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Abstract—The advent of industry 4.0 (I4.0) has brought about
significant advancements in manufacturing processes, leveraging
advanced sensing and data analytics technologies to optimize
efficiency. Within this paradigm, predictive maintenance (PdM)
plays a crucial role in ensuring the reliability and availability
of production systems. There are several existing approaches for
PdM in I4.0, each with its own advantages and disadvantages.
In this paper, we review the state-of-the-art related to PdM
approaches in the context of I4.0. Our systematic literature
review encompasses a comprehensive analysis of recent research,
focusing on the different AI-based techniques employed in PdM
applications. Through this survey, we aim to provide valuable
insights into the current landscape of PdM methodologies and
foster future innovations in this rapidly evolving field.

Index Terms—I4.0, industrial cyber-physical system, Prognos-
tic and Health Management, PdM.

I. INTRODUCTION

I4.0 has ushered in a new era of manufacturing, with
advanced technologies such as IoT, AI, and big data analytics
transforming the way factories operate. One of the key areas
of focus in I4.0 is PdM, which leverages these technologies to
enable companies to monitor the health of their equipment in
real-time and predict when maintenance will be required [1].

In I4.0, PdM is becoming increasingly sophisticated, with
the integration of sensors, data analytics, and AI algorithms
enabling real-time monitoring and analysis of equipment
performance [1]. This allows for more accurate and timely
predictions of equipment failure, as well as the ability to
prioritize maintenance tasks based on their urgency and impact
on production. Despite the growing importance of PdM in
I4.0, there remains a lack of comprehensive understanding
and analysis of the existing approaches available. A mul-
titude of techniques, ranging from statistical methods and
machine learning (ML) algorithms to knowledge-based ap-
proaches, have been developed and implemented to address
PdM challenges. Nevertheless, a systematic study and com-
parison of these approaches, along with an exploration of their
requirements, are essential to determine their effectiveness,
applicability, and limitations in diverse industrial contexts.This
research aims to bridge this knowledge gap by conducting an
in-depth study and comparison of the existing approaches for
PdM in I4.0. Through a rigorous analysis and evaluation of the
strengths and weaknesses inherent in various techniques, this
survey will provide valuable insights into the effectiveness of

diverse PdM strategies. Furthermore, it will identify the key
factors that influence the selection and implementation of these
approaches, including considerations like data availability,
computational requirements, and interpretability.

In contrast to previous survey papers in the realm of PdM,
this study aims to address some notable limitations present in
existing literature:

• Scope of Existing Surveys: Most previous survey papers
have primarily focused on reviewing specific approaches,
often tailored to particular equipment. However, these
surveys lack a comprehensive framework for guiding the
selection of a holistic PdM system.

• Novel Deep learning algorithms: Given the rapid
evolution of DL techniques, numerous novel Deep
learning(DL)-based approaches have emerged in the field
of PdM. As such, a fresh review is imperative to encom-
pass the recent advancements in this field.

This survey paper is organized into four main sections. The in-
troduction I establishes the importance of PdM in I4.0 and the
necessity for a comprehensive review of existing approaches.
The related work section II conducts a systematic literature
review, comparing various PdM techniques and analyzing
their strengths, weaknesses, and applicability within the I4.0
context. The discussion section III addresses the acquired
insights and comparisons. Finally, the conclusion and future
directions section IV summarizes the primary findings and
underscores the significance of addressing the current gap in
understanding PdM approaches .It also highlights potential
research avenues and emerging trends for the future of PdM
in the manufacturing sector.

II. I4.0 PDM CENTERED APPROACHES
In the I4.0 era, substantial research efforts have been

dedicated to automating and enhancing smart manufacturing
processes. Among the plethora of approaches, AI-based meth-
ods have shown promising results, particularly in the domain
of PdM for I4.0 tasks. In this subsection, we categorize the
existing AI-based PdM approaches into four distinct groups:
data-driven approaches II-A, physical model-based approaches
II-B, knowledge-based approaches II-C2, and hybrid model-
based approaches II-D. Our categorization presented in 1
serves to provide a structured framework for understanding
these approaches.



Following this hierarchical classification, We illustrate the
range of approaches that have already been employed and
conduct a comparative analysis to ascertain their relative
effectiveness in various scenarios.

A. Data-driven approaches

In big data era, data-driven approaches have emerged as a
significant solution for smart manufacturing and PdM. IWSNs,
Cyber-Physical Systems, and Internet of Things (IoT) tech-
nologies are employed together to collect and intelligently
process big industrial data, aiding in decision-making.The
exponential growth in data volume (Big Data) and the rapid
advancement of data acquisition technologies have led to
increased attention on data-driven methods for PdM of indus-
trial equipment [2]. These methods can be categorized into
three main groups: ML methods, DL methods, and Statistical
Learning-Based Models.

1) ML methods: A multitude of ML algorithms have been
created to address real-world issues. These high-performance
algorithms have played a significant role in digitizing and
automating the manufacturing industry. [2] These models and
algorithms can be roughly divided into three areas:supervised,
unsupervied and semi-supervied.

• Supervised learning : In the context of PdM, this involve
using historical sensor data to train a model to predict
when a piece of equipment is likely to fail. The labeled
data would include information about the state of the
equipment at the time of failure.
In [3], Federico Guedea-Elizalde and Marco Macchi pro-
posed a cost-effective and straightforward cyber-physical
system architecture. The architecture aimed to measure
temperature and vibration variables during the machining
process in a Haas CNC turning center. The collected data
was stored in the cloud, and a Recursive Partitioning and
Regression Tree model wasused to predict the rejection of
machined parts based on a quality threshold.The authors
proposed predictive models in [4] that leverage tree-based
classification techniques to predict maintenance needs,
activity types, and trigger statuses of railway switches.

• UnSupervised learning : In PdM, this involve using
clustering algorithms to group similar pieces of equip-
ment together based on their sensor data. This will help
identify equipment that is likely to fail based on its
similarity to other equipment that has failed in the past.
In this study [5], the authors have explored the suitabil-
ity of unsupervised learning for model building. They
selected a straightforward dataset consisting of vibration
data collected employing various unsupervised learning
algorithms to assess their accuracy, performance, and
robustness in analyzing this dataset.

• Semi-Supervised learning : In the context of PdM, this
could involve using labeled data from equipment failures
to train a model, and then using unsupervised learning
techniques to identify patterns in the unlabeled data that
could indicate impending equipment failures.

This study [6] introduces a data-driven Bayesian network
approach coupled with a spatiotemporal fragility model
to predict lightning-related failures in high-speed rail-
way overhead contact lines. It combines a probabilistic
lightning model, spatiotemporal OCL fragility model, and
Bayesian network for risk prediction. This approach out-
performs alternatives, offering accurate predictions even
with imbalanced and noisy lightning data.

PdM Approaches in I4.0

Data-Driven Approaches

DL-Based Model

ML-Based Model

Statistical Learning-Based Model

Physical Model-Based Approaches

Knowledge-based approach

Knowledge Graph

Rule-Based System

Fuzzy System

Hybrid Model-Based Approaches

Series Hybrid Model

Parallel Hybrid Model

Fig. 1. Classification of PdM Approaches according to [7], [8], [1].

2) DL methods: Traditional ML algorithms have limita-
tions when it comes to expressing complex relationships
between variables and can struggle when dealing with high-
dimensional datasets [9].To address this issue, DL techniques
have been developed, employing layered ML algorithms to
extract structured information from datasets. This advantage
makes artificial neural networks (ANNs) highly applicable for
handling non-linear and stochastic data. Consequently, this
approach is particularly well-suited for managing intricate and
expansive systems [10].

Wang in [11] addresses the need for integrated PdM plan-
ning models by combining data-driven Remaining Useful
Life (RUL) prognostics and maintenance scheduling. Convo-
lutional Neural Networks with Monte Carlo dropout estimate
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RUL distribution, while Deep Reinforcement Learning guides
maintenance actions. Applied to aircraft turbofan engines,
the approach reduces total maintenance costs of unscheduled
maintenance and optimizes engine life. In this work [12], the
authors present an innovative DL-based approach for PdM
tasks. They utilize a highly efficient architecture with a multi-
head attention (MHA) mechanism, achieving superior results
in terms of RUL estimation while maintaining a compact
model size. Experimental results on the NASA dataset demon-
strate the approach’s effectiveness and efficiency compared to
prevalent state-of-the-art techniques.

3) Statistical learning based model: This method is rooted
in statistical models and relies on the analysis of the degrada-
tion of random variables in order to establish a correlation with
operational time or other non-random variables that describe
the system’s lifecycle. In order to determine prognostics,
Regression analysis is used to identify the relationship between
random variables and the system’s lifecycle. [1].

Statistical learning-based model approaches can be classi-
fied into three sub-classes: Particle filters and variants, Hidden
Markov models and Time Series analysis:

• Particle filters and variants: Particle filtering is a
technique that utilizes a group of particles to represent
the posterior distribution of a stochastic process given
noisy or partial observations.
In [13], the researchers have introduced a novel approach
by combining the whale algorithm with regularized par-
ticle filtering (RPF). This combination was employed to
address the issue of particle degradation and, specifically,
for predicting the RUL of valves. The study also delved
into the analysis of valve crack propagation, utilizing the
RPF approach with the Paris Law as a condition function.

• Hidden Markov models : is a statistical approach that
is frequently used for modeling event sequences. When
presented with a sequence of inputs, such as words, an
HMM will output a sequence of the same length.
In this paper [14], an automated feature subset selection
method is introduced, employing a genetic algorithm.
The complete feature set is generated by considering
various sliding windows that capture different time shifts
based on statistical metrics from measurement data. Sub-
sequently, the fitness function for the genetic algorithm is
designed, leveraging the initial fitting of a hidden Markov
model (HMM) on the chosen subset of features and the
assumed machine conditions found in the training data.

• Time Series analysis : Time series analysis is a specific
way of analyzing a sequence of data points collected over
an interval of time. In time series analysis, analysts record
data points at consistent intervals over a set period of time
rather than just recording the data points intermittently or
randomly.
An approach combining time series analysis methods
with ML techniques was presented in [15]. The method
aimed to forecast predictor variables and predict RUL
using SVM. The predictor variables were estimated using
an ARIMA model, and the results were fed as input to

the SVM model, with RUL as the response variable.

B. Physical model-based approaches

Physical models are models that utilize physical laws,
often from first principles, to quantitatively characterize the
behavior of a failure mode. Such models typically employ
mathematical representations of the physical behavior of a
machine’s degradation process to calculate the RUL of the
machinery. The mathematical representation captures how the
monitored system responds to stress on both the macroscopic
and microscopic levels [16]. Compared to other types of
models, physical models offer the most precise and accurate
estimation of RUL .

Sheng in [17] presents an application of Gaussian Process
Regression (GPR), a significant Bayesian ML method, for
bearing features tracking. The GPR model incorporates vari-
ance around its mean prediction, enabling the representation
of associated uncertainties in evaluation and prediction. Three
GPR models with distinct covariance functions are explored
for feature tracking and RUL evaluation. Another work [18]
in which the focus lies on predicting the RUL of lithium-
ion batteries to enhance the reliability and safety of battery-
powered systems. This research utilizes an empirical degrada-
tion model followed by the particle filter (PF) algorithm for
online parameter updates. Then,Vianna and others [19]propose
a methodology for optimizing predictive line maintenance of
redundant aeronautical systems under multiple wear condi-
tions. This approach involves estimating degradation trends
and future wear values through an extended Kalman filter
technique using a multiple model approach. The optimization
of planning aims to minimize operational costs, encompassing
factors like dispatch requirements, delays, cancellations, and
equipment expenses, thus catering to various aspects of the
aviation industry.

C. knowledge-based approaches

A system based on knowledge uses a knowledge base
to store a computational model’s symbols in the form of
domain statements and performs reasoning by manipulating
these symbols . These systems determine appropriate decisions
by measuring the similarity between a new observation and a
databank of previously described situations . Knowledge-based
approaches are categorized into three sub-classes: rule-based,
knowledge graph and fuzzy system.

1) Rule-based system: The knowledge in this approach is
represented by rules in the form of ”IF-THEN” statements.
It consists of a knowledge base that contains a set of rules,
a facts base that stores inputs, and an inference engine that
applies the rules to the facts base to derive new knowledge.
The inference engine uses an iterative process that is repeated
until the end of the reasoning process, following the rules
specified in the knowledge base. In [20], a novel maintenance
strategy was introduced with a twofold objective. Firstly, it
centers on the anticipation of component failures through the
utilization of association rule mining. Secondly, it aims to
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enhance the plant’s overall reliability by optimizing the selec-
tion of components for repair, all while considering time and
budget constraints. To validate these innovative approaches, an
experimental campaign was conducted using a real-life case
study involving an oil refinery plant.

2) Knowledge graph and ontology: The term ”knowledge
graph” is often used interchangeably with ”ontology”. In
computer science, an ontology is defined as ”an explicit
specification of a conceptualization for a domain of interest”
[21], where specification refers to a precise description or iden-
tification. This necessitates the use of formal logic to clearly
define concepts and relationships in ontologies.Furthermore,
ontologies provide reasoning capabilities that enable the in-
ference of new knowledge.

Konys and al in [22] provided formal, practical, and techno-
logical guidance to a knowledge management-based approach
to sustainability assessment. They proposed ontology as a form
of knowledge conceptualization and, using knowledge engi-
neering and make gathered knowledge publicly available and
reusable, especially in terms of interoperability of collected
knowledge.

3) Fuzzy system: Fuzzy-knowledge-based models utilize
fuzzy logic, which employs a similar format of IF-THEN
rules as rule-based systems. Fuzzy logic is a collection of
traditional Boolean logic that can handle partial truth values
that lie between true and false values. It describes the degree of
truth or falsity of a statement, and is closely related to human
perceptions.

The authors in [23] introduce a sophisticated thermography
approach for PdM in electric railways, employing a complex
fuzzy system. It addresses the need for a complex fuzzy
approach due to the influence of various factors like seasonal
conditions, environmental variables, daylight, and periodic
effects, such as train speed, on maintenance estimations in rail
systems. The study also highlights the heightened sensitivity
of both the rail surface and the pantograph catenary system
to thermal fluctuations. Consequently, diagnosing faults using
image processing and monitored systems requires substantial
effort to account for these thermal changes.

D. Hybrid model-based approaches

A hybrid model-based approach involves combining the
strengths of different methodologies, such as physical models,
data-driven techniques, and knowledge-based systems. These
approaches aim to leverage the benefits of each individual
method to enhance predictive accuracy and flexibility.A hybrid
model-based PdM task can be classified into two main sub-
classes: series hybrid model and parallel hybrid model based
on the integration approach and the interplay between these
methodologies.

1) Series hybrid model: The series hybrid approach refers
to an approach that combines more than one approach in
a sequential manner. it aims to capitalize on the accuracy
of physics-based understanding for example while benefiting
from the adaptability and real-time insights offered by data-
driven techniques [24], resulting in improved predictions and

maintenance strategies. The work [25], discusses the initial
work on developing a data-driven algorithm for forecasting
the discharge endpoint of Li-ion batteries. It focuses on
using data from constant load experiments and outlines the
difficulties encountered when implementing these algorithms
for variable load profiles. In [26],Cao and al introduced a
new approach that combines fuzzy clustering and semantic
technologies to understand the significance of failures and
predict the timing and criticality of these failures . A domain
ontology is developed to model PdM knowledge, and a set of
SWRL predictive rules is presented to reason about the timing
and criticality of machinery failures.The approach has been
optimized in [8], and it has shown promising results using
SECOM datasets.

2) Parallel hybrid model: Involving the simultaneous ap-
plication of both approaches, the hybrid model combines the
strengths of both methods in parallel to enhance the accuracy
and effectiveness of decision-making.

In [27],The authors propose a new method for reliable PdM
of Computer Numerical Control Machine Tools (CNCMT)
using a hybrid approach driven by Digital Twin (DT) technol-
ogy. This approach combines DT model-based and DT data-
driven methods. They demonstrate the effectiveness of their
approach through a case study on predicting the lifespan of
cutting tools. In [28], Zhou has proposed ML pipelines for
quality monitoring in Resistance Spot Welding, incorporating
sophisticated feature engineering strategies supported by do-
main knowledge. The interpretation of ML analysis results is
carried out intensively to derive insightful engineering insights.
In the same context, Klein in [29] integrated expert knowledge
about class or failure mode dependent attributes into SNN.
Additionally, they present an attribute-wise encoding of time
series based on 2D convolutions, enabling the sharing of
learned knowledge in the form of filters between similar data
streams.

III. DISCUSSION

The systematic literature review of PdM approaches within
the context of I4.0 reveals a diverse landscape of techniques,
each offering its own unique strengths and limitations.

Data-driven methods exhibit adaptability and provide real-
time insights. ML techniques offer high classification and
prediction accuracy and excel at approximating nonlinear func-
tions. However, they may require significant computational
resources, are prone to overfitting and their effectiveness
heavily depends on data quality and volume., lack physical
interpretability, and lack standardized approaches for network
structure determination. DL, a subset of ML, demonstrates
superior feature learning, fault classification, and prediction
capabilities, yet it may suffer from the curse of dimensionality
and demands extensive data and computational power.

Physical model-based approaches ensure accurate predic-
tions but require expert knowledge and validation. These
approaches are domain-specific and necessitate an in-depth
understanding of mathematics and the physical behavior of
machinery components. Nevertheless, acquiring such expertise
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can be costly, time-consuming, and challenging for many
components.

Knowledge-based systems, leveraging domain expertise, en-
hance reasoning capabilities. Ontologies, in particular, provide
a means to integrate, share, and reuse contextual knowledge
of a system, but they often require integration with other
reasoning methods to achieve effective PdM. Rule-based ap-
proaches prove valuable when substantial experience exists but
insufficient detail is available to develop precise quantitative
models.

In this landscape, hybrid models emerge as a powerful op-
tion, offering a balance between accuracy and flexibility. Hy-
brid approaches, which combine multiple single approaches,
often demonstrate superior performance and can overcome
certain limitations.

Ultimately, the selection of the most suitable PdM approach
hinges on the specific industrial context, underscoring the
necessity of tailored strategies to optimize PdM within the
framework of I4.0.

Table I provides a concise summary of the multidimensional
nature of decision-making processes in PdM and illustrates the
interplay between various approaches, along with their associ-
ated advantages and limitations. Researchers and practitioners
can strategically select and combine these approaches to create
tailored solutions that effectively address the unique challenges
within their domains.

IV. CONCLUSION AND FUTURE DIRECTIONS

This study has provided a ystematic literature review of
the existing approaches for PdM in I4.0. Through a thorough
review of literature and comparative analysis, the strengths
and weaknesses of different approaches have been identified,
shedding light on their applicability and effectiveness in vari-
ous industrial contexts. Therefore, companies need to carefully
evaluate their needs and consider a combination of approaches
to develop a tailored PdM strategy.

Furthermore, we’ve identified common challenges including
the limited availability of labeled failure data in manufacturing,
the complexities of uncertainty management, the absence of
a structured strategy for building PdM systems, and the need
to adapt pre-existing solutions to intricate systems featuring
numerous components and their respective faults. Overcoming
these challenges entails adeptly harnessing the power of hy-
brid approaches by amalgamating various methods, managing
diverse data sources, incorporating external influence data,
exploring and designing of hybrid network architectures for
achieving exceptional performance in complex applications
and formalizing & sharing knowledge.

Looking ahead, several promising avenues for future re-
search and development in PdM for I4.0 can be identified.
Firstly, exploring the integration of PdM approaches with other
I4.0 technologies such as digital twins,augmented reality,
and autonomous systems could lead to enhanced mainte-
nance strategies and decision-making processes. Secondly,
investigating the implementation of PdM in complex and

interconnected industrial systems, including supply chains
and networked environments, would be valuable.

However, there is a need for further research on stan-
dardization and interoperability of PdM solutions to ensure
seamless integration and data exchange between different sys-
tems and equipment. Moreover, continuous advancements in
data analytics algorithms and techniques should be monitored
and evaluated to improve the accuracy and efficiency of PdM
models.

In conclusion, this study not only advances our compre-
hension of PdM approaches but also underscores the need for
flexibility and customization within the evolving landscape of
I4.0.
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