N

N

Quality-Driven Design of Web Service Business
Processes
Tarek Zernadji, Chouki Tibermacine, Foudil Cherif

» To cite this version:

Tarek Zernadji, Chouki Tibermacine, Foudil Cherif. Quality-Driven Design of Web Service Busi-
ness Processes. WETICE: Workshops on Enabling Technologies: Infrastructures for Collaborative
Enterprise, Jun 2014, Parma, Italy. pp.110-112, 10.1109/WETICE.2014.47 . lirmm-02124407

HAL 1d: lirmm-02124407
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02124407
Submitted on 9 May 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02124407
https://hal.archives-ouvertes.fr

Quality-driven

Design of Web Service Business

Processes

Tarek Zernadji
Computer Science Department
University of Biskra, Algeria
zernadji @yahoo.fr

Abstract—Web service business processes are a kind of service
compositions considered as one of the most frequent form of
service-oriented software architectures. In this paper, we present a
method that helps software architects in the design of such service
architectures. This method assists the architects in answering
them by proposing some patterns achieving quality require-
ments. We consider in our work that quality can be achieved
through patterns, which are specified with checkable/processable
languages. Besides this, the method that we propose simulates
the application of these patterns and notifies the architect with
its consequences on the other implemented qualities.

I. INTRODUCTION: PROBLEM STATEMENT

Service-orientation provides an architectural style for build-
ing service-based software systems. One possible and quite
frequent form of service oriented architectures is Web service
orchestration. BPEL processes are one of the most largely used
technologies for modeling these orchestrations and make them
executable.

It was argued that quality requirements drive the design
process [1]. So, given the fact that the shape of a software
architecture is determined by the desire of achieving certain
quality requirements by certain architectural design decisions,
it is useful to think of assisting the architects in making these
decisions during the architectural design process. We focused
our work on service-oriented architectures (SOA), and we
considered SOA patterns as the kind of architectural design
decisions the architect can make.

In this paper, we propose a process that provides a sys-
tematic assistance to architects during the design of Web
service orchestrations. The architect should identify quality
attribute from the quality requirements specification. Then,
given the identified quality attribute some patterns are proposed
(Section to the architect for helping her/him to take
design decisions. We argue in this work that for achieving
quality attributes, an architect can have as a design decision
the selection of an SOA pattern [2]. Our process is thus based
on a documentation of design decisions as SOA patterns and
their rationale as the quality attributes they implement. This
process aims more precisely at helping an architect in choosing
the well suited pattern to apply on her/his architecture. It uses
a set of evaluation criteria and a quality impact analysis for
that purpose (Section [[I-C). The architect is then assisted in a
semi-automatic way to apply the selected pattern (Section[[I-B])
thanks to reusable and customizable scripts defined using
a scripting language for Web service orchestrations, named
WS-BScript, which is introduced in this paper. The process

Chouki Tibermacine
LIRMM, CNRS
and Montpellier II University, France
tibermacin @lirmm.fr

Foudil Cherif
Computer Science Department
University of Biskra, Algeria
foud_cherif @yahoo.fr

ends by asking the architect to document (Section the
eventual new design decisions made into her/his architecture
so that future designs can be assisted in the same way. Before
concluding and presenting some perspectives to our work, we
make an overview of the related work (Section [III)).

II. PROPOSED APPROACH

The process that we propose in our work deal with Web
service orchestrations design. Through this process the ar-
chitect is assisted to: i) make concrete changes leading to a
refined service orchestration, and ii) perform this with minimal
negative effects on existing qualities. The process steps are
detailed in the following sections.

A. Pattern Selection

We believe that at the design phase some quality attributes
are correlated with functional requirements, hence, they have
to be processed at the same time with them. For example, if
the architect uses the process we propose, in order to integrate
the reliability quality attribute, he may replicate some service
partners. Thus, she/he should look for similar service partners
that satisfy the same functional requirement. Consequently,
those service partners allow to achieve the reliability quality
attribute.

So, the architect should identify first the quality attribute
she/he wants to implement. This leads to analyze the SOA
patterns catalog automatically and results with a collection
of patterns, or with no pattern(s). The pattern’s specification
includes a:

e Pattern Name: The identifier of the pattern and a
simple textual description of its role;

e Architectural Script: The set of parameterized actions
that indicate the way the pattern can be applied on the
architecture. Actions are formalized using a scripting
language for Web service orchestration reconfiguration
named “WS-BScript’

e Architectural Constraints: The list of parameterized
constraints that enable to check if the orchestration
is compliant with the pattern;

e Quality Attribute: The ISO 9126 quality characteristic
that is implemented by the pattern.

! https:/sites.google.com/site/wsbscript

B. Pattern Application

The selected SOA patterns are applied on a targeted
Web service orchestration by means of some scripts, which
specify simple architectural changes expressed with a Web
service orchestration scripting language called “WS-BScript”.
WS—BScripﬂ is a lightweight DSL that enables the patterns
catalog administrator, whose responsibility is to feed the
pattern catalog, to specify primitive changes making possible
the reconfiguration of Web service orchestrations.

In this step of the process, the architect will apply one or
several predeﬁnecﬂ scripts on her/his orchestration. For this
end, the architect has to configure the scripts she/he wants
to apply by initializing their parameters first and then by
customizing them on the fly (through ask actions).

C. Quality Impact Analysis

Two key elements are used in the Quality Impact Analysis
step of the process: i) a Multi-Criteria Decision Making
(MCDM) method, named “WSM” [3] (Weighted Sum Model),
to evaluate a number of SOA pattern alternatives and determine
the one that best satisfies the architect for a quality require-
ment, and ii) the solicitation of a quality-oriented assistance
service that helps in diagnosing the consequences of any
applied pattern on the other implemented qualities.

For the first element, the MCDM problem we want to
solve can be expressed as following: “what is the pattern that
impacts the less the most important quality attributes, having
the best degree of satisfaction for the targeted quality attribute,
and is the most suitable to the architect preferences (context
suitability, e.g., price, etc.)?”

We have formulated the MCDM problem as: i) alternatives
are some selected patterns to classify; ii) decision criteria as a
weighted aggregation of:

1) Criticality of the impacted quality attribute;
2) Satisfaction degree of a pattern for a quality attribute;
3) Context-Suitability of the pattern.

For our evaluation purpose using the “WSM” method, we
chose to normalize the aforementioned criteria according to
the scale proposed in [4]]. The later gives eleven scores ranging
from 0.045.. to 0.955 and their corresponding linguistic terms
from “Exceptionally low”.. to “Exceptionally high”. This
normalization allows us to deal with a single-dimensional case
(all the units are the same) of the MCDM problem which fits
well the use of “WSM” method. We note here that the patterns
in the catalog are previously documented by the architect
according to the model proposed in [5]. This model introduces
some fine-grained information namely, the criticality degree
(a;c1) of a quality attribute, the formalization degree, and
the satisfaction degree (a;c2). The documentation is enriched
with a context-suitability degree (a;c3), which is specified
and documented at design time because it depends on the
pattern’s suitability to a given situation and to the orchestration.
This degree cannot be reused in different orchestrations. It

2The complete specification can be found here:
https://sites.google.com/site/wsbscript/ws-bscript-specification
3The patterns scripts are already specified in the patterns catalog by the

catalog administrator, the architect has just to apply them.

can however be reused in the future design of the same
orchestration.

The second element of the quality-related impact analysis
step is an assistance service which indicates the related quali-
ties that may be altered when applying a pattern. It is mainly
based on the evaluation of some OCL-like constraint that
navigate in a metamodel of BPEL. An excerpt of a constraint
checking the Service Facade Pattern [6] is given below:

context AppealedAssessmentsSystem : Process inv :
let fst : Activity =

if not self.activity >first ()—>ocllIsTypeOf(Sequence)

LW DN —

not a sequence
4| then self.activity =>first ()
5| else if self.activity =>first().ocllsTypeOf(Sequence)
6 then self.activity =>first ().oclAsType(Sequence).
activity =>first ()

7 else null
8 endif
9| endif

0] in
1| if fst < null

2| then fst.ocllsTypeOf(Receive)
3| else false

4| endif

5 and ... (check then, that there is no Receive
activity which is not
that

related to an Invoke

activity precedes it)
16)
17| else true

18] endif)

The constraint excerpt checks that the first activity in the
BPEL process is a Receive (see Line [I2). The Service
Facade pattern imposes the existence of a single Facade service
which receives invocations from client services. All other
receive activities must match with previously invoked “server”
services.

D. New Patterns Definition

It is on the responsibility of the architect to validate its
choice of a specific pattern or to reject it. If the architect is
not satisfied with any of the proposed patterns, then she/he
can define new patterns (specialization of existing patterns,
for example), which she/he is asked to document according
to the proposed specification. They will be considered as new
reusable architecture design decisions that could potentially be
applied on some architecture descriptions in the future.

E. Pattern Cancellation

Applying a selected pattern may lead to unwanted conflicts
between quality attributes. Therefore, the architect may want
to eliminate the applied pattern that causes conflicts. In this
case, the process goes through the pattern cancellation step
where an elimination of the concerned pattern is performed.
This is done by automatically applying the pattern’s opposite
architectural actions, hence avoiding to the architect the burden
of doing it manually or specifying the cancellation script. The
generation of a cancellation script is handled automaticallyﬂ
(by the “WS-BScript” toolset).

A complete list of these rules can be found in:

https://sites.google.com/site/wsbscript/ws-bscript-cancellation-rules

F. Documentation of the New Architecture

In this step, the chosen pattern is applied to the orches-
tration and added in the architecture decision documentation
as a new design decision. This documentation contains all
design decisions (SOA patterns) that was made to build the
architecture. In addition, the architect has to complete a part of
this documentation, namely the criticality degree of the quality
attribute that the pattern implements, the satisfaction degree of
the pattern for the quality attribute, the formalization degree
of the pattern, and also the related qualities of the quality
attribute. This information is necessary for the quality-driven
design process especially in the quality impact analysis step.

III. RELATED WORK

Several approaches have been proposed in the literature to
address quality requirements integration in software architec-
tures. In [1]] the authors use reusable design decisions namely
attribute primitives. We use SOA patterns and we give support
to the architect to choose among several possible alternatives
of a design decision the one that satisfies the best a given
quality goal. Besides this, we help the architect in applying
the selected design decision in a semi-automatic fashion, and
we give her/him assistance to make impact analysis.

In [7] and [8]] the authors use a Patterns catalog to
document patterns as design decisions. However, their work
differs in the way pattern selection and validation is performed.
Indeed, in [7] they use questions to help architects in choosing
and validating patterns, whereas, we use an MCDM method
in a complementary way with a quality-related impact analysis
to select and validate patterns. Additionally, our process offers
a support to integrate patterns in a semi-automatic way.

In [9], similarly to our work they mapped some quality
attributes addressed by SOA patterns [6] to quality attributes
from the ISO 9126 quality model. Their work is complemen-
tary to our work and could be helpful to the architect especially
while building the patterns catalog.

[10] and [9] investigated a quantitative evaluation of the
impact of some architectural patterns. In our work, we identify
automatically the impact through the solicitation of a quality-
oriented assistance service that helps in diagnosing the con-
sequences of any applied pattern on the other implemented
qualities.

In [L1] the authors presented an approach to Web service
(WS) modeling, discovery and selection. They use an Inten-
tional Service Model (ISM) which they enhance with quality
aspects to configure the WS discovery and selection process.
The selected services satisfy some quality requirements. In
our work quality requirements are goals to be achieved in the
service orchestration and contribute in its construction. Their
work is then complementary to our work.

In [12] they proposed an approach to WS composition that
satisfy quality requirements. The result of the composition in
their work is a sequence of invocations to services that satisfy
dynamic quality attributes achieved at runtime (e.g., response
time), while in our work we produce service orchestrations
which embody more complex BPEL modeling elements. In
addition, in our work we are interested more to static quality
attributes (e.g., portability) integrated at design time.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a quality-driven method to
Web service business processes design which uses SOA pat-
terns. We argue that catalogs, such as [6], of design pat-
terns can be documented in a (more or less) structured,
automatically checkable and semi-automatically processable
way. This method assists architects during the design of
Web service orchestrations by suggesting to them the “most”
appropriate patterns: i) that respects the more the integrated
quality attribute (the pattern that gives the best scores for
the evaluation criteria), and ii) that affects the less the other
quality requirements already satisfied and documented in the
software architecture (through the use of the quality impact
analysis). We deal in our work with service-oriented software
architectures, which are Web service business processes.

As perspectives to our work, we would like to enhance
the organization of the catalog of patterns. Instead of a flat
organization, we want to define a hierarchical one, built using
some classification techniques like FCA (Formal Concept
Analysis). In this way, we can easily look for substitutable
patterns which can be proposed together to the architect in the
process. Besides this, we plan to integrate in the proposed
process an impact analysis activity on the business logic
aspect. We can thus also evaluate the impact on the existing
functionality implemented in the software architecture.

REFERENCES

[1] L. Bass, F. Bachmann, and M. Klein, “Quality attribute design primi-
tives and the attribute driven design method,” in Proc. of PFE-4 2001.
Bilbao, Spain: Springer-Verlag, October 2001.

[2] T. Zernadji, C. Tibermacine, and F. Cherif, “Processing the evolution
of quality requirements of web service orchestrations: a pattern-based
approach,” in Proc. of WICSA’14. 1EEE CS.

[3] P. C. Fishburn, “Additive utilities with incomplete product sets: Ap-
plication to priorities and assignments,” Operations Research, vol. 15,
no. 3, 1967.

[4] S.-J. J. Chen and C. L. Hwang, Fuzzy Multiple Attribute Decision
Making: Methods and Applications. ~ Secaucus, NJ, USA: Springer-
Verlag, 1992.

[5] C. Tibermacine and T. Zernadji, “Supervising the evolution of web
service orchestrations using quality requirements,” in Proc. of ECSA’11.
Essen, Germany: Springer-Verlag, September 2011, pp. 1-16.

[6] T. Erl, SOA Design Patterns. Prentice Hall, 2009.

[7]1 Z. Durdik and R. Reussner, “Position paper: approach for architectural
design and modelling with documented design decisions (admd3),” in
Proc. of QoSA ’12, New York, NY, USA, 2012, pp. 49-54.

[8] T. M. Ton That, S. Sadou, and F. Oquendo, “Using Architectural Pat-
terns to Define Architectural Decisions,” in Proc. of WICSA/ECSA’12,
Helsinki, Finland, Aug. 2012, pp. 196-200.

[9] M. Galster and P. Avgeriou, “Qualitative analysis of the impact of soa
patterns on quality attributes,” in Proc of QSIC’12. 1EEE, 2012, pp.
167-170.

[10] N. B. Harrison and P. Avgeriou, “Leveraging architecture patterns to
satisfy quality attributes,” in Proc. of ECSA’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 263-270.

[11] M. Driss, N. Moha, Y. Jamoussi, J.-M. Jzquel, and H. H. B. Ghzala, “A
requirement-centric approach to web service modeling, discovery, and
selection,” in Proc. of ICSOC’10. Springer-Verlag, 2010, pp. 258-272.

[12] Z. Azmeh, M. Driss, F. Hamoui, M. Huchard, N. Moha, and C. Tiber-
macine, “Selection of composable web services driven by user require-
ments,” in Proc. of ICWS’11. Washington DC: IEEE CS, July 2011.

https://www.researchgate.net/publication/262601248

	Introduction: Problem Statement
	Proposed Approach
	Pattern Selection
	Pattern Application
	Quality Impact Analysis
	New Patterns Definition
	Pattern Cancellation
	Documentation of the New Architecture

	Related Work
	Conclusion and Future Work
	References

