guarantees,” Inf. Sci., vol.
199, pp. 138–153, 2012.

[14] L. Barakat, S. Miles, I. Poernomo, and M. Luck, “Efficient
multi-granularity service composition,” in ICWS, 2011, pp.
227–234.

[15] H. Liang, Y. Du, and S. Li, “An improved genetic algorithm
for service selection under temporal constraints in cloud
computing,” in WISE (2), 2013, pp. 309–318.

[16] B. Klöpper, F. Ishikawa, and S. Honiden, “Service composi-
tion with pareto-optimality of time-dependent qos attributes,”
in ICSOC, 2010, pp. 635–640.


