
A Preliminary Study of the Energy Impact of
Software in Raspberry Pi devices

Kamar Kesrouani∗, Houssam Kanso†, and Adel Noureddine‡
Universite de Pau et des Pays de l’Adour, E2S UPPA, LIUPPA

Anglet, France
∗kkesrouani@univ-pau.fr, †houssam.kanso@univ-pau.fr, ‡adel.noureddine@univ-pau.fr

Abstract—Nowadays, the use of IoT devices is essential in
most sectors along with a rising concern regarding their energy
consumption. Therefore, an accurate estimation of the energy
consumption of such devices is required for energy-efficient
improvements. This paper presents Energy Measurement Model
(EMM), an energy estimation tool for Raspberry Pi 3 Model
B+. It is a software-based model used to estimate the local
energy consumption of a device by taking into consideration CPU
utilization. The error rate of our model averages at 1.25%. Using
this model, we study the energy impact of a set of algorithms,
programming languages and compilers.

Index Terms—Connected Objects, Raspberry Pi, IoT, Energy
Consumption, Energy Efficiency, Software Engineering

I. INTRODUCTION

Energy consumption of IoT devices is an important topic
and a rising concern with the widespread using of IoT equip-
ment. Billions of IoT devices are expected to produce up
to 14% of global carbon emissions by 2040 [1]. Measuring
and monitoring the energy consumption of such devices is,
therefore, a crucial step in order to minimize their energy
impact and expand their lifetimes.

Many energy measurement tools and models have been
proposed for PCs, servers, and other devices and equipment.
However, IoT devices lack a software-based approach that can
accurately monitor the energy consumption of devices, and
scale up to thousands of devices. For instance, wattmeters or
other hardware monitoring components offer accurate energy
reading, but with a cost of limited scalability and impor-
tant hardware and financial investment. On the other hand,
software-based models scale up easily but their accuracy varies
greatly.

In this paper, we conduct an empirical experiment on
multiple algorithms, programming languages and compilers
on a Raspberry Pi device. We analyze and compare the
collected energy consumption data and draw our observations
and insights on software in ARM-based Linux systems. To do
so, we present our multi-model energy estimation approach:
Energy Measurement Model (EMM).

The remainder of this paper is organized as follows: in
section II, we review the state of the art of energy estimation
and measurement. We propose our estimation model including
its architecture and its validation in section III. In section IV,
we conduct empirical experiments on different algorithms,
programming languages and compilers, and draw our obser-
vations. Finally, we conclude in section V.

II. STATE OF THE ART

In [2], a power model called PowerPi that measures the
power consumption of Raspberry Pi 2 Model B has been
proposed. It estimates the power consumption of CPU and
network usage only. The measurement is done using an
external power meter and the model is generated by adjusting a
linear function to the measured data and minimizing the RMSE
(Remaining Root Mean Square Error). We tested PowerPi
model on Raspberry Pi 3 Model B+ . The error rate of
the estimations provided by PowerPi model compared to the
measurements from a powermeter is too high. In idle mode,
the error rate is on average around 60% and when stressing
the device using the stress command at 100% utilization, the
error rate is on average around 72%.

In [3], an external current sensor was used to measure the
power consumption of the Raspberry Pi. The sensor is inserted
on the power lines of the USB connection in the 5 V line. Their
solution is hardware-based, making it difficult and costly to
deploy in an environment with multiple Raspberry Pis.

In [4], a model was proposed that converts data about
resource usage into energy or power consumption information
for Single Board Computers (SBCs). The model was tested
with several real applications on a Raspberry Pi 2 model B.
The model made up of power consumption characterization
and power consumption estimation. CPU and Ethernet usage
were considered as variables. It has an average error of 2.2%.

In [5], the authors evaluated the energy efficiency of SBCs
(including Raspberry Pis) over the last years, by measuring
and controlling the system utilization of multi-core systems.
To model the power consumption of SBCs, they recorded the
system utilization and the power consumption of devices under
test and then run a regression analysis on the collected data.
To measure the power consumption of SBCs, they monitored
the system utilization (simple calls to /proc file system) and
converted these to power consumption using their proposed
models. For all devices, the error rate was smaller than 10%.

In [6], EMPIOT a power measurement platform was pro-
posed. It is composed of hardware and software components,
and measures the energy consumption of IoT devices. The
effect of diverse design parameters on accuracy and overhead
was studied. The authors used five different IoT devices
performing sleep, software encryption, and transmission tasks.



III. MODEL GENERATION

A. Model Architecture

Due to the high error rates found in the literature and
incompatibility with new Raspberry Pis, we develop and
generate our own power estimation model using empirical
data and linear regression on a Raspberry Pi 3 model B+. It
estimates the power consumption of the CPU (an ARM-based
Cortex-A53 (ARMv8) 64-bit processor, running at 1.4 GHz).
The device is running Raspberry Pi OS with kernel version
4.19.118∼v7+. Our model generates formulas by applying a
linear regression function using the Weka tool 1. We collect
four metrics from the operating system for CPU cycles: user,
nice, system and idle. These cycles are collected from the
/proc/stat folder, and we used them to calculate the CPU
utilization using the following formula:

u[t] =
cbusy[t]− cbusy[t− 1]

ctotal[t]− ctotal[t− 1]
(1)

where: ctotal[t] is the sum of cbusy[t] and the number of
idle cycles cidle[t]. cbusy[t] is the total number of busy cycles
up to time t, it is defined by:

cbusy[t] = cuser[t] + cnice[t] + csystem[t] (2)

cuser[t] is the number of user-generated CPU cycles, cnice[t]
is the number of cycles created by low priority processes and
csystem[t] is the number of cycles created by the system.

In order to generate our estimation model, we stress the
CPU in the range of 1% to 100% with a 1% step, using the
Linux stress command. One sample was collected/measured
each second. For each percentage, we did the following:

• Measure the power consumption P using a PowerSpy2
powermeter 2. Powerspy2 is a hardware accurate mea-
suring device used to measure a variety of metrics such
as current, voltage, energy, power, and others. P is
considered the true value of the power consumption of
the device. It is used to train our model and validate it.

• Retrieve the CPU data (4 types of cycles and calculate
the utilization rate u).

Using formula 1, we notice that multiplying u by 100, we
obtain approximately the percentage of CPU utilization that
we applied with the stress command. To generate the formula,
the dataset containing u and P is given to Weka. The generated
formula is the following:

Ppi = 2.1514× u+ 4.142(W ) (3)

The Root-Mean-Square-Error (RMSE) of this formula is equal
to 0.1471 and the normalized RMSE is equal to 2.81%.

Figure 1 shows a change in the slope approximately around
the 50% CPU utilization. Using formula 3 only, we obtained
higher error rate for the low percentages of CPU usage and
around the 50% mark. Therefore, we generate two formulas
using the same empirical approach and linear regression
model: one trained with a dataset ranging from 1% to 50%, and
the other with a dataset from 51% to 100% CPU utilization.

1https://www.cs.waikato.ac.nz/ml/weka/
2https://www.alciom.com/en/our-trades/products/powerspy2/

Fig. 1: Power consumption of the stress command measured
by the powermeter, estimated by the single formula model
(formula 3) and multi-formulas model (formulas 4 and 5)

The generated formula for the first 50% is the following:

Ppi = 3.4495× u+ 3.8563(W ) (4)

The RMSE of this formula is equal to 0.0322 and the normal-
ized RMSE is equal to 0.67%.

The generated formula for the second 50% is the following:

Ppi = 1.4584× u+ 4.7788(W ) (5)

The RMSE of this formula is equal to 0.098 and the normal-
ized RMSE is equal to 1.67%.

Since the error rate for each range of percentage is lower
than the one obtained using formula 3, we build our power
estimation tool using the formulas 4 and 5, and alternate
between the formulas based on the CPU utilization. Our tool
provides an estimation for power consumption per second.

B. Validation

To validate our model, we proceed as follows:
• Measure P (using PowerSpy2) obtained by stressing the

CPU from 1% to 100%. u is also collected respecting
the same time unit as P and synchronized with the same
clock attributing a timestamp for each measurement.

• Calculate the power using formula 3 for the whole
percentage range (1% to 100%), formula 4 for the first
percentage range (1% to 50%) and formula 5 for the
second percentage range (51% to 100%).

• Calculate and compare the error rate of the power ob-
tained by the different formulas for each percentage.

As seen in Figure 2, our multi-formulas model has a lower
error rate than the one using a single formula. These results
confirm that the multi-formulas is more accurate, with a
maximum error rate of 3%, and an average error rate of 1.25%.

In the next section, we use our multi-formulas model to
study the impact of different algorithms, programming lan-
guages and compilers on a Raspberry Pi’s energy consumption.

IV. ENEGY IMPACT OF ALGORITHMS, PROGRAMMING
LANGUAGES AND COMPILERS

In order to study the impact of software choices, such
as algorithms, programming languages or compilers, on the



Fig. 2: Error rates of single and multi-formulas models using
the stress command

energy consumption of software in Raspberry Pi devices, we
conduct an empirical experimentation using various programs.
The source codes were taken from the Rosetta Code website 3.

We compare the energy consumption of two sets of pro-
grams: the Fibonacci sequence, and Towers of Hanoi. We
use the recursive and iterative version for each of these pro-
grams, implemented in the following programming languages:
Java (openJDK 11.0.7), Python (2.7.16), C++, C and OCaml
(version 4.05.0, only for Fibonacci). For the C language,
we compiled the programs using GCC (version 8.3.0) and
Clang (version 9.0.0). For GCC, we also apply the O2 and
O3 optimizations flags during compilation. For OCaml, we
use both the binary compiler (ocamlopt), and the byte-code
compiler (ocamlc). For each execution, we run the program
multiple times in a loop in order to collect sufficient power
data, then we normalize the value for our comparison.

Fibonacci program calculates the number 30. In C and C++,
it is executed 4000 times, and 200 times in Java and Python.
In OCaml, it is executed 4000 times iteratively, and 200 times
(ocamlc) and 400 times (ocamlopt) recursively. For Towers of
Hanoi, we run the experiment 200 times with 10 towers for
all languages, and for both iterative and recursive versions.

On average, the error rate for our experimental runs that last
more than one minute is 2.5%. Smaller runs, which last for
a few or dozens seconds, exhibit higher error rate at around
6.7% on average, with some experiments peaking to 10% or
28% (e.g., for the Towers of Hanoi iterative version in C,
the powermeter data averaged at 0.116 joules per execution,
compared to 0.149 to our model. The entire 4000 runs of the
C program lasted for only 5 seconds). This higher error rate is
due to the granularity of both our model and the powermeter,
which provided power data every second.

A. Results of the Fibonacci Sequence

From the experiments and the results in Figures 3 and 4,
we draw the following observations:
• All tested programming languages and compilers have a

higher energy consumption when running the recursive
version in comparison to the iterative one.

3https://rosettacode.org/wiki/Rosetta Code

• In the iterative version, Java consumes the most energy
while C compiled with GCC or Clang compiler consumes
the least. In the recursive version, the most energy is
consumed by Python and the least energy is consumed by
C compiled with GCC with O2 and O3 optimization.

• For the C compilers, in the iterative version, all compilers
consume approximately the same amount of energy. We
observe that the optimization flags in GCC did not im-
prove the energy consumption. In the recursive version, the
optimization flags O2 and O3 managed to provide a big
improvement in the energy consumption compared to the
default GCC or Clang settings.

• For OCaml compilers, in iterative and recursive versions,
ocamlc compiler consumes more energy than ocamlopt.

Fig. 3: Energy consumption of the iterative algorithm of the
Fibonacci Sequence

Fig. 4: Energy consumption of the recursive algorithm of the
Fibonacci Sequence

B. Results of Towers of Hanoi

From the experiments and the results in Figures 5 and 6,
we draw the following observations:
• Java and C++ consume more energy in the recursive version

compared to the iterative version, while it is the opposite for
the other programming languages.

• In the iterative version, the most energy is consumed by
Java, while the least one is consumed by C with the GCC
compiler. In the recursive version, Java also consumes the
most energy while the least energy is consumed by C with
the GCC compiler.

• For the C compilers, we observe that in the iterative version,
the O2 and O3 optimization did not provide meaningful
improvement in comparison to the default GCC settings. In
the recursive version, the Clang compiler had on average a
higher energy impact compared to GCC. The latter also did
not provide meaningful improvements when using the O2
and O3 optimization.

C. Discussion

In our experiments on Fibonacci and Towers of Hanoi, Java
was consistently the highest energy consuming programming



Fig. 5: Energy consumption of the iterative algorithm of the
Towers of Hanoi program

Fig. 6: Energy consumption of the recursive algorithm of the
Towers of Hanoi program

language. However, we observe that it also had the least CPU
utilization percentages, and took much more time to run the
iterative and recursive version of the programs (with the only
exception being the recursive version of Fibonacci, where
Python consumed more energy). This might have two main
explanations: 1) the impact of the Java Virtual Machine adding
additional CPU cycles and thus consuming more energy,
and/or 2) the state of the port of the JVM on Raspberry
Pi’s ARM-based architecture. For the first point, the energy
consumption of OCaml’s two compilers (binary and byte-
code) provides insights on the impact of the virtual machine.
Ocamlc, the byte-code compiler, constantly consumed more
energy and took more time to execute compared to the binary
compiler, ocamlopt. It also had, on average, a lower CPU
utilization. For the second point, further investigations are
needed to analyze whether the ARM port of openJDK is
optimized compared to x86 64 devices.

Python was the second most consuming programming lan-
guage, which can be explained by its interpreted nature,
consuming CPU cycles and energy to compile and run the code
on every iteration. In contrast, compiled languages consumed,
by far, the least energy and took the least time to execute.
Although the variation between them is low, we still observed
that GCC was better optimized compared to Clang. The O2
and O3 optimization flags were only useful in the recursive
versions, which confirms the results obtained on x86 64 com-
puters in [7] (in which, the authors explained that the O2 and
O3 flags activate dozens of optimization flags including the
Predictive Commoning optimization that is used to eliminate
redundancies across the iterations of a loop).

However, several limitations can be improved in our work.
First, our model only takes into consideration the CPU.
Therefore, it can be used to estimate the energy consumption
for CPU-intensive workloads. Other components need to be
taken into consideration in a future power model, such as the
network adapter. Second, in our experiments we used a limited
set of software, such as the stress command, the Fibonacci
Sequence or the Towers of Hanoi program. More extensive

empirical experiments are needed to better understand the
impact of algorithms, programming languages or compilers
on energy consumption. Finally, our model was tested on one
model of Raspberr Pi (version 3 B+). Therefore, it may not be
as accurate on older or newer Raspberry Pi models. However,
we argue that our multi-formulas approach is an interesting
aspect to build more generic power models for IoT devices.

V. CONCLUSION

In this paper, we presented a software-based and multi-
formulas power estimation model. The formulas used to esti-
mate the power consumption alternate according to the CPU
utilization. We validated our model with an average error
rate of 1.25% and a maximum one of 3% in stress tests,
and an average of 2.5% for our software experiments. We
then compared the energy impact of algorithms, programming
languages and compilers across two sets of programs.

For future work, we intend to model the power consumption
of other hardware components of Raspberry Pi devices, such as
the network interface (both Ethernet and Wifi), and the RAM
memory. Additional empirical experiments will be conducted
to understand the impact of byte-code virtual machines, both
for Java (openJDK) and OCaml (ocamlc). We also plan on
providing a cloud-based interface and repository for power
estimation models of multiple IoT devices, therefore allowing
the community to share their metrics and train more accurate
models for a wide variety of devices.

ACKNOWLEDGEMENT

The project leading to this publication has received funding
from Excellence Initiative of Université de Pau et des Pays
de l’Adour - I-Site E2S UPPA, a French ”Investissements
d’Avenir” programme.

REFERENCES

[1] ”Tsunami of data” could consume one fifth of global
electricity by 2025,” Climate Home News, Dec. 11, 2017.
https://www.climatechangenews.com/2017/12/11/tsunami-data-consume-
one-fifth-global-electricity-2025/.

[2] F. Kaup, P. Gottschling, and D. Hausheer, ”PowerPi: Measuring and
modeling the power consumption of the Raspberry Pi”, in 39th Annual
IEEE Conference on Local Computer Networks, Edmonton, AB, Sep.
2014, pp. 236–243, doi: 10.1109/LCN.2014.6925777.

[3] F. Astudillo-Salinas, D. Barrera-Salamea, A. Vazquez-Rodas, and L.
Solano-Quinde, ”Minimizing the power consumption in Raspberry Pi
to use as a remote WSN gateway”, in 2016 8th IEEE Latin-American
Conference on Communications (LATINCOM), Medellin, Colombia,
Nov. 2016, pp. 1–5, doi: 10.1109/LATINCOM.2016.7811590.

[4] L. Ardito and M. Torchiano, ”Creating and evaluating a software power
model for linux single board computers”, in Proceedings of the 6th
International Workshop on Green and Sustainable Software - GREENS
’18, Gothenburg, Sweden, 2018, pp. 1–8, doi: 10.1145/3194078.3194079.

[5] F. Kaup, S. Hacker, E. Mentzendorff, C. Meurisch, and D. Hausheer. The
Progress of the Energy-Efficiency of Single-board Computers. Technical
report, Otto-von-Guericke-University, Institute for Intelligent Cooperative
Systems, 01 2018.

[6] B. Dezfouli, I. Amirtharaj, and C.-C. Li, “EMPIOT: An Energy
Measurement Platform for Wireless IoT Devices,” ArXiv180404794
Cs, Dec. 2018, Accessed: Apr. 10, 2020. [Online]. Available:
http://arxiv.org/abs/1804.04794.

[7] A. Noureddine, A. Bourdon, R. Rouvoy and L. Seinturier, ”A preliminary
study of the impact of software engineering on GreenIT,” 2012 First
International Workshop on Green and Sustainable Software (GREENS),
Zurich, 2012, pp. 21-27, doi: 10.1109/GREENS.2012.6224251.


