
A Measure to Assess the Behavior of Method Stereotypes in Object-Oriented Software

Peter Andras, Anjan Pakhira

School of Computing Science

Newcastle University

Newcastle upon Tyne, UK

peter.andras@ncl.ac.uk, anjan.pakhira@ncl.ac.uk

Laura Moreno, Andrian Marcus

Department of Computer Science

Wayne State University

Detroit, MI, USA

lmoreno@wayne.edu, amarcus@wayne.edu

Abstract—The implementation of software systems should

ideally follow the design intentions of the system. However, this

is not always the case – the design and implementation of

software systems may diverge during software evolution. In this

paper we propose a measure based on run time information to

assess the consistency between the design and the implementation

of OO methods. The measure is based on the analysis of the run-

time behavior of methods and considers the frequency of fan-in

and fan-out method calls. We analyze this measure with respect

to the design intent of methods, reflected by their stereotype. We

apply the proposed approach to data from three open source

software systems and analyze the behavior of method stereotypes

across the systems and within each system. The analysis shows

that most methods behave as expected based on their stereotypes

and it also detects cases that may need re-engineering attention.

Index Terms— Software design, dynamic analysis, dynamic

metric, method stereotypes.

I. INTRODUCTION

Designing, implementing, and maintaining large software

systems are complex software engineering activities. One of

the sources of the problems in these activities is the mismatch

between the design intent and the actual behavior of software

[1, 2]. For instance, the intentions behind the design of a

method imply expectations about its run-time behavior, which,

in turn, should match its designed behavior. Measuring this

matching is problematic in itself.

Method stereotypes [3] capture the intent of methods in

Object Oriented (OO) software systems based on static

analysis. Such stereotypes (e.g., get, factory, constructor) are

characterized by their access to data (e.g., reading or writing

data) and their main designed behavioral features (e.g.,

creational, structural, and collaborational methods). In this

sense, the method stereotype definitions imply certain run-time

behavior of the methods. However, the expected run-time

behavior of these methods is not enforced by any programming

language construct. Hence mismatches between the design

intent and the run-time behavior of the software occur.

We address this issue by describing a measure-based

approach to compare the usage of method stereotypes across

software systems. Our conjecture is that if the run-time

behavior of methods is captured by some measure, then the

distribution of methods of the same stereotype according to this

measure is similar across different software systems and the

distributions corresponding to different method stereotypes are

different within a given software system. Such a measure

could be used then to assess to which extent the design of a

system (or at least part of it) matches its behavior.

This paper has two key contributions:

(1) the definition of the dynamic fI-fO distribution measure

for method stereotypes; the measure is based on the analysis of

the run-time behavior of methods considering the frequency of

fan-in and fan-out method calls (i.e., other methods calling the

measured method and other methods called by the method);

(2) the application of this measure to show that indeed, in

the case of a small group of well-designed and well-

implemented software systems, the dynamic fI-fO distribution

measure captures the similarity of the implementations of the

same method stereotypes across the software systems and also

the difference between different method stereotypes within a

single software system.

II. RELATED WORK

Considerable research has been dedicated to the extraction

of design elements from the source code. Special attention has

been given to the detection of design patterns either by static

[4, 5], dynamic [6], or hybrid analysis [7]. Few researchers

have explored the identification of the design intent at lower

levels of abstraction. In this regard, common programming

constructs of Java classes are gathered in [8] to form a set of

micro patterns, which are extracted from software binaries. In

a similar way, a catalog of nano patterns is described in [9],

which correspond to the characterization of Java methods

based on their structural properties. These approaches are

extended by class [10] and method stereotypes [3], which are,

respectively, categories for describing the intent of classes in a

system’s design and the responsibility of methods within a

class, based on implementation rules.

Dynamic analysis has been widely used in program

comprehension research. A recent survey on this [11] revealed

that almost 70% of the work on dynamic analysis has focused

on OO programs, and basic visualization methods (e.g., graphs

or diagrams). Dynamic method call graphs, in particular, have

been used for program slice analysis [12] and feature location

[13].

Different aspects of software systems have been assessed

through dynamic metrics [14-20]. These metrics usually focus

on object or class coupling, cohesion, and graph complexity

[16, 17] during software execution. Some of them have been

used to assess the quality of the implemented software [14, 15,

19, 21, 22]. However, the validity of some of these metrics

(e.g. lack of cohesion metric) has been questioned [23].

TABLE 1. METHOD STEREOTYPE TAXONOMY

Category Stereotype General description

Structural

A
cc

es
so

r

Get Returns a local field directly

Predicate
Returns a Boolean value that is not a

local field

Property Returns information about local fields

Void-

accessor

Returns information about local fields

through the parameters

M
u
ta

to
r

Set Changes only one local field

Command Changes more than one local fields

Non-void

command

Command whose return type is not

void or Boolean

Creational

Constructor Invoked when creating an object

Destructor
Performs any necessary cleanups

before the object is destroyed

Copy-

constructor

Creates a new object as a copy of the

existing one

Factory Instantiates an object and returns it

Collaborational

Collaborator
Connects one object with other type of

objects

Controller
Provides control logic by invoking
only external methods

Local-

controller

Provides control logic by invoking

only local methods

Degenerate

Abstract Has no body

Empty Has no statements

Incidental Any other case

The mismatch between the design and implementation of

the software has been the subject of several studies on the

quality of the software. Design bad smells [24] are one

manifestation of such mismatch. Lutz [2] investigated the

impact of mismatch between design intentions and

implementation in the context of software safety. Feather et al.

[1] analyzed the match between requirements and the run-time

behavior of the software. Garlan et al. [25, 26] considered the

impact of architectural mismatch on software quality in the

context of re-use of software components.

III. STATIC METHOD STEREOTYPES

Code stereotypes are low-level categories that reveal the

intention of source code artifacts based on implementation

patterns, i.e., by static analysis. In the case of methods,

stereotypes represent their general responsibility within a class

[3]. For example, the stereotype get describes a method that

returns a class’s field, without modifying any value or invoking

other methods.

In this work, we use the method stereotype taxonomy for

Java code [27], adapted from previous work [3]. This

taxonomy defines 17 stereotypes classified as follows:

structural, when the main purpose of the method is to retrieve

(accessors) or to modify (mutators) the class’ fields; creational

if the method is responsible for creating or destroying objects;

collaborational when the method communicates or controls

objects in the system; and degenerate, in any other case. A

short description of each stereotype is provided in Table 1

based on [3, 27]. It is important to mention that methods have

a primary stereotype from any category and an optional,

secondary stereotype in the collaborational category.

IV. THE DYNAMIC FI-FO DISTRIBUTION METRIC FOR METHOD

STEREOTYPES

We define the dynamic fI-fO classification for a given

method by considering the number and the frequency of

methods that call the given method (fan-in) and those that are

called by the given method (fan-out) during run time. We use a

simple classification of the number of fan-in and fan-out

methods, by considering as separate categories 0, 1, few (2 – 4),

and many (5 or more) methods – this is a natural classification

of the fan-in and fan-out numbers given their actual

distributions. This way, for a given method we get a fan-in-

fan-out (fI-fO) category that combines two of the above defined

counting categories. For example, the 1-few category denotes a

method that is called by a single method and calls 2-4 other

methods. Since each method has to be called at least once to be

executed, on the fan-in side the available options will be only

1, few. and many.

We also consider the run-time frequencies of the method

calls in the cases when there are few or many methods on the

fan-in or fan-out side. We define a call distribution as

balanced if it is close to the uniform distribution, and

unbalanced when it is considerably different from the uniform

distribution. To measure the difference between the

distributions we use the Kullback-Leibler (KL) divergence.

According to this measure if there are n methods that call (or

are called by) the given method and the frequency of calls from

these methods are if with ni ,...,1= , then the KL divergence

of the calls distribution relative to the uniform distribution is

calculated as:

() ()∑
=

⋅+=
n

i

ii ffnd
1

lnln

If the method call distribution is uniform, then 0=d . We

consider a method call distribution balanced if 3.0<d and

unbalanced otherwise. Therefore, for each method the

dynamic fI-fO classification assigns one of the 30 categories

listed in Table 2.

Considering the method stereotype taxonomy summarized

in Table 1 and given a software system, we extract the set of

methods that belong to each stereotype. Then, we determine

the dynamic fI-fO category for each method in the system.

With this information we are able to find the distribution of

methods over the 30 dynamic fI-fO categories for each method

stereotype. Such a distribution characterizes the method

stereotype within the considered software system.

For example, one may consider that a method categorized

as get stereotype would typically belong to one of the 1-0, FB-

0, MB-0 dynamic fI-fO categories, i.e., there are one or more

uniformly distributed calls from other methods and no calls

going out to other methods. However, in practice, most likely

the distribution over fI-fO categories of the methods belonging

to the get stereotype will not be restricted to the dynamic fI-fO

categories 1-0, FB-0, MB-0, but will cover other dynamic fI-fO

categories. Then this is the characteristic distribution of get

method stereotype for a given software system.

Having a distribution over the dynamic fI-fO categories for

each method stereotype allows us to compare these

distributions in the context of a software system. It also allows

us to compare the distributions associated with the same

method stereotype in the context of different software systems.

The comparison of the distributions can be done using the KL

divergence for the considered distributions (note that the KL

divergence is not symmetric, i.e., the divergence measure of

distribution D relative to 'D is usually not the same as the

divergence of 'D relative to D). Let D and 'D be the

distributions over the dynamic fI-fO categories associated with

two method stereotypes:

{ }labelsclass fO-fI, ∈= lbfD lb

{ }labelsclass fO-fI,'' ∈= lbfD lb

The KL divergence of D relative to 'D is

() ()()∑
∈

−⋅=
labelscategory fO-fI

'lnln
lb

lblblb fffd

which defines the dynamic fI-fO distribution measure for

method stereotypes comparison within a software system and

across software systems.

In principle, we may expect that if the implementation of a

software system follows some design intent, then the

distribution over fI-fO categories that corresponds to a given

method stereotype should be close to an ideal (or intended)

distribution over the fI-fO categories. The dynamic fI-fO

distribution measure based on the KL divergence of

distributions can be used as a measure to quantify the extent to

which the actual behavior of the software follows the design

intent expressed by the choice of method stereotypes. In this

sense, large divergence values between distributions indicate

high mismatch between the design intent of methods and their

run-time behavior, whereas small divergence values are an

indicator of low mismatch.

Similarly, it may be assumed that different method

stereotypes have different associated distributions over the fI-

fO categories within a single software system. This reflects the

expectation that methods with different method stereotypes

should behave differently during run time (e.g., set methods

should have a different run time behavior from controller

methods in terms of incoming and outgoing method calls).

Having the measured fI-fO category distributions associated

with method stereotypes for a software system, we can

compare these distributions and assess their difference using

the dynamic fI-fO distribution measure. Assuming that in an

ideal (or intended) implementation of the software we might

expect a certain level of difference between the distributions

over the fI-fO categories, the comparison of the actual

distributions can provide a measure of the extent to which these

differences are confirmed. If the differences are less than

expected, they might indicate that the implementation of

methods belonging to distinct method stereotypes is not

sufficiently different across the software. This might be a

marker of poor design (or implementation) in the software

system. The opposite, of course, might be considered as an

indicator of good design (or implementation).

Thus, the proposed dynamic fI-fO distribution measure for

method stereotypes can be used to assess software systems,

regarding to the extent in which the implemented behavior of

methods matches the intended behavior of the software

specified by the design.

V. CASE STUDY

We conducted a case study in order to verify our

assumptions about the expected behavior of method

stereotypes.

A. Definition and design

We formulated two research questions:

RQ1: Are the behavior of methods of different stereotypes

similar or different?

RQ2: Are the behavior of methods of the same stereotype

consistent across different software?

The context of our study is represented by the source code

and execution traces of three open-source Java software

systems: ArgoUML (version 0.22, 924 KLOC), a UML

modeling tool; muCommander (version 0.8.5, 85 KLOC), a file

manager; and JabRef (version 2.6, 148 KLOC), a bibliography

reference manager. We chose these systems for three reasons:

(i) they are used in existing benchmarks in software

maintenance research [28]; (ii) their domains and sizes are

different; and (iii) they have a set of publicly available

TABLE 2. DYNAMIC FI-FO CATEGORIES FOR METHODS

 fO

fI
0 1 F M

1 1-0 1-1
1-FB

1-FU

1-MB

1-MU

F
FB-0

FU-0

FB-1

FU-1

FB-FB
FB-FU

FU-FB

FU-FU

FB-MB
FB-MU

FU-MB

FU-MU

M
MB-0

MU-0

MB-1

MU-1

MB-FB
MB-FU

MU-FB

MU-FU

MB-MB
MB-MU

MU-MB

MU-MU

Notation (fI-fO)

0 = no method call

1 = a single method call
FB = a few (2, 3,or 4), balanced methods calls

FU = a few (2, 3,or 4), unbalanced methods calls

MB = many (5 or more), balanced methods calls
MU = many (5 or more), balanced methods calls

execution traces
1
. Each set of traces corresponds to the

execution of several scenarios for each system. The traces are

XML files generated by the Eclipse Test & Performance Tools

Platform (TPTP), and they capture every method executed in a

given scenario since the program is started until it is ended.

B. Procedure

In order to extract the method stereotypes we used

JStereoCode [27], an Eclipse plug-in that identifies code

stereotypes from Java systems. The tool produced a

classification consisting of 34 method stereotypes (including

combined stereotypes), which we considered in the rest of the

study.

For each system, we used the corresponding set of traces to

classify the executed methods as one of the 30 dynamic fI-fO

categories listed in Table 2.

We merged the stereotype and the fI-fO information to

calculate the distribution of methods over the dynamic fI-fO

categories for each method stereotype. The calculated

distributions were averaged over all traces per software system

to get robust estimates of the distributions. The resulting

distributions over dynamic fI-fO categories were used for

further analysis.

To assess whether the difference between two distributions,

according to the dynamic fI-fO distribution measure, was large

or small we needed to generate a large set of distributions of

the same kind with random parameters. With this large set of

1
 http://www.cs.wm.edu/semeru/data/benchmarks/

randomly chosen distributions of the right kind, we could

calculate the expected value of their difference according to the

dynamic fI-fO distribution measure and also the standard

deviation of these measured differences. Our expected value

(E) and standard deviation (σ) calculations are based on a

random selection of distributions and we assume that the values

of the measured differences are distributed normally.

Accordingly, a measured difference value calculated for two

stereotype distributions over the dynamic fI-fO categories is

small if the value is less than σ33.21 −= EL (i.e., the lowest

1% range of the distribution of the measured difference values),

which means that it is much smaller than what is expected for

two randomly chosen distributions. The difference value is

large if it is greater than σ96.12 −= EL (i.e., above the lowest

2.5% range of the measured difference value distribution, and

within the 95% range of the value distribution) or, in other

words, if the value is in the expected wide range for two

randomly chosen distributions. If the measured difference

value calculated for two stereotype distributions is in the

intermediary range []σσ 96.1,33.2 −− EE , the value is

considered moderately large.

C. Results

After analyzing the dynamic fI-fO category distributions

corresponding to method stereotypes, we found that the

frequency values of these distributions follow log-normal

distributions with parameters ()sm, with values in the ranges

of []0,2− for m and []8.2,2.2 for s . That is, the distributions

Fig. 1. Distribution of (a) method stereotypes and (b) dynamic fI-fO category in three Java systems. In both cases the vertical axis shows the

percentage of methods belonging to the method stereotypes and dynamic fI-fO categories, respectively, shown on the horizontal axis.

of the frequency values are such that their logarithms are

normal distributions with mean m and standard deviation s.

In accordance with the previously described procedure for

the estimation of the values of E and σ , we generated 100

randomly chosen distributions using frequency values provided

by log-normal distributions with parameters in the above given

ranges. We calculated the dynamic fI-fO distribution measure

for pairs of these distributions and found the values of E and

σ to be 4838.4=E and 1817.1=σ . Consequently, a

measured difference for two stereotype distributions is

considered small if it is below 2628.01 =L , large if it is above

9328.02 =L , and moderately large if it is in the interval of

[] []9328.0,2625.0, 21 =LL .

We used the KL divergence to assess the overall similarity

of the three software systems that we considered by comparing

the distributions of methods over method stereotypes and also

over the dynamic fI-fO categories. Fig. 1 shows the two sets

of distributions for the three considered software. Table 3 and

Table 4 show the calculated pair-wise KL divergence values.

All the values are below 1L , indicating that the software

systems are, in general, similar to each other in terms of the

distribution of their methods over method stereotypes and

dynamic fI-fO categories.

Next, we compared the method stereotypes using the

dynamic fI-fO distribution measure in the context of each

software system considered in the study. The results for

method stereotypes to which a larger number of methods

belong to (at least 1% of all methods) in ArgoUML are shown

in Table 5. Fig. 2a shows the distributions over dynamic fI-fO

categories for three method stereotypes: collaborator,

constructor, and initializer. The calculated measure values

shows that 32% of these are above 2L , 42% are in the range of

moderately large values []21, LL , and 16% are smaller than 1L .

This confirms that the implementations of different method

stereotypes within one software system are different in the

large majority of the cases, as it is expected in a software

system where the design intent is preserved through the

implementation.

Then, we compared method stereotypes across the three

considered software using the dynamic fI-fO distribution m.

The results are shown in Table 6 for a selection of method

stereotypes with a large number of representative methods in

the systems. As an illustration of the distributions, Fig. 2b

shows the three distributions over dynamic fI-fO categories for

the collaborator stereotype. The calculated measure values are

mostly below 1L , with the exception of the controller

stereotype, and the get stereotype in the case of the

muCommander. This indicates that most of the method

stereotypes are implemented consistently across the three

software systems, but also that some controller methods may

need revision and re-engineering in those systems, as well as

some of get methods in the muCommander.

In summary, the results indicate that the behavior of

different method stereotypes in each of the considered systems

is different, and that the behavior of the same method

stereotype across the three systems is similar. These results

suggest that the three software systems are consistent in terms

of designed and implemented behavior. Our results also

TABLE 4. KL DIVERGENCES FOR DISTRIBUTIONS OVER DYNAMIC FI-FO

CATEGORIES

Software vs software KL divergence

ArgoUML vs muCommander 0.13181

muCommandervs ArgoUML 0.12799

JabRef vs muCommander 0.09463

muCommandervs JabRef 0.07578

ArgoUML vs JabRef 0.05290

JabRef vs ArgoUML 0.06574

TABLE 3. KL DIVERGENCES FOR DISTRIBUTIONS OVER METHOD

STEREOTYPES

Software vs software KL divergence

ArgoUML vs muCommander 0.11772

muCommandervs ArgoUML 0.24544

JabRef vs muCommander 0.01071

muCommandervs JabRef 0.10955

ArgoUML vs JabRef 0.06368

JabRef vs ArgoUML 0.05051

TABLE 5. MEASURED DIFFERENCES FOR METHOD PROTOTYPES WITHIN ARGOUML

G
E

T

P
R

O
P

E
R

T
Y

S
E

T

S
E

T
 C

O
L

L
A

B

C
O

M
M

A
N

D

C
O

L
L

A
B

C
O

N
S

T
R

U
C

T

F
A

C
O

T
R

Y

C
O

L
L

A
B

C
O

L
L

A
B

O
R

A
T

O
R

C
O

N
T

R
O

L
L

E
R

L
O

C
A

L
 C

T
R

L

IN
IT

IA
L

IZ
E

R

GET 0 1.583 1.164 2.437 2.538 1.869 1.824 1.992 1.791 1.836 0.859

PROPERTY 0.884 0 0.262 0.301 0.553 0.297 1.196 0.532 0.623 0.545 0.553

SET 0.601 0.461 0 1.512 1.615 0.638 1.441 0.609 1.213 0.607 0.029

SET COLLAB 1.344 0.945 0.807 0 0.102 0.496 0.234 0.114 0.926 0.873 1.546

COMMAND COLLAB 1.849 0.504 0.949 0.062 0 0.407 0.398 0.125 0.998 0.673 1.030

CONSTRUCT 1.810 1.185 0.624 0.732 0.846 0 0.538 0.306 0.852 0.483 0.386

FACTORY COLLAB 2.089 1.674 1.151 0.374 0.583 0.562 0 0.212 0.939 0.879 1.074

COLLABORATOR 1.214 0.737 0.573 0.449 0.645 0.295 0.234 0 0.762 0.522 0.339

CONTROLLER 0.034 0.280 0.219 1.071 1.179 0.341 0.177 0.774 0 0.458 0.522

LOCAL CTRL 1.742 0.759 0.446 0.302 0.156 0.221 0.318 0.031 0.233 0 0.488

INITIALIZER 1.208 0.270 0.158 0.229 0.115 0.425 1.179 0.853 0.864 0.547 0

suggest that the dynamic fI-fO distribution measure is

potentially useful for assessing the implementation of software

systems in relation with their design intent.

D. Threats to validity

As with any case studies, any generalization is likely to be

limited and should be done carefully. In addition, due to the

data available to us, some of the results should be interpreted

with care. Specifically, the available traces for the three

systems covered only about 50% of the methods, on average

i.e. not all methods in the code of the software get executed

during the considered run-time executions of the software, and

not all methods that may call a given method according to the

static analysis of the software, do actually call the given

method through the considered execution traces. In terms of

conclusion validity, we expect that the results would change to

some degree if we used traces that achieve full method

coverage. We expect that the differences would not be big

enough to invalidate the major conclusions regarding the

relationships between method stereotypes and the fI-fO

categories.

VI. CONCLUSIONS AND FUTURE WORK

We introduced an approach based on a dynamic measure to

assess and quantify the extent to which the design intent

expressed by method stereotypes is reflected by the run-time

behavior of software systems. In principle, OO methods are

expected to consistently behave according to their design

intent, i.e., that the implied behavior of the methods matches

their actual run-time behavior. However in practice this may

not be the case and it is likely that some level of mismatch

between the intended and actual run-time behavior of methods

exists. Our approach provides a way to measure this mismatch

between design and implementation. Large mismatch

measures indicate low consistency between the design intent

and the behavior of a system, while low mismatch indicates

high consistency. A qualitative assessment of software systems

based on the fI-fO measure can support software maintenance

activities. We showed that it is possible to identify, for

instance, method stereotypes and particular methods that

contribute to the increase of the measured mismatch. This will

allow the focusing of the re-engineering effort on such

identified methods.

The proposed approach can be extended by considering

multi-step call traces instead of the single step fan-in and fan-

out method calls. Naturally, this would make the analysis more

complicated, but could potentially reveal finer-grained aspects

of the implementation of the design intentions. We plan to

apply our approach to a broader set of software systems to

exemplify the design and implementation advice that can be

derived from our fI-fO-based assessment approach. We also

intend to investigate the consideration of multi-step call traces

to assess the implementation of design intentions.

REFERENCES

[1] M. S. Feather, S. F. Fickas, A. van Lamsweerde, and C. Ronsard,
"Reconciling system requirements and runtime behavior," in 9th

International Workshop on Software Specification and Design

(IWSSD'98), Ise-Shima, 1998, pp. 50-59.
[2] R. R. Lutz, "Software engineering for safety: a roadmap," in Conference

on The Future of Software Engineering (FoSE'00), Limerick, Ireland,
2000, pp. 213-226.

[3] N. Dragan, M. L. Collard, and J. I. Maletic, "Reverse Engineering

Method Stereotypes," in 22nd IEEE International Conference on
Software Maintenance (ICSM'06), 2006, pp. 24 - 34.

[4] G. Antoniol, R. Fiutem, and L. Cristoforetti, "Using Metrics to Identify

Design Patterns in Object-Oriented Software," in 5th IEEE International
Symposium on Software Metrics (METRICS'98), Bethesda, MD, USA,

1998, pp. 23-24.

[5] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
"Design Pattern Detection Using Similarity Scoring," IEEE Transactions

on Software Engineering, vol. 32, pp. 896-909, November 2006.

[6] J. K.-Y. Ng, Y.-G. Gueheneuc, and G. Antoniol, "Identification of
Behavioural and Creational Design Motifs through Dynamic Analysis,"

Journal of Software Maintenance and Evolution: Research and Practice,

vol. 22, pp. 597-527, December 2010.

TABLE 6. MEASURED DIFFERENCES FOR METHOD STEREOTYPES ACROSS THE SOFTWARE SYSTEMS

Software vs software Measured difference Software vs software Measured difference

COLLABORATOR GET

ArgoUML vs muCommander 0.10024 ArgoUML vs muCommander 1.07147

muCommandervs ArgoUML 0.08285 muCommandervs ArgoUML 0.51303

JabRef vs muCommander 0.17379 JabRef vs muCommander 2.13944

muCommandervs JabRef 0.12294 muCommandervs JabRef 0.76360

ArgoUML vs JabRef 0.16617 ArgoUML vs JabRef 0.10767

JabRef vs ArgoUML 0.14094 JabRef vs ArgoUML 0.13943

CONSTRUCTOR SET

ArgoUML vs muCommander 0.23624 ArgoUML vs muCommander 0.18210

muCommandervs ArgoUML 0.30279 muCommandervs ArgoUML 0.06373

JabRef vs muCommander 0.12724 JabRef vs muCommander 0.08430

muCommandervs JabRef 0.26353 muCommandervs JabRef 0.07264

ArgoUML vs JabRef 0.21568 ArgoUML vs JabRef 0.19017

JabRef vs ArgoUML 0.23823 JabRef vs ArgoUML 0.02758

INITIALIZER CONTROLLER

ArgoUML vs muCommander 0.37862 ArgoUML vs muCommander 1.39183

muCommandervs ArgoUML 0.18876 muCommandervs ArgoUML 2.42161

JabRef vs muCommander 0.31543 JabRef vs muCommander 0.61756

muCommandervs JabRef 0.20829 muCommandervs JabRef 5.10724

ArgoUML vs JabRef 0.15565 ArgoUML vs JabRef 1.46486

JabRef vs ArgoUML 0.52043 JabRef vs ArgoUML 0.93945

[7] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe, "Automatic Design

Pattern Detection," presented at the 11thh IEE International Workshop
on Program Comprehension, 2003.

[8] J. Gil and I. Maman, "Micro patterns in Java code," presented at the 20th

ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, San Diego, CA, USA, 2005.

[9] J. Singer, G. Brown, M. Luján, A. Pockok, and P. Yiapanis,

"Fundamental Nano-Patterns to Characterize and Classify Java
Methods," Electronic Notes in Theoretical Computer Science (ENTCS),

vol. 253, pp. 191-204, September 2010.

[10] N. Dragan, M. L. Collard, and J. I. Maletic, "Automatic Identification of
Class Stereotypes," in 26th IEEE International Conference on Software

Maintenance (ICSM'10), Timisoara, Romania, 2010, pp. 1 -10.

[11] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R.
Koshcke, "A Systematic Survey of Program Comprehension through

Dynamic Analysis," IEEE Transactions on Software Engineering, vol.

35, pp. 684-702, September-October 2009.
[12] B. Korel, "Program Slicing in Understanding of Large Programs "

presented at the 6th Inernational Workshop on Program Comprehension,

Ischia, 1998.
[13] J. Bohnet and J. Dollner, "Visual Exploration of Function Call Graphs

for Feature Location in Complex Software Systems," presented at the

ACM Symposium on Software visualization (SoftVis'06), New York,
NY, USA, 2006.

[14] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object

Oriented Design," IEEE Transactions On Software Engineering, vol. 20,
pp. 476-493, June 1994.

[15] s. M. Yacoub, H. H. Ammar, and T. Robinson, "Dynamic Metrics for
Object Oriented Designs," in 6th International Symposium on Software

Metrics (METRICS'99), Boca Raton, FL, USA, 1999, pp. 50-61.

[16] J. K. Chhabra and V. Gupta, "A survey of dynamic software metrics,"
Journal of Computer Science and Technology, vol. 25, pp. 1016-1029,

September 2010.

[17] A. Tahir and S. G. MacDonell, "A systematic mapping study on
dynamic metrics and software quality," in 28th IEEE International

Conference on Software Maintenance (ICSM'12), Trento, Italy, 2012,

pp. 326-335.

[18] E. Arisholm, L. C. Briand, and A. Foyen, "Dynamic Coupling

Measurement for Object-Oriented Software," IEEE Transactions On
Software Engineering, vol. 30, pp. 491-506, August 2004.

[19] A. Mitchell and J. F. Power, "Using object-level run-time metrics to

study coupling between objects," in ACM Symposium on Applied
Computing (SAC'05), Santa Fe, NM, 2008, pp. 1456-1462.

[20] S. Counsell, S. Swift, and J. Crampton, "The interpretation and utility of

three cohesion metrics for object-oriented design," ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 15, pp. 123-

149, 2006.

[21] F. Brito e Abreu and W. L. Melo, "Evaluating the Impact of Object-
Oriented Design on Software Quality," in 3rd International Symposium

on Software Metrics: From Measurement to Empirical Results, Berlin,

Germany, 1996, pp. 90-99.
[22] L. Briand, J. Wust, J. Daly, and V. Porter, "Exploring the relationship

between design measures and software quality in object-oriented

systems," Journal of System and Software, vol. 51, pp. 245-273, May
2000.

[23] B. Kitchenham, "What's up with software metrics? - A preliminary

mapping study," Journal of Systems and Software, vol. 83, pp. 37-51,
January 2010.

[24] N. Moha, Y.-G. Gueheneuc, A.-F. Le Meur, L. Duchien, and A.

Tiberghien, "From a domain analysis to the specification and detection
of code and design smells," Journal of Formal Aspects of Computing,

vol. 22, pp. 345-361, May 2010.

[25] D. Garlan, R. Allen, and J. Ockerbloom, "Architectural Mismatch: Why
Reuse Is So Hard," IEEE Software, vol. 12, pp. 17-26, November 1995.

[26] D. Garlan, R. Allen, and J. Ockerbloom, "Architectural Mismatch: Why
Reuse Is Still So Hard," IEE Software, vol. 26, pp. 66-69, July-August

2009.

[27] L. Moreno and A. Marcus, "JStereoCode: Automatically Identifying
Method and Class Stereotypes in Java Code," in 27th IEEE/ACM

International Conference on Automated Software Engineering (ASE'12),

Essen, Germany, 2012, pp. 358-361.
[28] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, "Feature Location

in Source code: A Taxonomy and Survey," Journal of Software

Maintenance and Evolution: Research and Practice, vol. 25, pp.53-95,
January 2011.

Fig. 2. Distributions over dynamic fI-fO categories for (a) the collaborator, constructor and initializer stereotypes in the ArgoUML; and (b) the

collaborator stereotype in the three software systems. In both cases, the vertical axis shows the percentage of methods belonging to the dynamic fI-fO
categories, shown on the horizontal axis.

