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Abstract—In Ethereum blockchain, the user needs to set a Gas
price to get a transaction processed and approved by Miners. To
have the transaction executed, the Gas price has to be greater
than or equal to the lowest Ethereum transaction fees. This
paper presents a set of data sampled every 15 seconds, from
1 December 2018 to 15 December 2018, coming from different
blockchain web APIs. The aim of the paper is to investigate
whether and to what extent different variables - such as the
number of pending transactions, the value of the USD/Ether pair,
average electricity prices around the world, and the number of
miners - influence the Ethereum transaction fees. This study is
relevant from an economic perspective because more and more
companies in different economic fields are adopting Ethereum
blockchain. From historical data analysis, we found that only
some of these variables do have an influence. For example, the
number of pending transactions and the number of miners have
a major influence on Ethereum transaction fees when compared
to the other variables.

Index Terms—Ethereum, Blockchain, Gas Price, Ethereum
Transaction Fees, Granger causality.

I. INTRODUCTION

Ethereum [Eth14], [Eth16] is a platform based on a
peer-to-peer network that supports an immutable transac-
tion record on a public shared ledger known as blockchain.
The blockchain technology promotes interactions among
parties without the need of a central trusted author-
ity [Woo18], [LCO+16], [BDLF+16], [JKS16], [O’C17],
[BRDD18]. Nowadays, blockchains are not only used for
monetary transactions but also for a broader application do-
main [LCO+16]. For instance, the Ethereum platform can
execute Turing-complete programs called Smart Contracts
[Eth18], [Eth16], [BRDD18].

Blockchains are made of blocks. A block is a container
data structure and it is composed of a header and a list
of transactions. Every transaction in Ethereum must pay a
transaction fee in a special resource called Gas [Woo18],
[Eth16]. Gas is “fuel” for computational instructions executed
in the blockchain. The general idea is to make users pay
for the computational costs (e.g., energy, CPU) necessary to
execute, create, and approve their transactions. Gas is bought
by using Ether, a digital currency. A Miner approves a batch of
transactions by adding them to the blockchain ledger and gets
a reward as well as the transaction fees converted to Ether.

Since Ether is the second most valued cryptocurrency in the
world1 (the most valued is Bitcoin [Nak09]), the transaction

1https://coinmarketcap.com/coins, 2018-09-28.

fees have a non-trivial cost for the user.
For a Miner, these fees contribute to his/her profit. For

example, the average revenue per block2 (in September 2018)
was 3.48 Ether ($785.58 USD3). From that amount, 0.48 Ether
($108.35 USD) was just in transaction fees. Every Miner can
set his/her own minimum fees (measured in Gas price) and
there is no consensus on what value should that be [Woo18].

In the period considered in this paper (from December
1, 2018 to December 15, 2018), the Ethereum transaction
fees paid to have the transaction mined in approximately 30
seconds (i.e., two blocks in the Ethereum platform) noticeably
changed from 60 GWei to 20 GWei4. Figure 1 shows the Gas
prices estimated by the Etherchain’s API5 in 8 hours.

It is essential for a user to get a good estimate of the price
s/he should set for his/her transaction to be approved in a given
time. We assume that users do not want to overpay for Gas.
Moreover, if a user does not need that his/her transaction is
approved quickly, s/he may wait until it is possible to pay less
and thus save money.

The variation of Ethereum transaction fees poses some
questions worth considering, such as: what are the factors
that influence the Ethereum transaction fees? What is the
relationship between the Ethereum transaction fees and other
economic indicators? Is there any connection between the
Ethereum transaction fees and the number of pending trans-
actions in Ethereum? Is there any connection between the
Ethereum transaction fees and the Miners’ policy, such as the
minimum Gas price and the maximum Gas limit for mining a
transaction?

The aim of the paper is to investigate the factors that
influence the Ethereum transaction fees and therefore the pos-
sible decision making behaviour of blockchain users, miners
included. The results are relevant not only from a computer
science perspective but also from an economic perspective,
because blockchain is a technology adopted by an increasing
number of institutions, because it can coordinate strategic ac-
tivities across different sectors: global agrifood chains, health-
care system, banks, insurance and entertainment companies,
etc. Section II presents previous literature on the same research
topic. Section III presents the main research question of the

2https://bitinfocharts.com/ethereum/, 2018-09-28.
3We are assuming an exchange rate of 1 Ether = $225.742791 USD, based

on the values by https://currencio.co/eth/usd/ at 2018-09-28.
41 GWei = 10−9 Ether
5https://www.etherchain.org/api/gasPriceOracle



Fig. 1. Ethereum transaction fees variation

paper. Section IV describes some aspects of the Ethereum
protocol and Granger causality, needed to understand the rela-
tionship among variables that might influence the Ethereum
transaction fees. Section V presents the methodology used
to gather and analyze the data from Ethereum, to evaluate
the variables that affect the Ethereum Gas fees. Section VI
presents and discusses the results. Section VII presents the
conclusions of the research.

II. RELATED WORK

Several studies examined factors that influence cryptocur-
rencies prices and fees [Sov18], [GAH18], [Hou14], [MB15],
[EOB17]. Sovbetov [Sov18] examines factors that influence
the five cryptocurrencies Bitcoin, Ethereum, Dash, Litecoin,
and Monero, over 2010-2018 using weekly data. Giudici and
Abu-Hashish [GAH18] propose a new model that explains the
dynamics of bitcoin prices and models the interconnections
among different crypto and classic asset prices. Houy [Hou14]
analyses the economics of Bitcoin’s transaction fees and shows
that a fixed and imposed transaction fee can keep Bitcoin
blockchain secure enough when the transaction fee is high
enough. Möser and Böhme [MB15] analyse the transaction
fees paid within 45.7 million transactions recorded in the
public Bitcoin blockchain from the inception of Bitcoin until
the end of August 2014. They interpret the heterogeneity
and instability of transaction fees as an indication that the
protocol’s market mechanism fails to set a fair price for
transactions. Easley et al. [EOB17] develops a game-theoretic
model to explain the factors leading to the emergence of
transactions fees, as well as the strategic behaviour of miners
and users. He highlights the role played by mining rewards
and by transactions volume.

III. RESEARCH QUESTION

Previous studies focus on the factors that influence cryp-
tocurrencies prices and fees in a daily, weekly or monthly
time frame, while the present study considers a narrower time
frame, in seconds. Moreover, previous literature especially
considers the Bitcoin blockchain, while the present study
investigates the Ethereum blockchain. Figure 1 shows that the
Gas prices estimated by the Etherchain’s API changes many
times in just 8 hours ranging from 20 to 50 Gwei. Therefore,

we decided to analyse the variables in a 15 seconds time frame.
We chose this interval of time, because it is the average time
to mine a block in the ethereum network, as shown by the
row block time in Table III. We thought this is the best way
to answer our main research question: what are the factors
influencing the transaction fee price in the time frame to mine
a block?

IV. BACKGROUND

A. Ethereum protocol

The Ethereum protocol [Woo18] defines how the Ethereum
network works, how Miners should generally operate, and
rules everyone must follow to be a valid part of the network.
The protocol is written in general terms such that anyone could
implement his/her own version of the protocol into a custom
Ethereum client. The most used Ethereum clients are Go-
Ethereum and Parity-Ethereum. Go-Ethereum, named Geth,
is written in GO, Parity-Ethereum is written in Rust. Figure 2
is a pie chart showing the most used Ethereum clients6.

Fig. 2. Ethereum clients

Through the Ethereum clients the Miners can set the con-
ditions that the transactions must satisfy to be accepted and
transmitted in the network. For example the Miners can set
the minimum Gas price to mine a transaction and the amount
of Gas per block to target when mining a new block. Each
Ethereum mining client has different default values to mine
transactions and blocks. For example, the Geth Ethereum client
has 2 GWei as the minimum Gas price and 4,712,388 as the
maximum amount of Gas per block. The Miners can change

6https://www.ethernodes.org/network/1



the settings according to their needs. For example, to gain
more money, a Miner can set a higher minimum Gas price
or, to prevent malicious denial of service (DoS), a Miner can
lower the block Gas limit to 2 million units of Gas.

B. Life cycle of an Ethereum transaction

Figure 3 presents the life cycle of Ethereum transactions.
These are the main stages of the transactions workflow:

1) A user logs into his/her Ethereum account and sends
his/her transactions to the Ethereum network, a set of
interconnected nodes.

2) Some nodes receive the transactions and each one can
pass them to nearby nodes.

3) The nodes that can mine the blocks, i.e. the Miners,
select the transactions going to the mempool, according
to its settings.

4) A miner picks the transactions up from the mempool,
puts them in a block and tries to find the nonce value
representing a correct solution to a cryptographic prob-
lem.

5) The first miner that finds a solution for its block,
broadcasts the solution to all the other nodes.

6) The nodes that received the solution, verify whether it
corresponds to the problem of the senders’ block. If the
solution is correct, the other nodes can confirm that the
block can be added to the blockchain.

7) When the majority of the nodes reaches a consensus, the
block is added to the blockchain.

C. Gas Price Oracle

The Etherchain Gas Price Oracle7 is a tool that provides a
prediction on the fairest Gas price to pay to get a transaction
confirmed within a certain number of blocks. It uses the
method developed by EthGasStation8 to estimate the prices.
We decided to use Etherchain instead of EthGasStation mainly
because Etherchain provides its oracle data as a REST service,
which is easier to acquire automatically. EthGasStation does
not provide such interface requiring a manual or text-mining
interaction to acquire its prices.

The Etherchain tool provides four recommended Gas prices
based on the desired transaction speed and cost: “safe low”,
“average”, “fast”, and “fastest”.

• “Safe low” is the Gas price intended to be both cheap and
successful. It may take a bit longer to get a transaction
confirmed with this price, but anyway less than 30
minutes.

• “Average” is the price accepted by the top Miners who
account for at least 50% of the blocks. It takes around five
minutes to get a transaction confirmed with this price.

• “Fast” is the price accepted by the top Miners which takes
approximately one minute to get a transaction approved
using this price.

• “Fastest” is the lowest Gas price that is accepted by all
top Miners (estimated over the last two days). It takes

7https://www.etherchain.org/api/gasPriceOracle
8https://ethgasstation.info/

at most 30 seconds to get a transaction confirmed with
this price. Paying more than this price, it is unlikely to
decrease transaction confirmation time.

The paper will consider the “fastest” prices, as a variable
named “oracle gasprice” from now on. Figure 4 shows the
“oracle gasprice” variation history during the day. The “ora-
cle gasprice” recommendations are based on the lowest Gas
price accepted by the Miners in the last 200 blocks. The goal
of the paper is to understand whether other variables can
affect the “oracle gasprice” values, i.e., the alledged fairest
Ethereum transaction fees to pay.

D. Granger causality

To understand whether the data series on one variable affects
the data series on the other variable, a specific relationship
among the series needs to be observed. A time series variable
is called causal to another if the ability to predict the second
variable is improved by incorporating information about the
first one. The notion of causality was first proposed by
Wiener [Wie56]. Granger causality is a technique to determine
whether one time series is useful in forecasting another.
Granger [Gra69], [Gra81] defined causality as follows: A
variable Y is causal for another variable X if knowledge of the
past history of Y is useful to predict the future state of X in
addition to the knowledge of the past history of X itself. So if
the prediction of X is improved by including Y as a predictor,
then Y is said to be Granger causal for X.

Granger causality between two variables can be unidi-
rectional, bidirectional (or feedback) and neither unidirec-
tional nor bidirectional, i.e., independent or without Granger-
causality in any direction. As to what concerns the results of
this paper, the Granger causality test is calculated for different
lags from 0 to 24 lags. Each lag corresponds to a time interval
of 15 seconds. It means that, if the variable x Granger causes
the variable y within one lag, it will need 15 seconds before
the variable x affects the variable y.

E. Augmented Dickey-Fuller test

Granger causality test can be applied only to statistically
stationary time series. A stationary time series is a series
whose statistical properties, such as mean, variance, etc., are
all constant over time. Most statistical forecasting methods, the
Granger causality test included, are based on the assumption
that the time series can be made approximately stationary (i.e.,
“stationarized”) via mathematical transformations. If the time
series are non-stationary, then the time series model should
be applied to temporally differenced data rather than to the
original data. Augmented Dickey-Fuller test (ADF) shows
whether time series have some upward or downward trend or
seasonal effects, i.e. whether mean or variance are not constant
over time.

V. METHODOLOGY

The selection of variables taken into account in this study
is based on different works related to factors that influ-
ence cryptocurrencies prices, such as Bitcoin, presented in



Fig. 3. Life cycle of an Ethereum transaction (tx). Orange boxes represent the variables possibly influencing the Ethereum txs fee. Grey numbered boxes
represent the stages of the txs workflow.

[Sov18], [GAH18], [Hou14], [MB15], [EOB17] and listed
in Table I. Data were analysed along the following vari-
ables: the Gas price oracle (oracle gasprice), the number of
unconfirmed transactions (unconfirmed count), the block time
(block time), the number of active Miners (miners count), the
current hashrate of the network, a unit measured in hashes per
second or H/s (hashrate), the current difficulty of the network
(difficulty), the value of the USD/Ether ratio (eth usd), the value
of the BTC/Ether ratio (eth btc).

• The variable oracle gasprice, measured in Wei, is the Gas
paid to have the transaction confirmed within 1 to 2
blocks time (around 15/30 seconds). In our case it is the
Ethereum transaction fees.

• The variable hashrate it is the speed at which a miner
solves the Ethereum code. In December 2018, the hash
rate of the network was approximately 300 billion H/s or
300 GH/s.

• The variable unconfirmed count refers to the number of
unconfirmed transactions in a particular memory pool.
The number of waiting transactions of a particular mem-
ory pool differ from the total number of waiting trans-
actions in the Ethereum network. Moreover, the memory
pool of each node might differ from the memory pool
of other nodes: while there is a consensus on the mined
transactions, there is no enforced consensus on what is
stored in the memory pool of each node. However, for
the aims of this paper, it is reasonable to assume that
the waiting transactions trend in the memory pool is

representative of the general waiting transactions trend
in the global network.

• The variable difficulty indicates how difficult it is to find
the hash of a new block. The difficulty is adjusted
periodically as a function of how much hashing power
has been deployed by the network of miners.

• The variable block time refers to the time spent to mine
a block in the Ethereum network.

The data are sampled each 15 seconds and were sourced from
the different RESTful services listed in Table II.

A. Dataset

For each variable of the dataset there are 92,160 observa-
tions, collected from December 1, 2018 to December 15, 2018
(Table II). The dataset is publicly available at Github.9

Table III shows statistics on our dataset. For each variable
we measured the mean, the standard deviation (SD), minimum
(min), the 25th, 50th, and 75th percentiles and maximum
(max).

The data were analyzed to determine the Granger causality
between a specific variable, i.e., oracle gasprice (the Gas price
to have the transaction mined in 2 blocks max), and all the
other variables of tab. III. A test was previously conducted to
ensure that the data were stationary in terms of the variables
used. In the case of non-stationary series, the first difference
of the series was performed just once to make the series

9https://github.com/apierr/gas-price



TABLE I
THE VARIABLES STUDIED TO INVESTIGATE WHETHER THEY WERE PREDICTIVE OF ORACLE GASPRICE

Variable name Description
oracle gasprice Gas paid to have the transaction confirmed within 1 to 2 blocks time
unconfirmed count Number of unconfirmed transactions in a particular memory pool
block time Time spent to mine a block in the Ethereum network
miners count Number of active Miners
hashrate (Hash/s) Speed at which a miner solves the Ethereum code
difficulty Number expressing ’how difficult’ it is to find a new block
eth btc Value of the BTC/Ether ratio
eth usd Value of the USD/Ether ratio

TABLE II
RESTFUL SERVICES LIST

Variable name Service Name URI
oracle gasprice Etherchain’s API https://www.etherchain.org/api/gasPriceOracle
unconfirmed count BlockCypher’s Ethereum API https://api.blockcypher.com/v1/eth/main
block time

Ethpool’s API

https://api.ethpool.org/networkStats
miners count https://api.ethpool.org/poolStats
hashrate (H/s) https://api.ethpool.org/poolStats
difficulty https://api.ethpool.org/networkStats
eth btc

Etherscan’s API
https://api.etherscan.io/api?module=stats&action=ethprice

eth usd https://api.etherscan.io/api?module=stats&action=ethprice

TABLE III
STATISTICAL DESCRIPTION OF SAMPLE DATA

Mean SD min 25% 50% 75% max
oracle gasprice 33.59 8.83 20 26 31 41 60
unconfirmed count 91,768 6,312 70,772 88,429 92,915 95,582 111,252
block time 14.46 0.91 11.70 13.8 14.4 15.1 17.5
miners count 785 58.64 699 747 770 803 1,031
hashrate (TH/s) 173 4.15 167 169 175 177 181
difficulty (÷1015) 2.37 0.0718 2.22 2.32 2.37 2.44 2.55
eth btc 0.0268 0.0008 0.0246 0.0263 0.0267 0.0277 0.0283
eth usd 98.41 8.64 82.56 91.66 96.64 107.33 113.78

stationary. A pair Granger causality test was then performed
for all the series.

VI. RESULTS AND DISCUSSION

When we analyzed the data, some series were stationary (ex.
data of oracle gasprice variable), whilst other series revealed to
be non-stationary (ex. data of eth usd variable). Figure 4 is a
graphical representation of the stationarity vs. non stationarity
of raw data concerning a sample of variables, i.e.,hashrate,
difficulty, eth usd, eth btc, unconfirmed count, miners count,
block time, and oracle gasprice.

In Figure 4, the first five (hashrate, difficulty, eth usd, eth btc,
and unconfirmed count) are non-stationary series, whilst the re-
maining represents stationary series (miners count, block time,
and oracle gasprice).

A. ADF test

To confirm whether the series were stationary or not, we
perform a Augmented Dickey-Fuller (ADF) test. ADF test
results show that the data series on variables hashrate, difficulty,
eth usd, eth btc, and unconfirmed count are all non-stationary.
However they are all stationary after the first differentiation,
therefore it is possible to state that they are integrated at the
first order. The ADF test results are summarized in Table IV.

B. Granger causality test

The pair-wise Granger causality test was thereafter per-
formed for oracle gasprice variable versus the variables listed
in Table V.



Fig. 4. Time series datasets

TABLE IV
ADF TEST RESULTS

Variables ADF Statistic p-value Conclusion
oracle gasprice -10.00 0.000* stationarity
unconfirmed count -2.958 0.058 non-stationarity
block time -10.92 0.000* stationarity
miners count -4.427 0.001* stationarity
hashrate -0.672 0.853 non-stationarity
difficulty -0.105 0.948 non-stationarity
eth btc -1.928 0.318 non-stationarity
eth usd -1.686 0.437 non-stationarity
*p < 0.05 means that the null hypothesis is rejected, indicating
that the data are stationary

C. Pair-wise comparison: oracle gasprice vs. hashrate, diffi-
culty, block time, eth btc, and eth usd

The results in Table V show that the data series on the
variable hashrate does not Granger cause the data series on the
variable oracle gasprice, because the p-value (0.1576) is not
significant. They also show that the data series on the variable

oracle gasprice does not Granger cause the data series on
the variable difficulty, because the p-value (1.000) is also not
significant. To sum up, there is no Granger causality between
the series, running from oracle gasprice to difficulty and the
other way, because difficulty does not affect oracle gasprice
and the converse is also true. Hence, the Granger causality is
independent or non-directional between the two series.

Similar results were obtained for the hashrate variable.
Indeed, when the hashrate increases, as a result, also the
difficulty of validating newly added blocks increases; when the
hashrate decreases, also the difficulty decreases, to speed up
the time needed to mine a block. Based on the total hashrate,
the difficulty is adjusted by the nodes and the time to mine
a block is kept constant (15 seconds). This is the reason why
these variables do not influence the transactions fees.

Finally, we obtained similar results for the relationship
between oracle gasprice and the following variables: eth btc,
eth usd, and block time.

D. Pair-wise comparison: oracle gasprice vs. unconf count

The results in Table V also show that the data series
on the variable oracle gasprice does Granger cause the data
series on the variable unconfirmed count, because the p-value
(0.0215) is significant. They also show that the data series



TABLE V
GRANGER CAUSALITY TEST RESULTS

Null Hypothesis: F-statistic Prob. Decision

unconfirmed count does not Granger cause oracle gasprice 2.6274 0.0723 Accepted
oracle gasprice does not Granger cause unconfirmed count 5.2830 0.0215∗ Reject
eth usd does not Granger cause oracle gasprice 0.6094 0.5437 Accepted
oracle gasprice does not Granger cause eth usd 0.1961 0.6579 Accepted
eth btc does not Granger cause oracle gasprice 0.5923 0.4415 Accepted
oracle gasprice does not Granger cause eth btc 1.5087 0.2193 Accepted
miners count does not Granger cause oracle gasprice 1.0331 0.0309∗ Reject
oracle gasprice does not Granger cause miners count 0.0035 0.9527 Accepted
difficulty does not Granger cause oracle gasprice 1.2373 0.2499 Accepted

oracle gasprice does not Granger cause difficulty -32186 1.0000 Accepted
block time does not Granger cause oracle gasprice 1.8749 0.0323 Accepted

oracle gasprice does not Granger cause block time 0.3624 0.5472 Accepted
hashrate does not Granger cause oracle gasprice 1.9968 0.1576 Accepted

oracle gasprice does not Granger cause hashrate -7.2403 1.0000 Accepted

*p < 0.05 means that the null hypothesis is rejected, indicating that the effect of the lagged values
(value coming from an earlier point in time) of the other variable is statistically significant.

on the variable unconfirmed count does not Granger cause
the data series on the variable oracle gasprice, because the p-
value (0.0723) is not significant. To sum up, there is Granger
causality between the series, running from oracle gasprice
to unconfirmed count, but not the other way, because un-
confirmed count does not affect oracle gasprice. Hence, the
Granger causality is unidirectional between the two series.

E. Pearson correlation: unconf count vs. oracle gasprice

To better understand the unidirectional relationship of
Granger causality between oracle gasprice and uncon-
firmed count variables, a Pearson correlation test was per-
formed. The Pearson correlation coefficient is equal to -0.6.
Therefore the Pearson correlation test result suggests that
there is an inverse relationship between oracle gasprice and
unconfirmed count. A plausible explanation for this result is
that, when the oracle suggests a high price, users are not
encouraged to submit the transactions. It is indeed reasonable
to assume that people that “can” wait, will do so if the Oracle
price is too high.

F. Pair-wise comparison: oracle gasprice vs. miners count

Furthermore, the results in Table V show that the data series
on the variable miners count does Granger cause the data
series on the variable oracle gasprice, because the p-value
(0.0309) is significant. They also show that the data series
on the variable oracle gasprice does not Granger cause the
data series on the variable unconfirmed count, because the p-
value (0.9527) is not significant. To sum up, there is Granger
causality between the series, running from miners count to
oracle gasprice and not the other way, because oracle gasprice
does not affect miners count and the converse is not true.

Hence, the Granger causality is unidirectional between the two
series.

G. Pearson correlation: miner count vs. oracle gasprice

To better understand the unidirectional relationship of
Granger causality between miner count and oracle gasprice
variables, a Pearson correlation test was performed. The
Pearson correlation coefficient is equal to -0.41. Therefore
the Pearson correlation test result suggests that there is an
inverse relationship between oracle gasprice and miner count:
the more the number of miners, the lower the price predicted
by the Oracle. A plausible exaplanation might come from
the fact that an increase of the number of miners entails an
increase of the mining competition to get the transactions. As
a consequence of the supply/demand balance, the increase in
competition entails a decrease of the prices.

VII. SUMMARY AND CONCLUSIONS

There is much work [Sov18], [GAH18], [Hou14], [MB15],
[EOB17] investigating the factors influencing cryptocurrencies
prices and fees, focusing on the most common cryptocurren-
cies, such as Bitcoin. Previous studies analyzed the factors on
weekly or daily data. On the other hand, this paper analyzes
instead Ethereum and adopts a finer time frame, to investigate
the factors that influence the Ethereum transaction fees in
the average time to mine one block (i.e., approximately 15
seconds).

The main objective of the paper is to analyze the Granger
causality relationship between the data series on the variable
oracle gasprice and other variables, such as unconfirmed count,
miners count and eth usd. A ADF test and a pair-wise Granger
causality test were performed to establish whether there is



a Granger causality between the data series on the variable
oracle gasprice and the data series on other variables.

The results of the ADF test showed that the data series on
eth usd and unconfirmed count did not present any stationarity.
After taking the first difference of the series, the results of the
ADF test showed a stationarity.

In light of the results of the pair-wise Granger causality
test (see Table V), a non-directional causality relationship
was observed between the data series on the oracle gasprice
variable and the data series on the block time variable and
between the data series on the oracle gasprice variable and the
data series on the hashrate variable. This means that the past
history of both the oracle gasprice and the block time variables
cannot help in respectively predicting their future values.

In a similar vein, it is possible to conclude that ethtbc,
eth usd, hashrate and difficulty variables cannot be used to
forecast the values of the oracle gasprice variable, and also
the converse is true (see Table V).

Interestingly, a unidirectional causality was observed from
the data series on the oracle gasprice variable to the data series
on the unconfirmed count variable (see Table V). This result
shows that the past history of the oracle gasprice variable is
useful to forecast the number of waiting transactions, even
though the converse is not true. The results of the Pearson
correlation test showed that they are inversely correlated: when
the oracle price increases, the number of waiting transactions
in the Ethereum network decreases. It stands to reason that
when the oracle suggests a high price to pay, the users wait
to submit a transaction, thus decreasing the overall number
of pending transactions in their memory pools. As to what
concerns the results of this paper, the oracle gasprice vari-
able Granger causes the unconfirmed count variable when
the number of lags is greater than 6. This means that the
oracle gasprice variable does not immediately affect the un-
confirmed count variable. This result is compatible with the
fact that the user cannot be immediately aware of the variation
of the oracle gasprice. Moreover we need to consider the time
taken by the user to submit the smart contract to the blockchain
and the time required by the transactions to propagate in the
network. When choosing a time frame greater than 15 seconds,
it is not possible to appreciate the time needed for the system
to equilibrate the variation of a variable.

Finally, a unidirectional causality was also found from the
data series on the miners count variable to the data series on
the oracle gasprice variable (see Table V). The result of the
Pearson correlation test showed that the number of Miners and
the oracle gasprice variables are inversely correlated: when the
number of Miners increases, the oracle price decreases, as per
the supply/demand balance.

Overall, the results of the paper are useful to improve
the predictions on the Ethereum transaction fees at a given
time, because they shed a light on how different variables
might interact and influence the Oracle Gas Price. Knowing
that Oracle predictions are biased by some variables might
be useful for blockchain users, to reach a more mindful
and efficient use of the platform. Such results are relevant

not only from a computer science perspective but also from
an economic perspective, because they show the financial
mechanisms of blockchain which is adopted by both public
and private institutions. Further research is anyway needed to
build a model that precisely provides the users with an estimate
of the best Gas Price to pay to have the transaction executed
in a given time lapse, taking into account the variables that
influence the overall Ethereum transaction fees.
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