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Abstract—Internet of Things and cyber-physical systems are
characterised by openness and an increasing number of devices
and their associated services. In a previous work, we have
proposed to exploit opportunistically these services in order to
automatically make emerge customised applications that suit
user preferences. For that, we have developed a generic solu-
tion for bottom-up opportunistic service composition, based on
reinforcement learning. In this work, it is extended to handle
more efficiently the appearance of new components using service
annotation and quality attributes in order to generalise and share
knowledge with new discovered services. A didactic use case is
used for illustration and demonstration purposes.

Index Terms—Ambient Intelligence, Smart Assistance, Rein-
forcement Learning, Quality, Knowledge Sharing, Agents, Emer-
gence, Software Composition, Internet of Things

I. INTRODUCTION

Today’s users are living in cyber-physical pervasive envi-
ronments that are more and more complex with the increasing
number of devices of the Internet of Things. These environ-
ments consist of fix or mobile devices driven by software
components using communication networks to operate. Due
to user and device mobility, software components may appear
with unpredictable dynamics, giving to pervasive environments
an open nature. In such a context, applications based on
component assemblies are hard to design, maintain and adapt.

In order to tackle these issues, our project aims to design
and build an “Opportunistic Composition Engine” (OCE) that
opportunistically assembles software components [1] in order
to build applications that are both adapted to the current
state of the environment and to the user. In this opportunistic
approach, applications are automatically built on the fly in
a bottom-up manner from the components that are available
at that time, without explicit user requirements or predefined
assembly plans. In this way, applications emerge from the
environment, taking advantage of opportunities as they arise.
However, the user is “in the loop” and keeps control on the
environment: she/he finally decides on the relevance of the
emergent application before it is deployed, and OCE learns
from this user feedback to build future applications [2].

This work is part of the AILP (Assistance InteLligente et proactive en
environnement Professionnel) project, which is supported by the French
region Occitanie and the operational program FEDER-FSE Midi-Pyrénées
et Garonne.

Fig. 1. Overall architecture of the composition system

A weakness of the current solution is OCE random decision
in the presence of new components, i.e., components about
which OCE has no knowledge: if such a component is a
candidate to participate in an assembly, it may be selected
by OCE with an arbitrarily set probability called novelty sen-
sitivity coefficient [2]. This paper proposes an improvement to
handle the appearance of new components more efficiently by
considering component properties and exploiting knowledge
about “similar” components: we enrich the OCE learning
mechanism to generalise and transfer knowledge gained from
past experiences with some components to components that
have not yet been encountered.

Our issue can be assimilated to the cold start problem
encountered in recommendation systems [3] and to knowledge
transfer in learning [4]. Unlike recommendation systems, the
cold start problem confronted here is a recurrent problem,
faced each time a new component is discovered. This is of
particular importance in the case of OCE which is used in
dynamic and open environments.

This paper is structured as follows. Section II describes
the current global solution of the learning-based opportunistic
composition system and its limits. The extension of this
solution to enhance OCE decisions on new components is
presented in Section III. A didactic case study is discussed
throughout these sections in order to demonstrate the approach.
Finally, Section IV overviews different related approaches.
A conclusion ends this paper and identifies future research
directions.

II. LEARNING-BASED OPPORTUNISTIC COMPOSITION

This section presents the principles of the learning-based
opportunistic software composition system.

A. Architecture of the composition system

Figure 1 shows the overall architecture of the composition
system. At the center, the Opportunistic Composition Engine



(OCE) has the main task of assembling the components.
It periodically senses the ambient environment in order to
discover the available components with the services they
provide and those they require to be operational, connects
component required services to provided services [1] and
thereby constructs on the fly composite applications.

As those applications have not been demanded by the user,
the latter has to be informed of them before they are actually
deployed. For that, she/he is integrated in the architectural
loop through a graphical user interface called “Interactive
Control Environment” (ICE) that provides the user a multi-
view description of the application for control [5].

Using ICE, the user can either accept, modify or reject
the application. OCE deduces feedback data from these user’s
actions. These data are the only source of feedback: to avoid
burdening the user, the engine does not explicitly ask questions
about the user experience. This feedback is central as it allows
OCE to learn about the user in the current environment in an
endless online reinforcement learning process [6].

OCE is designed in a multi-agent system (MAS) archi-
tectural style [7] which is known to meet main challenges
raised by ambient environments: decentralisation, distribution,
scalability, dynamics and adaptiveness. Any provided or re-
quired service of a component is managed by a dedicated
agent. Agents interact in order to locally decide on a correct
and pertinent connection to realise. They use a four-step
communication protocol: Advertise, Reply, Select and Agree
[2]. An agent’s decision is based on its local view of the
ambient environment and on estimated values about neigh-
bouring agents that have been computed by reinforcement
from previous user feedback. Thus, learning and decision are
distributed through the MAS and each agent decides for its
own connections. In the absence of information, decisions are
random.

B. Reference situations and learning

When a component is detected, each service of this compo-
nent is associated with an agent. In the case of a service not yet
encountered, the agent has no knowledge; otherwise it has a
set of reference situations which constitutes its own knowledge
base. A reference situation Refk

i is a situation numbered k that
an agent Ai has encountered in the past. It gathers the agents
Aj that Ai has encountered in the situation k whose service is
compatible with the one of Ai. More precisely, Refk

i is a set
of pairs (Aj , Scoreij), where Scoreij is a numerical value that
represents the interest for Ai to connect its service with the
one of Aj in this situation. More Ai participates to application
assemblies, more it learns and more reference situations it
owns. The decision strategy of Ai relies on these reference
situations and their similarity with the current situation SC : a
reference situation Refk

i is similar to SC if the intersection
between the sets of agents in Refk

i and SC contains at least ξ
elements, ξ being a parameter of the strategy. Thus, an agent
Ai that is candidate to the current OCE assembly chooses the
agent to respond to (the connection to pursue) among all the
agents that responded to its connection request in the current

Fig. 2. Presentation of the emergent application (ICE interface)

situation, by applying a Best Score Selection strategy: the best
scored agent in the similar reference situations is considered as
the best one to establish a connection in the current situation
and therefore is chosen by Ai.

Then, the emergent assembly is presented to the user. Last,
after the latter has accepted, modified or rejected the presented
assembly, each service agent adjusts and updates its knowledge
base (i.e., its reference situations) according to the user actions
and the feedback she/he provides.

C. Mary didactic use case

The solution has been applied to a didactic case study
presented in [2]: Mary, who works in a manufacturing com-
pany has the opportunity to book a room for a meeting. To
highlight the limits of the current solution, we take up and
extend this scenario: Mary’s company is located on two sites,
Toulouse (France) and Hamburg (Germany). Mary is assigned
to Toulouse but she regularly has appointments in Hamburg.

Let us replay the beginning of the use case. In the Toulouse
ambient environment, there are components supplied by the
company: a room Planner providing the Book service, a
booking Desk providing the Order service and requiring both
the Book and Notify services, and a Tactile input device
that requires Order service. There also are Mary’s personal
components: a Text input and a Voice input interfaces both
requiring Order service, and Mary’s Calendar that provides
Notify service (note that all these components are named
according to their function, i.e., Voice references a voice-like
component provided by Mary). In such a situation, OCE makes
emerge an application that allows Mary to book a room for a
business meeting. Figure 2 presents the emergent application.
We focus on the agent B that manages the provided Order
service of Desk. We show how it first reacts regarding the
agents A1, A2, and A3 that respectively manage the Order
services required by Text, Voice and Tactile. OCE is started
and runs until an assembly emerges. Since B has no knowledge
when starting OCE, A1, A2 and A3 being the candidates
to connect (they constitute the current situation of B), they
all receive an identical score of 1/3. Then OCE randomly
chooses to connect B with agent A1 (which manages the
service required by Text component). As Mary prefers the
Voice’s service (managed by A2), she modifies the proposed



Fig. 3. Emergent application modified by Mary (ICE interface)

assembly using ICE functionalities. The final application is
presented in Figure 3

OCE learns from this modification: from the randomly
scored current situation, {(A1:0.33); (A2:0.33); (A3:0.33)}, it
builds, by reinforcement and normalisation, the reference situ-
ation Refk

B={(A1:0); (A2:0.6); (A3:0.4)} (calculation method
can be found in [2]) and stores it in its knowledge base.
As OCE has now learned Mary’s preference in the current
situation, it will automatically propose a booking application
integrating the agent A2 in situations like this one.

For the rest of the use case, we follow what happens when
Mary faces a comparable situation in Hamburg.

D. Learning-based OCE Limits

OCE inability to decide for a new component other than
randomly reveals a limitation in the current approach. Indeed,
if OCE succeeds in learning and saving user preference for
a specific service, it does not generalise this information and
does not apply the resulting actions to new discovered and
functionally equivalent services (i.e., service that performs a
same task). It can be said that OCE has learned but not enough.
As a result, in case of changing environments, OCE has to
interact more often with the user and repeatedly in order to
make emerge a functionally equivalent assembly. This issue
could be assimilated to a cold start problem associated with
a knowledge transfer problem. But, in our case, the cold start
problem is encountered each time a new service is discovered,
which can be extremely frequent in dynamic environments.

Let us consider the use case extension. OCE has managed
to learn Mary’s preferences between agents A1, A2 and A3.
Assuming that Mary goes back to the same room again,
OCE would automatically build the relevant application from
now on. But what happens if Mary is now in Hamburg?
Assuming that Mary’s phone runs out of battery, its provided
service (Order service of Voice component), managed by A2,
is no more available. By chance, the Hamburg site proposes all
the components present in Toulouse (Planner, Desk, Tactile),
including a Company calendar providing a Notify service, a
Text component and a Microphone, all requiring the Order
service. Therefore, new agents A′

1, A′
2 and A′

3 are associated
(by OCE) to the newly discovered Order services of Text,
Microphone and Tactile. In these conditions, OCE manages
these new services as any other and proposes a random

assembly which is happen to associate the Desk component
with Tactile rather than taking into account Mary’s preference
of a Voice-like component expressed in Toulouse site.

Then, Mary has to modify again the assembly to manually
choose a Voice-like service - which is the Microphone’s
service - one more time as she already did in Toulouse for
the service of Voice.

It would be worthwhile for OCE to generalise Mary’s
preference of a Voice-like service, i.e. to prefer any function-
ally equivalent Voice-like service once she has indicated her
preference at the first time. This would avoid the user having
to interact again for the same type of connection each time
a new Voice-like service is discovered (for example, resulting
from changes in the user’s environment when moving from
one site to another).

To overcome this limitation, we propose to associate service
annotation and quality attributes with the services and use
this information in the decision process for newly discovered
services. This extension requires to make explicit the existing
functional equivalences between known services and newly
discovered ones.

III. QUALITY-BASED LEARNING

The Best Score Selection strategy is refined to take into
account service annotation and specific quality attributes. This
raised questions such as:

1) how to explicit functional equivalences between ser-
vices?

2) how to represent and manipulate quality attributes?
3) when to use annotations and quality attributes, for the

cold start problem only or throughout the OCE live
cycle?

4) what weight do they have in relation to the agents’ score
in reference situations?

5) what effect do they have on learning?
These issues are discussed in the following.

A. Annotations to explicit functional equivalence between
services

Annotations are defined to functionally categorise the ser-
vices and make explicit the existing functional equivalences
between identified services. Each functional category of ser-
vices has a unique identifier and each service is annotated
with a functional category identifier; for example services of
a Voice-like component are annotated with a ”VO” tag. Thus,
all functionally equivalent services share a same annotation.
Figure 4 shows such services annotations.

Annotation definition as well as functional equivalences
formalisation should be performed using consensual descrip-
tive models like domain ontologies [8]. Note that the do-
main information formalisation and the functional equivalence
mechanism are out of scope of this paper.

B. Quality attributes description and representation

In this approach, quality attributes are variables associated
to a service S in order to describe its properties. These



Fig. 4. An example of component annotation
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>

<component Name=” C a l c u l a t o r ”
Role=” Rece ive d a t a ”>

<s e r v i c e x s i : t y p e =” P r o v i d e d S e r v i c e ” . . .>
<q u a l i t y a t t r i b u t e s>
<a t t r i b u t e name=” ResponseTime ”
v a l u e =” f ( ) = 1 0 ms” t y p e =” a b s o l u t e ” />
< / q u a l i t y a t t r i b u t e s>

< / s e r v i c e>
< / component>

Listing 1. Quality attributes XML description

attributes can represent for example a service performance
(e.g. response time, availability) or situation (e.g. location,
opening hours). They are defined by the service provider and
associated to a set of possible values given within the service
description.

A quality attribute is represented by three fields: name,
value and type. value is a mathematical function which can be
either a constant function (e.g., location value) or a polynomial
function (e.g., distance for which the value depends on the user
current location). type explicits the function type of value; it
is absolute in case of a constant function or relative in case
of a polynomial function. type is exploited by OCE to decide
either to use a value directly (in case of an absolute value)
or to run the given function. Listing 1 illustrates how quality
attributes are represented within an XML description (used in
[5] to describe components and services).

The mathematical function associated to value may be
directly defined by the component provider or formalised
and then referenced using consensual descriptive models like
domain ontologies [8].

C. Integration of annotations and quality attributes in OCE

Annotations and quality attributes are analysed by OCE
when discovering a new component and are then integrated
into OCE learning and decision strategy in two steps as
follows.

1) Service annotation: the first OCE enhancement consists
in annotating the services available in the ambient environ-
ment. OCE should then exploit functional equivalence rela-
tionships to identify functionally equivalent services.

Service annotation offers a first OCE improvement regard-
ing new discovered services management. It allows knowledge
sharing and generalisation. OCE learning strategy is extended
to take into account these annotations of services: when a new

Priority Category Attribute Value Rate

0 VO Bandwidth 18kbps
64Kbps

- 0.2
+0.6

1 VO Maximum Frequency 15KHZ
8KHZ

+ 0.13
-0.3

5 TXT Keyboard Language Azerty
Qwerty

+ 0.8
-0.4

... ... ... ... ...
TABLE I

A PREVIEW OF QUALITY ATTRIBUTE TABLE

service S is discovered and categorised, the service agents of
the same category share their knowledge (i.e., their reference
situations) with the newly appearing service agent.

2) Integration of quality attributes in OCE decision algo-
rithm: the second enhancement of OCE consists in integrating
the quality attributes within the decision algorithm. Once a
new service is detected, its quality attributes are analysed by
OCE. The quality attributes are referenced in a specific table.
Table I gives a preview of such a table which is composed of
five columns: Priority, Category, Attribute, Value and Rate.

• Priority column is used to indicate the existing priority
between the quality attributes (0 is the highest priority).
This is essential in case of a service having various
quality attributes. It would indicate the importance of
these attributes regarding the user preferences and which
weight would OCE give to each of these attributes for its
binding decisions (e.g. should it focus on the physical dis-
tance of an ambient service rather than its attendance?).
For now, the priorities are randomly fixed but should be
automatically set or adjusted by OCE, by learning, based
on its analysis of user preferences.

• Category column identifies the category of the service to
which the attribute belongs.

• Attribute column contains the quality attributes name
(extracted from the XML service description).

• Value column repertories all the encountered values that
have been associated to the specific attribute using the
defined function in the XML description. The possible
values can either directly populated by OCE (OCE can
add a value line each time it encounters a new value)
or be referenced using consensual descriptive models as
ontologies.

• Rate column is used to associate a rate to each value of
an attribute. These rates are deduced from user feedback:
when a feedback is made by the user, OCE analyses it
and decides service agents rewards in consequences [2].
In the same way, this reward is also given to values of the
attributes associated to this service agent. This reward is
positive if the service connection is approved within the
assembly and negative if not.

These quality attributes and especially their rate values give
a more explicit knowledge of user preferences regarding its
services. Hence, quality attribute table is exploited by OCE
to better handle the newly discovered services and make more



Fig. 5. Voice-like component annotation

Fig. 6. A new Voice-like component annotation

accurate assembly propositions.

D. Mary didactic use case

We now reconsider the use case presented in subsection II-D
and apply the OCE enhanced strategy. Using this new strategy,
what happens if Mary is now in Hamburg? The new
discovered service of Microphone (Order required service) is
first identified and classified using a functional equivalence
analysis.

As shown in Figure 5, the service of Microphone is
annotated with the identifier ”VO”. It is thus identified as
functionally equivalent to the service of the Voice component.

Exploiting these annotations, OCE becomes able to accu-
rately handle the new discovered service and to propose a
solution that suits Mary’s preference of Voice. OCE considers
and handles the agent A′

2 (that manages the service of Mi-
crophone) as the same agent as A2. Thus, Mary’s preference
has been shared between all functionally equivalent services
known by OCE without Mary’s intervention.

Furthermore, it would be reasonable to consider that the
Hamburg site proposes more than one Voice-like service as
shown in Figure 6 (in which the agent A′′

2 manages the
service of Wireless Micro). Another question then arises:
what happens if there is more than one Voice-like service
available? That is, how can OCE choose the Voice-like
service that best meets Mary’s preferences?

To address this problem, OCE exploits quality attributes.
The sensed Voice-like services are associated to a quality
attribute: Maximum Frequency which indicates the maximum
frequency a Voice-like service can support. Suppose the values
of Maximum Frequency indicates 15KHZ for the A2 service,
8KHZ for A′

2 and 15KHZ for A′′
2 . Table II represents the

corresponding quality attributes table.

Priority Category Attribute Value Rate

1 VO Maximum Frequency 15KHZ
8KHZ

+ 0.13
-0.3

TABLE II
QUALITY ATTRIBUTE TABLE: MAXIMUM FREQUENCY ATTRIBUTE

Priority Category Attribute Value Rate

1 VO Maximum Frequency 15KHZ
8KHZ

+ 0.18
-0.63

TABLE III
USER FEEDBACK APPLICATION ON MAXIMUM FREQUENCY ATTRIBUTE

Following Table II, OCE chooses the 15KHZ value (with
the rate of 0.13) and then the A′′

2 service which best meets
Mary’s preference of a greater frequency support on her voice
command service. Mary is satisfied with the OCE proposition
and accepts the assembly. This new feedback affects quality
attribute rates as shown in table III.

E. Experimentation and evaluation

A proof-of-concept implementation of our solution has
been developed and ongoing demonstrations of quality-based
learning are being performed.

Our solution is going to be applied on a real case study
borrowed from the AILP project1 taking place in an airport
with resources and services available to travellers. We already
have developed real software components that are assembled
by OCE in emergent applications that actually work [9]. The
Airport case study offers a realistic environment full of all
kind of components present in the ambient environment. We
focus on the composition of guidance applications allowing
the user to find the closest phone charging station. The airport
environment offers several charging stations. In this context,
based on the already collected user preferences, OCE has to
build a guidance application to the best charging station.

IV. RELATED WORK

In this section, we review papers that are related to our
work. In a first part, we consider service composition systems
that use extra-functional data to decide on assemblies. We
study in particular the data they use (as context data) and
the methods they implement to do this (mainly deep learning
and ontologies). In a second part, we consider systems that
address the cold start problem.

In [10], authors propose a solution for service composition
in complex and dynamic environments based on reinforcement
learning, QoS prediction and neural networks. Q-Learning
algorithm (a form of reinforcement learning algorithm) is used
to deal with the complex and extremely dynamic environment
and QoS changing. In [11], possible applications of deep
reinforcement learning techniques for service composition in
a Cloud manufacturing context are explored. Deep reinforce-
ment learning provides an alternative approach for solving
cloud manufacturing service composition. An AI planning-
based composition framework for automated service compo-
sition, that integrates formal composition requirements and
context awareness, is proposed in [12]. A context service is
used to perceive and adapt to changes in the environment.
The framework detects the changes of the environment and

1AILP is an acronym for InteLligent and proactive Assistance in a Profes-
sional environment



dynamically adjusts service execution by using BPEL (Busi-
ness Process Execution Language) and agent technologies. In
[13], authors propose a self-adaptive and context-aware service
composition system. Contexts are formalised in dedicated
context ontologies using OWL (Ontology Web Language).
Using these ontologies, the system can handle evolving and
changing contexts.

In [14], a distributed algorithm is proposed to dynamically
optimise Web service composition in varying environments:
within a multi-agent system, agents learn by reinforcement
using a Q-learning algorithm and share their experience to
improve efficiency and speed up the learning rate. A composi-
tion algorithm based on the clustering of services in relation to
QoS is proposed in [15]. In [16], self-adaptive composition of
Web services in dynamic environments maximises the global
QoS of the composition: service composition is modelled as a
Markovian decision process with several alternative processes,
the best one being chosen using a Q-learning algorithm. In
order to provide predictions for new users, recommendation
systems use mechanisms based on similarity techniques. In
particular, a heuristic similarity measure composed of three
similarity factors, Proximity, Impact and Popularity, is used
[3], [17], [18].

V. CONCLUSION

This paper presents a new and innovative approach for
automated user-oriented service composition in ambient open
and dynamic environments, based on online reinforcement
learning from user feedback. This approach has been improved
to efficiently deal with the appearance of new services. A new
quality based solution has been developed and associated to
the existing learning based opportunistic solution. The quality
based solution exploits service annotation and quality at-
tributes to help the Opportunistic Composition Engine (OCE)
to take the best decision when it comes to select and integrate
new unknown services in an application. Mary’s didactic use
case has been discussed throughout the paper for illustration
and demonstration purposes. Demonstrations on larger and real
case studies are in progress.

Some improvements of our quality based solution are en-
visaged and can be discussed. First, service annotation is done
manually. but automated mechanisms might be implemented
using unsupervised learning techniques to formally categorise
the new discovered services regarding their functions. Second,
for now the quality attributes priorities are decided arbitrary
and manually affected. A solution allowing OCE to perform
a profound and refined analysis on user feedback in order to
deduce user preferences regarding quality attributes priorities
and automatically affecting them is under study.
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