
HAL Id: hal-03336297
https://hal.science/hal-03336297

Submitted on 7 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Automatic Identification of Microservices
from Business Processes

Mohamed Daoud, Asmae El Mezouari, Noura Faci, Djamal Benslimane,
Zakaria Maamar, Aziz El Fazziki

To cite this version:
Mohamed Daoud, Asmae El Mezouari, Noura Faci, Djamal Benslimane, Zakaria Maamar, et al..
Towards an Automatic Identification of Microservices from Business Processes. IEEE International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, Sep 2020, Bayonne,
France. pp.42-47, �10.1109/WETICE49692.2020.00017�. �hal-03336297�

https://hal.science/hal-03336297
https://hal.archives-ouvertes.fr

Towards an Automatic Identification of
Microservices from Business Processes

Mohamed Daoud1, Asmae El Mezouari2, Noura Faci1, Djamal Benslimane1

Zakaria Maamar3 and Aziz El Fazziki2

1Université Lyon 1, Lyon, France – 2Caddi Ayyad University, Marrakech, Morocco
1Zayed University, Dubai, UAE

Abstract—Microservices have emerged as an alternative solu-
tion to many existing technologies allowing to break monolithic
applications into “small” fine-grained, highly-cohesive, and
loosely-coupled units. However, identifying microservices re-
mains a challenge that could undermine this migration success.
This paper proposes an approach for microservices automatic-
identification from a set of business processes (BP). The ap-
proach is multi-models combining different independent models
that represent a BP’s control dependencies, data dependencies,
semantic dependencies, respectively. the approach is also based
on collaborative clustering. A case study about renting bikes is
adopted to illustrate and demonstrate the approach. In term
of precision, the results show how BPs as inputs permit to
generate better microservices compared to other approaches
discussed in the paper, as well.

Index Terms—Microservices, Semantics, Business Process,
Disco, Data dependencies.

I. INTRODUCTION

There is a consensus that existing solutions like

Commercial-Of-The-Shelf and Component-Based Software

Engineering have already shown their limitations to tackle

the challenge of managing monolithic (legacy) systems.

Monolithic means one block of strongly-coupled compo-

nents that complexify the process of accommodating func-

tional, non-functional, and structural changes that all orga-

nizations experience on a daily basis. Contrarily, microser-
vices have emerged as an alternative solution allowing

to break such systems into “small” units that are fine-

grained, highly-cohesive, and loosely-coupled. However to

sustain the benefits of microservices their successful dis-

covery is a must. This paper presents a novel approach

to discover microservices. First we use a set of Business
Processes (BP) as an input for discovery while others use

log files [6], source codes [7], UML class diagram [2], and

legacy databases [3]. Second, we use clustering technique to

capture the dependencies that characterize BPs’ activities in

terms of control, data, and functional.

Referred to as organizations’ main assets, BPs could

constitute an important source for identifying microservices.

According to Weske, ”... A business process consists of a
set of activities that are performed in coordination in an
organizational and technical environment. These activities
jointly realize a business goal. Each business process is
enacted by a single organization, but it may interact with
business processes performed by other organizations” [14].

Despite being a rich reservoir of many details like who does

what, when, where, and why, BPs seem overlooked during

the exercise of identifying microservices. To the best of our

knowledge, Amiri is the only one who adopted BPs in this

exercise [1].
In this paper, we design and develop a collaborative

clustering-based approach to automatically identify mi-

croservices. At the core of our approach is the idea of

extracting microservices from BPs’ activities by using first,

a set of separate models that individually identify different

kinds of information related to these activities and their

dependencies and second, a collaborative clustering tech-

nique instead of a classical clustering technique to avoid

aggregating extracted data that could lead to losing some

implicit details. Our approach is multi-models in the sense

that it combines independent models to represent a BP’s

structural dependencies, data dependencies, semantic depen-

dencies, and so on. It is also based on collaborative clustering

in the sense that all data that could be extracted from the

different models are kept independent instead of aggregating

them. Each data set is then handled by a separate clustering

algorithm.
The rest of the paper is organized as follows. Section 2

describes related work. Section 3 presents a case study and

gives an overview of our approach to automatically identify

microservices from existing BPs. Section 4 formalizes the

structural and semantic dependencies models. Section 5

details the collaborative clustering in this approach and then,

the system implementing this approach along with some

experiments’ results. Section 6 concludes the paper.

II. RELATED WORK

Decomposing existing monolithic applications into a set

of microservices is one of the main challenges in migrating

such applications to a microservices-based architecture. In

this section, we discuss different approaches that pursue such

objective.
In‘ [3], a 3-step approach to break a business logic into

potential microservice is presented. The first step manually

refines a traditional Data-Flow Diagram (DFD) to shed light

on data flows with respect to a business logic. During

this step details about data stores and external entities are

discarded. The next step uses some rules to abstract the

refined DFD into a decomposable DFD allowing to improve

the quality of the future microservices to obtain. Finally, the

third step proceeds with identifying the microservices based

on the operations of the DFD and their output data.
In [11], an approach based on functionality-oriented mi-

croservice extraction by clustering execution traces of pro-

grams collected at run-time is presented. These traces are

collected using program execution monitoring techniques

and permit to examine the implicit and explicit program

functional behavior. They also reveal which entities are used

for which business logic. The approach clusters source code

entities that are related to the same functionalities. Even if

the work in [11] is interesting, it suffers from the strong

dependence on the quality of the generated execution traces,

and consequently on the quality of the test cases.

In [1], a clustering-based approach is discussed where

structural and data dependencies between tasks are extracted

from a given set of business processes. All these dependen-

cies are merged into one dependency matrix. This latter is

used by a classical clustering algorithm to identify candidate

microservices.

In [9], a service-cutter system is presented allowing to

decompose monolithic systems into “small” services. The

decomposition uses the systems’ functions and considers

3 criteria that are cohesion between entities at the property

level, coherence between data of each microservice, and

communication cost between services. In [3], an approach

to identify microservices is proposed. It uses the semantic

similarity of functionalities that are described in openAPI

and a reference vocabulary.

III. OUR APPROACH FOR IDENTIFYING MICROSERVICES

This section consists of 4 parts. The first part presents

a case study that refers to Barcelona’s bike sharing system

known as Bicing. The second and third parts discuss our

approach’s foundations in terms of dependencies between

BPs’ activities and collaborative clustering.

A. Bicing case-study

Bicing includes more than 400 bike anchor-stations spread

across Barcelona and about 6000 bikes that users rent

for a fee. Bicing’s monolithic system is described in [8]

along with the managerial and technical challenges that

undermine its operations. For the needs of our work, we

suggest in Fig. 1 a high-level representation of Bicing from a

BP perspective. We resorted to the standard Business Process

Model and Notation (BPMN) to illustrate this representation.

We have identified different activities (a1: request bike and

a9: dismantle bike), different dependencies (between a1 and

a2), different logical operators (XOR between a6 and a10
and OR between a2 and a3), and, finally, different artefacts

(bike and user) and their respective attributes (e.g., ID and

status). In the rest of this paper the discussion about Bicing

is not restricted to renting bikes but includes other aspects

like reporting and fixing bikes’ defects and disposing bikes,

if necessary.

It all starts when a user requests a bike (a1) at a certain

anchor station. After checking the user’s credentials (a2) and

any late fee payment (a3), the Bicing system updates the

user’s records (a4) and then, approves the user’s request (a5).

If it turns out that the bike is defective, the user puts it

back (a6) and eventually requests another one. Otherwise,

the user starts his journey (a10). Regularly all bikes are

serviced (a7) leading to either putting them back for rent (a8)

or disposing them (a9). When the user arrives to destination,

he returns the bike at a certain anchor point (a11). Otherwise,

the Bicing system blacklists the user (a14) due to bike

inappropriate return and geo-locates the bike (a12) so that

Fig. 1: An illustrative BPMN-based representation of the

Bicing system

it is collected by the competent services and then made

available to other users (a13).

From a specification perspective, activities ({ai}) may

require inputs ({ii}) and produce outputs ({oi}) that both

correspond to specific artefacts’ attributes. An activity acts

upon an attribute through 2 operations that are read (r)

and/or write (w), which could lead to updating (u), creat-
ing (c), and/or deleting (d) artefacts.

B. Foundations

Simply put, a BP is a set of logically related activities

that are performed to achieve goals [5]. “Logically related”

means connecting activities using dependencies such as con-
trol (execution order), semantics (functional similarity), data
(information sharing), and organisational (cross-functional

operations).

- Control dependency refers to both the execution or-

der (e.g., finish-to-start and start-to-start) between activ-

ities and the logical operators (e.g., XOR and AND) be-

tween activities as well. Should 2 activities be directly

connected through a control dependency, then most

probably they would form a highly-cohesive microser-

vice to which they will belong. Contrarily, they would

most probably be used to form separate microservices

to which each will belong.

- Semantic dependency uses activities’ names to estab-

lish their functional similarity in term of what they

do. Activities’ names refer to linguistic templates that

must include a verb and object/result along with op-

tional parameters like time and location. For instance,

a11’s name includes place (verb), bike (object), and

anchor point (location). To assess activities’ names

similarity, we rely on either a reference vocabulary or

an ontology. A highest/lowest similarity value would in-

dicate strong/weak coupling between activities making

them members of the same/different microservice/mi-

croservices.

- Data dependency is about data flows between activities’

outputs/inputs that constitute artefacts’ attributes that

could be subject to create (c) and write (w) operations

and could be labeled as either optional or mandatory

for BP execution. We advocate that activities exchang-

ing mandatory artefacts’ attributes should be part of

the same microservice allowing to comply with the

strong coupling principle.

- Organizational dependency refers to horizontal (cross)

and vertical (silo) business operations. We advocate that

activities that fall into horizontal interactions would

more likely be part of the same microservices.

We focus on control and semantic dependencies, only.

Upon establishing such dependencies, we quantify them us-

ing specific metrics that evaluate the cohesion and coupling

among activities so they are gathered in either same or

separate microservices. To evaluate a control dependency
between 2 activities (ai, aj), we consider aj’s occurrence

probability after executing ai. This probability depends on

the execution order and/or logical operators between ai and

aj . Let us consider the control dependency between a5 and

a10 that is connected with a6 through XOR (Fig. 1). After

executing a5, a10’s occurrence probability depends on the

decision made at XOR (i.e., either a6 or a10). We note

that any activity’s occurrence probability is continuously

calculated using BP’s execution logs.

To evaluate semantic dependency between 2 activities (ai,
aj), we consider the distance between their respective

semantic annotations. We identify 3 annotation strategies

referred to as word-driven (W), concept-driven (C), and

fragment-driven (F). The first relies on a reference vo-

cabulary to annotate activities with terms associated with

their respective names. The second relies on some specific

domain ontology to annotate activities with concepts related

to their respective names. Finally, the third refines the second

by annotating the activities with ontological fragments that

would refer to functional domains.

Based on dependencies among activities, we gather ac-

tivities into microservices by using clustering techniques.

In the literature, clustering is either centralized or collab-

orative [10]. In the former, a single component manages

the clustering by utilizing all individuals’ features as inputs.

In the latter, multiple components, each in charge of one

type of features, exchange some details during clustering

so that appropriate clusters are jointly built. Performance

and appropriateness of clustering techniques are thoroughly

discussed in the literature [4]. Many works like [4] and [10]

advocate for collaborative clustering to identify microser-

vices. It provides fine-grained and accurate results contrarily

to centralized clustering where individuals’ features need to

be aggregated before initiating any clustering.

Fig 2 depicts our approach for microservices identifi-

cation. It relies on the aforementioned dependencies and

collaborative clustering to group activities that would form

fine-grained, highly-cohesive, and loosely-coupled microser-

vices. Our approach consists of the following steps. After

examining activity dependencies, their details are stored in

dedicated repositories. Then, these repositories’ contents are

submitted for collaborative clustering where different clus-

tering techniques (one per dependency) are used to obtain

consensual clustering solutions. More details are given in

Section V-A.

IV. ANALYZING DEPENDENCIES

A. Control dependency analysis

Let CD(ai, aj [Operator {ak}])ExecOrder be a direct con-
trol dependency referring to a certain execution order be-

tween ai and aj that is connected to other activities {ak}
through a certain Operator. An execution order between

Fig. 2: General representation of our microservice identifi-

cation approach

2 activities could be exemplified with either finish-to-start
(our focus and denoted by SEQ)), finish-to-finish, start-to-
start, or start-to-finish.

Let us start with the control dependency
CD(ai, aj)SEQ (i.e., {ak} = ∅)). Since SEQ between

ai and aj means that aj starts only after ai has successfully

completed, CD(ai, aj)SEQ denotes aj’s occurrence

probability (p) after ai’s completion as per Equation 1:

CD(ai, aj)SEQ = p (1)

where p ∈]0, 1].

We now examine the control dependency
CD(ai, aj Operator {ak})SEQ (i.e., {ak} �= ∅)).

According to Operator’s semantics, we assume that some

r activities in {ak} ∪ aj will be selected for execution.

Equation 2 defines the number of activities that will be

selected for execution as a combination C(n, r) where n
corresponds to card({ak} ∪ aj).

C(n, r) = n!
r!×(n−r)! (2)

Depending on the semantics of Operator whether AND,

XOR, or OR, CD(ai, aj Operator {ak})SEQ is calculated

as follows:

1) CD(ai, aj AND {ak})SEQ. This dependency means

that aj will start only after ai has successfully com-

pleted regardless of {ak}. Formally, Equation 3 com-

putes CD(ai, aj AND {ak})SEQ as follows:

CD(ai, aj AND {ak})SEQ = C(n, n) ∗ CD(ai, aj)SEQ (3)

where p ∈]0, 1] & C(n, n) = 1, as per Equation 2.

2) CD(ai, aj XOR {ak})SEQ. This dependency means

that one activity from {ak} ∪ aj will be selected after

ai has successfully completed. Formally, Equation 4

computes CD(ai, aj XOR {ak})SEQ as follows:

CD(ai, aj XOR {ak})SEQ = 1
C(n,1) ∗ CD(ai, aj)SEQ (4)

where C(n, 1) is the number of possibilities to select

one activity from {ak}∪aj . As per Equation 2, C(n, 1)
is equal to n.

3) CD(ai, aj OR {ak})SEQ. This dependency means that

a set of r activities from 2{ak}∪aj (i.e., all possible

multiple choices) will be selected after ai has success-

fully completed. For the sake of simplicity, we assume

that any activity in {ak} ∪ aj has the same occurrence

probability over 2{ak}∪aj , that is equal to r
n where

r varies from 1 to n. Formally, Equation 5 computes

CD(ai, aj OR {ak})SEQ as follows.

CD(ai, aj OR {ak})SEQ =
∑

r=1,n(
r
n×C(n,r))∑

r=1,n C(n,r) ∗ CD(ai, aj)SEQ (5)

where

-
∑

r=1,n(
r
n ×C(n, r)) represents the number of aj’s

occurrences among possible combinations of activi-

ties1.

-
∑

r=1,n C(n, r) corresponds to the total number of

possible combinations of activities2.

We now look into indirect control dependency between ai
and aj where there is a set of other peers connected with

operators. This dependency, denoted as CD(ai, aj)path1
i,j

,

refers to a certain execution path (path1
i,j) and is computed

as per Equation 6:

CD(ai, aj)path1
i,j

=
∏

al,am∈path1
i,j

CD(al, am Operator {akm})SEQ (6)

When multiple execution paths exist between ai and aj ,

we refer to this control dependency as CD(ai, aj)pathsi,j
and is computed as per Equation 7:

CD(ai, aj)pathsi,j = maxq=1,...(CD(ai, aj)pathq
i,j
) (7)

where pathq
i,j represents the qth possible execution path

between ai and aj . Table I depicts an excerpt of control
dependencies in the Bicing system.

TABLE I: Control dependencies with p = 0.5
Activity a1 a2 a3 a4 a5

a1 - 1/2 5/6 11/12 17/12
a2 1/2 - 1/3 7/12 11 /12
a3 5/6 1/3 - 1/4 3/4
a4 11/12 7/12 1/4 - 1/2
a5 7/12 11/12 3/4 1/2 -

B. Semantic dependency analysis

Let X be the annotation strategy and SDX (ai, aj) be

a semantic dependency between ai and aj using X . Prior

to formalizing SDX , we first describe our 3 proposed

annotation strategies.

Word-driven strategy (W). Algorithm 1 outlines how to

annotate an activity ai using a set of the n most similar

words (Wai). To develop Wai , we adopt No et al.’s

solution, DISCO [13], that assumes that words with

similar meaning (co-)occur in similar bag-of-words

contexts. Thus, Wai
represents the set of ai’s most dis-

tributionally similar words (wk) along with their respec-

tive similarity degrees (sdi,k). It is worth mentioning

that any other semantic textual similarity solution can

be used.

1Let n be 3,
∑

r=1,n(
r
n
×C(n, r)) has the following value: (1

3
× 3+

2
3
× 3 + 3

3
× 1=4).

2Let n be 3,
∑

r=1,n C(n, r) has the following value: (3+ 3+ 1)=7.

Algorithm 1: Word-driven annotation strategy
Input: ai, n
Output: Wai

1 begin
2 Wai

← DISCO(ai, n)
3 return Wai

Concept-driven strategy (C). Algorithm 2 outlines how to

annotate an activity ai using a set of the most similar

concepts (Cai
) that would belong to the BP’s domain

ontology (OBP). For each concept cj , the algorithm

uses No et al.’s similarity measure between ai and

cj , namely DISCO2. In line 3, maxs function devel-

ops Cai
by considering the concepts with the highest

similarity values with respect to a certain precision σ.

For instance, if the highest value is 0.5 and σ is set

to 0.1, then maxs also includes all the concepts with a

similarity degree between 0.4 and 0.5.

Algorithm 2: Concept-driven annotation strategy
Input: ai, OBP , σ
Output: Cai

1 begin
2 foreach cj ∈ OBP do
3 D[i, j] ← DISCO2(ai, cj)

4 Cai
← maxs({D[i, j]}, σ)

5 return Cai

Fragment-driven strategy (F). Algorithm 3 outlines how

to annotate an activity ai using a set of the most

similar (eventually overlapped) fragments (Fai) that

each encompasses concepts belonging to OBP . Lines 2-

3 compute ai’s membership degrees (M[i]) to each

fragment Fk ∈ OBP based on the set of common

concepts that belong to Fk and Cai
along with sdi,j

associated with each cj . In Line 4, maxm function

develops Fai
by considering the fragments with the

highest similarity degrees with respect to a certain

precision σ.

Algorithm 3: Fragment-driven annotation strategy
Input: Cai

, OBP , σ
Output: Fai

1 begin
2 foreach Fk ∈ OBP do
3 M[i, k] ← ∑

cj∈Fk∩Cai
D[i, j]

4 Fai
← maxm(M[i], σ)

5 return Fai

Formally, Equation 8 computes the Semantic Depen-

dency (SD) between ai and aj .

SD(ai, aj) = 1− dX (Xai ,Xaj) (8)

where Xai reflects the annotation strategy’s outcome

(i.e., either Wai
, Cai

, or Fai
) and dX represents the distance

between Xai
and Xaj

. We hereafter define each dX .

• dW compares all the words in Wai
to those in Waj

.

Formally, Equation 9 computes dW as follows.

dW(Wai ,Waj) =
∑

wk∈Wp
ai

sdi,k +
∑

wk∈Wp
aj

sdj,k (9)

where Wp
ai|aj

represents Wai|aj
’s privative set of words

(i.e., Wai|aj
−Wai ∩Waj).

Equation 10 computes the normalized dW as follows.

dnormW (Wai
,Waj

) =
dW(Wai ,Waj)

|Wp
ai |+ |Wp

aj |
(10)

• dC compares all the concepts in Cai with those in Caj .

Formally, Equation 11 computes dC as follows.

dC(Cai , Caj) =
∑

ck∈Cai

(1−D[i, k])∗
∑

cl∈Caj

(1− (D[j, l] ∗WU(ck, cl))
(11)

Equation 12 computes the normalized dC as follows.

dnormC (Cai
, Caj

) =
dC(Cai , Caj)

|Cai
| ∗ |Caj

| (12)

• dF compares all the fragments in Fai
with those in

Faj
. Formally, Equation 13 computes dC as follows.

dF (Fai ,Faj) =
∏

Fk∈OBP

(1− |M[i, k]−M[j, k]|)
(13)

Let P2(BP) be the set of all distinct activity pairwises

built from BP (i.e., ak �= al). Formally, Equation 14

computes the normalized dF as follows.

dnormF (Fai
,Faj

) =
dF (Fai

,Faj
)

dmax
F

(14)

where

• dmax
F = max({dF (Fak

,Fal
)}<ak,al>∈P2(BP))

V. COLLABORATIVE CLUSTERING ALGORITHM AND

EXPERIMENTAL EVALUATION

In this section, we first describe our proposed collab-

orative clustering of BPs’ activities and then discuss the

experiments and evaluation.

A. Collaborative clustering

We designed a collaborative clustering algorithm (cHAC)

that extends the classical Hierarchical agglomerative algo-

rithm (HAC) [12]. cHAC is performed by N homogeneous

clustering nodes (CN1, CN2, . . . , CNn) executing the same

program. However they differ with respect to their inputs.

Each CN node handles one and only one dependency matrix.

cHAC algorithm fosters collaboration between CN since

each CN has its own dependency matrix along with “keep-

ing an eye” on what other CNs are doing by sharing some

dependencies scores about activities, if deemed necessary.

Thus, prior to each new HAC clustering iteration, a CN uses

both a Local Score Matrix (LSM) that stores dependency

scores between couple of activities and a Shared Score Ma-

trix (SSM) that stores a global dependency score between

each couple of activities.

Our cHAC algorithm goes over 3 phases:

• Initialization phase (Algorithm 4). All CN nodes are

launched with their respective number of clusters k,

and their respective local dependency score matrices.

An empty shared dependency matrix is also created to

store the shared dependency score of activities. Each

activity constitutes a cluster. A shared variable is also

introduced to synchronize the iteration of the nodes. A

Algorithm 4: cHAC - Initialization
Input: N - number of clustering node CN , Ki i = 1..N - targeted

number of clusters of each node CNi, DMi[M,M] i = 1..N -
DMi Dependency Matrix of CNi, SDSM [M,M] - Shared
dependency score matrix;

Output: final cluster result fc;
1 begin
2 SIC ← 0 ; // shared counter between CN nodes
3 cSET [i] ←cHACn(ki, DMi,@SDSM,@SIC), i = 1..M ;

// parralel execution of CN nodes
4 ;
5 fc← chooseFinalClusterResult(cSET);
6 return fc;

new iteration is launched at a given node if-and-only-

if the other nodes have already finished their current

iterations.

• Collaborative Iteration phase. A classical HAC

clustering is extended to make it collaborative as per

Algorithm 5. The nearest pair of clusters Cu and Cv

is computed by using both LSM and SSM based on

calculating the distance using the formula:

SMp (Cu, Cv) =

|Cu|∗|Cv|∑

(i,j)=(1,1)

SMp−1 (ai, aj) / (|Cu| ∗ |Cv|)

where the score matrix SMp designates either LSM or

SSM matrix at the pth iteration.

Clusters Cu and Cv are merged if and only if:3

[distance(Cu, Cv)]
LSM
p >= [distance(Cu, Cv)]

SSM
p−1

.
Then, the node updates The Local Score Matrix by cal-
culating the new scores of activities using the formula:

SMp (ai,aj) =

|Cv|∑

j=1

SMp 1 (ai, aj) /|Cv|

To foster similarities between couples of activi-

ties (ai, aj), the shared score matrix is also updated

as follows:

[SSM(ai, aj)]p = Max([LDSM(ai, aj)]p, [SSM(ai, aj)]p−1)

• Selection phase. Once the different clustering results are

produced by the different CNs, the distance metrics are

applied to them to choose the best one that fosters both

cohesion and loose-coupling of groups.

B. Experiments

We implemented the collaborative clustering approach in

Java. To this end, different modules have been developed.

Some of these modules permitted to extract control depen-

dencies and data dependencies from BPs and to run the

collaborative clustering algorithm that took the number of

clusters and dependency matrices as inputs. Bicing system’s

14 activities were initially used to test the algorithm. Then,

more activities were randomly generated to capture the

complexity of real BPs.

For evaluation needs we considered the internal validation

metric Dunn index that measures the quality of clustered

results by identifying the clusters that are compact (minor

3[distance(Cu, Cv)]SC
p computes any distance between 2 clusters Cu

and Cv by using the score Matrix SM of the iteration p.

Algorithm 5: cHACn - collaborative clustering
Input: K - targeted number of clusters, N : number of clustering node CN,

DM : Dependency matrix, @SDSM : Shared dependency score
matrix;

Output: C - clustering set
1 begin
2 Cu, Cv, Cp - cluster variables
3 C ←{{a1}, {a2}, ..., {aM}} ; // each activity is a

cluster
4 while |C| > k do
5 (Cu, Cv) ← NearestPeerCluster(C);

6 if [distance(Cu;Cv)]
DM � [distance(Cu;Cv)]

SDSM

then
7 Cp ← fusion(Cu, Cv);
8 C ←C-(Cu ∪Cv);
9 C ←C∪Cp;

10 updateDM();
11 @SIC ← @SIC + 1 mod N ; // The node

indicate to other nodes that its current
clustering iteration is done

12

13 WAIT (@SIC = 0) ; // the new iteration will be
started only when all oher CN nodes have
finished their current clustering iteration

14 updateSDSM();

15 return C;

(a) Dunn Index corresponding to the control, data and
Semantic (1st strategy) models

(b) Dunn Index corresponding to the control, data and
Semantic (2nd strategy) models

Fig. 3: Dunn Index of clustering results

variance between activities of the same cluster) and sepa-

rate (clusters are enough far apart). A higher Dunn index
indicates better clustering.

In the first experiment, we measured the Dunn index of

the clustering algorithm by using Control, Data and Semantic

dependencies matrices. Fig. 3a and Fig. 3b illustrate the

obtained results clearly showing that the Dunn index that

results from the Control dependencies node is almost always

better than the Dunn index that results from both Data

and Semantic dependencies nodes. This means that for a

given BP, the control dependency model is richer and more

informative than the other models. We also computed the

Dunn index of the clustering result by aggregating the three

control, data and semantic dependencies in one matrix.

The obtained results show that the clustering quality of

the Control dependency node is often better than the one ob-

tained by merging control, data and semantic dependencies.

It confirms that aggregating different dependency matrices

degrades the quality of the final microservice generation and

the collaboration between nodes is the appropriate option.

VI. CONCLUSION

Automatic identification of microservices is one step al-

lowing to migrate from monolithic systems to microservices-

based systems. This paper proposed a multi-model based-

approach to support this migration using BPs as an input

to this identification. Each model represents dependencies

between BPs’ activities from one perspective (control, se-

mantics, data, etc.). The generated data dependencies are

then used by a collaborative clustering algorithm to identify

groups of cohesive activities that could become potential

microservices. The technical results are promising showing

how our collaborative clustering algorithm outperforms the

cooperative clustering algorithm in term of precision.

REFERENCES

[1] Mohammad Javad Amiri. Object-aware identification of microser-
vices. In 2018 IEEE International Conference on Services Computing
(SCC), pages 253–256. IEEE, 2018.

[2] Luciano Baresi, Martin Garriga, and Alan De Renzis. Microservices
identification through interface analysis. In European Conference on
Service-Oriented and Cloud Computing, pages 19–33. Springer, 2017.

[3] R. Chen, S. Li, and Z. Li. From monolith to microservices:
A dataflow-driven approach. In 2017 24th Asia-Pacific Software
Engineering Conference (APSEC), pages 466–475. IEEE, Dec 2017.

[4] Antoine Cornuéjols, Cédric Wemmert, Pierre Gançarski, and Younès
Bennani. Collaborative clustering: Why, when, what and how.
Information Fusion, 39:81–95, 2018.

[5] T.H. Davenport and J.E. Short. The new industrial engineering: Infor-
mation technology and business process redesign. Sloan Management
Review, 1990.

[6] Ervin Djogic, Samir Ribic, and Dzenana Donko. Monolithic to
microservices redesign of event driven integration platform. In
41st International Convention on Information and Communication
Technology, Electronics and Microelectronics, MIPRO 2018, Opatija,
Croatia, May 21-25, 2018, pages 1411–1414, 2018.

[7] Daniel Escobar, Diana Cardenas, Rolando Amarillo, Eddie Castro,
Kelly Garcés, Carlos Parra, and Rubby Casallas. Towards the under-
standing and evolution of monolithic applications as microservices. In
XLII Latin American Computing Conference, CLEI 2016, Valparaı́so,
Chile, October 10-14, 2016, pages 1–11, 2016.

[8] M. Estañol. Artefact-centric Business Process Models in UML:
Specification and Reasoning. PhD thesis, Universitat Politècnica de
Catalunya, 2016.

[9] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zim-
mermann. Service cutter: A systematic approach to service decom-
position. In European Conference on Service-Oriented and Cloud
Computing, pages 185–200. Springer, 2016.

[10] K.M. Hammouda and M.S. Kamel. Collaborative document cluster-
ing. In SIAM International Conference on Data Mining, 2006.

[11] Wuxia Jin, Ting Liu, Qinghua Zheng, Di Cui, and Yuanfang Cai.
Functionality-oriented microservice extraction based on execution
trace clustering. In 2018 IEEE International Conference on Web
Services, ICWS 2018, San Francisco, CA, USA, July 2-7, 2018, pages
211–218, 2018.

[12] Fionn Murtagh and Pierre Legendre. Ward’s hierarchical clustering
method: Clustering criterion and agglomerative algorithm. CoRR,
abs/1111.6285, 2011.

[13] N.P.A Vo, F. Guillot, and C. Privault. Disco: A system leveraging
semantic search in document review. In COLING, 2016.

[14] Mathias Weske. Business Process Management: Concepts, Languages,
Architectures. Springer, 2019.

