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Abstract—The implementation of software systems should 

ideally follow the design intentions of the system.  However, this 

is not always the case – the design and implementation of 

software systems may diverge during software evolution.  In this 

paper we propose a measure based on run time information to 

assess the consistency between the design and the implementation 

of OO methods.  The measure is based on the analysis of the run-

time behavior of methods and considers the frequency of fan-in 

and fan-out method calls.  We analyze this measure with respect 

to the design intent of methods, reflected by their stereotype.  We 

apply the proposed approach to data from three open source 

software systems and analyze the behavior of method stereotypes 

across the systems and within each system.  The analysis shows 

that most methods behave as expected based on their stereotypes 

and it also detects cases that may need re-engineering attention.

Index Terms— Software design, dynamic analysis, dynamic 

metric, method stereotypes. 

I. INTRODUCTION 

Designing, implementing, and maintaining large software 

systems are complex software engineering activities.  One of 

the sources of the problems in these activities is the mismatch 

between the design intent and the actual behavior of software 

[1, 2].  For instance, the intentions behind the design of a 

method imply expectations about its run-time behavior, which, 

in turn, should match its designed behavior.  Measuring this 

matching is problematic in itself.   

Method stereotypes [3] capture the intent of methods in 

Object Oriented (OO) software systems based on static 

analysis.  Such stereotypes (e.g., get, factory, constructor) are 

characterized by their access to data (e.g., reading or writing 

data) and their main designed behavioral features (e.g., 

creational, structural, and collaborational methods).  In this 

sense, the method stereotype definitions imply certain run-time 

behavior of the methods.  However, the expected run-time 

behavior of these methods is not enforced by any programming 

language construct.  Hence mismatches between the design 

intent and the run-time behavior of the software occur. 

We address this issue by describing a measure-based 

approach to compare the usage of method stereotypes across 

software systems.  Our conjecture is that if the run-time 

behavior of methods is captured by some measure, then the 

distribution of methods of the same stereotype according to this 

measure is similar across different software systems and the 

distributions corresponding to different method stereotypes are 

different within a given software system.  Such a measure 

could be used then to assess to which extent the design of a 

system (or at least part of it) matches its behavior. 

This paper has two key contributions: 

(1) the definition of the dynamic fI-fO distribution measure 

for method stereotypes; the measure is based on the analysis of 

the run-time behavior of methods considering the frequency of 

fan-in and fan-out method calls (i.e., other methods calling the 

measured method and other methods called by the method); 

(2) the application of this measure to show that indeed, in 

the case of a small group of well-designed and well-

implemented software systems, the dynamic fI-fO distribution 

measure captures the similarity of the implementations of the 

same method stereotypes across the software systems and also 

the difference between different method stereotypes within a 

single software system. 

II. RELATED WORK

Considerable research has been dedicated to the extraction 

of design elements from the source code.  Special attention has 

been given to the detection of design patterns either by static 

[4, 5], dynamic [6], or hybrid analysis [7].  Few researchers 

have explored the identification of the design intent at lower 

levels of abstraction.  In this regard, common programming 

constructs of Java classes are gathered in [8] to form a set of 

micro patterns, which are extracted from software binaries.  In 

a similar way, a catalog of nano patterns is described in [9], 

which correspond to the characterization of Java methods 

based on their structural properties.  These approaches are 

extended by class [10] and method stereotypes [3], which are, 

respectively, categories for describing the intent of classes in a 

system’s design and the responsibility of methods within a 

class, based on implementation rules.   

Dynamic analysis has been widely used in program 

comprehension research.  A recent survey on this [11] revealed 

that almost 70% of the work on dynamic analysis has focused 

on OO programs, and basic visualization methods (e.g., graphs 

or diagrams).  Dynamic method call graphs, in particular, have 

been used for program slice analysis [12] and feature location 

[13]. 

Different aspects of software systems have been assessed 

through dynamic metrics [14-20].  These metrics usually focus 

on object or class coupling, cohesion, and graph complexity 

[16, 17] during software execution.  Some of them have been 

used to assess the quality of the implemented software [14, 15, 

19, 21, 22].  However, the validity of some of these metrics 

(e.g. lack of cohesion metric) has been questioned [23]. 



TABLE 1.  METHOD STEREOTYPE TAXONOMY

Category Stereotype General description 

Structural

A
cc

es
so

r 

Get Returns a local field directly 

Predicate 
Returns a Boolean value that is not a 

local field

Property Returns information about local fields 

Void-

accessor 

Returns information about local fields 

through the parameters 

M
u
ta

to
r 

Set Changes only one local field 

Command Changes more than one local fields 

Non-void 

command 

Command whose return type is not 

void or Boolean 

Creational 

Constructor Invoked when creating an object 

Destructor 
Performs any necessary cleanups 

before the object is destroyed 

Copy-

constructor 

Creates a new object as a copy of the 

existing one 

Factory Instantiates an object and returns it 

Collaborational

Collaborator
Connects one object with other type of 

objects 

Controller 
Provides control logic by invoking 
only external methods 

Local- 

controller

Provides control logic by invoking 

only local methods

Degenerate 

Abstract Has no body 

Empty Has no statements 

Incidental Any other case 

The mismatch between the design and implementation of 

the software has been the subject of several studies on the 

quality of the software.  Design bad smells [24] are one 

manifestation of such mismatch.  Lutz [2] investigated the 

impact of mismatch between design intentions and 

implementation in the context of software safety.  Feather et al.  

[1] analyzed the match between requirements and the run-time 

behavior of the software.  Garlan et al.  [25, 26] considered the 

impact of architectural mismatch on software quality in the 

context of re-use of software components. 

III. STATIC METHOD STEREOTYPES

Code stereotypes are low-level categories that reveal the 

intention of source code artifacts based on implementation 

patterns, i.e., by static analysis.  In the case of methods, 

stereotypes represent their general responsibility within a class 

[3].  For example, the stereotype get describes a method that 

returns a class’s field, without modifying any value or invoking 

other methods. 

In this work, we use the method stereotype taxonomy for 

Java code [27], adapted from previous work [3].  This 

taxonomy defines 17 stereotypes classified as follows: 

structural, when the main purpose of the method is to retrieve 

(accessors) or to modify (mutators) the class’ fields; creational

if the method is responsible for creating or destroying objects; 

collaborational when the method communicates or controls 

objects in the system; and degenerate, in any other case.  A 

short description of each stereotype is provided in Table 1 

based on [3, 27].  It is important to mention that methods have 

a primary stereotype from any category and an optional, 

secondary stereotype in the collaborational category.   

IV. THE DYNAMIC FI-FO DISTRIBUTION METRIC FOR METHOD 

STEREOTYPES

We define the dynamic fI-fO classification for a given 

method by considering the number and the frequency of 

methods that call the given method (fan-in) and those that are 

called by the given method (fan-out) during run time.  We use a 

simple classification of the number of fan-in and fan-out 

methods, by considering as separate categories 0, 1, few (2 – 4), 

and many (5 or more) methods – this is a natural classification 

of the fan-in and fan-out numbers given their actual 

distributions.  This way, for a given method we get a fan-in-

fan-out (fI-fO) category that combines two of the above defined 

counting categories.  For example, the 1-few category denotes a 

method that is called by a single method and calls 2-4 other 

methods.  Since each method has to be called at least once to be 

executed, on the fan-in side the available options will be only 

1, few. and many.   

We also consider the run-time frequencies of the method 

calls in the cases when there are few or many methods on the 

fan-in or fan-out side.  We define a call distribution as 

balanced if it is close to the uniform distribution, and 

unbalanced when it is considerably different from the uniform 

distribution.  To measure the difference between the 

distributions we use the Kullback-Leibler (KL) divergence.  

According to this measure if there are n  methods that call (or 

are called by) the given method and the frequency of calls from 

these methods are if  with ni ,...,1= , then the KL divergence 

of the calls distribution relative to the uniform distribution is 

calculated as: 

( ) ( )∑
=

⋅+=
n

i

ii ffnd
1

lnln

If the method call distribution is uniform, then 0=d .  We 

consider a method call distribution balanced if 3.0<d  and 

unbalanced otherwise.  Therefore, for each method the 

dynamic fI-fO classification assigns one of the 30 categories 

listed in Table 2. 

Considering the method stereotype taxonomy summarized 

in Table 1 and given a software system, we extract the set of 

methods that belong to each stereotype.  Then, we determine 

the dynamic fI-fO category for each method in the system.  

With this information we are able to find the distribution of 

methods over the 30 dynamic fI-fO categories for each method 

stereotype.  Such a distribution characterizes the method 

stereotype within the considered software system. 



For example, one may consider that a method categorized 

as get stereotype would typically belong to one of the 1-0, FB-

0, MB-0 dynamic fI-fO categories, i.e., there are one or more 

uniformly distributed calls from other methods and no calls 

going out to other methods.  However, in practice, most likely 

the distribution over fI-fO categories of the methods belonging 

to the get stereotype will not be restricted to the dynamic fI-fO

categories 1-0, FB-0, MB-0, but will cover other dynamic fI-fO

categories.  Then this is the characteristic distribution of get

method stereotype for a given software system.   

Having a distribution over the dynamic fI-fO categories for 

each method stereotype allows us to compare these 

distributions in the context of a software system.  It also allows 

us to compare the distributions associated with the same 

method stereotype in the context of different software systems.  

The comparison of the distributions can be done using the KL 

divergence for the considered distributions (note that the KL 

divergence is not symmetric, i.e., the divergence measure of 

distribution D  relative to 'D  is usually not the same as the 

divergence of 'D  relative to D ).  Let D  and 'D  be the 

distributions over the dynamic fI-fO categories associated with 

two method stereotypes: 

{ }labelsclass fO-fI, ∈= lbfD lb

{ }labelsclass fO-fI,'' ∈= lbfD lb

The KL divergence of D  relative to 'D  is 

( ) ( )( )∑
∈

−⋅=
labelscategory  fO-fI

'lnln
lb

lblblb fffd

which defines the dynamic fI-fO distribution measure for 

method stereotypes comparison within a software system and 

across software systems. 

In principle, we may expect that if the implementation of a 

software system follows some design intent, then the 

distribution over fI-fO categories that corresponds to a given 

method stereotype should be close to an ideal (or intended) 

distribution over the fI-fO categories.  The dynamic fI-fO

distribution measure based on the KL divergence of 

distributions can be used as a measure to quantify the extent to 

which the actual behavior of the software follows the design 

intent expressed by the choice of method stereotypes.  In this 

sense, large divergence values between distributions indicate 

high mismatch between the design intent of methods and their 

run-time behavior, whereas small divergence values are an 

indicator of low mismatch. 

Similarly, it may be assumed that different method 

stereotypes have different associated distributions over the fI-

fO categories within a single software system.  This reflects the 

expectation that methods with different method stereotypes 

should behave differently during run time (e.g., set methods 

should have a different run time behavior from controller

methods in terms of incoming and outgoing method calls).  

Having the measured fI-fO category distributions associated 

with method stereotypes for a software system, we can 

compare these distributions and assess their difference using 

the dynamic fI-fO distribution measure.  Assuming that in an 

ideal (or intended) implementation of the software we might 

expect a certain level of difference between the distributions 

over the fI-fO categories, the comparison of the actual 

distributions can provide a measure of the extent to which these 

differences are confirmed.  If the differences are less than 

expected, they might indicate that the implementation of 

methods belonging to distinct method stereotypes is not 

sufficiently different across the software.  This might be a 

marker of poor design (or implementation) in the software 

system.  The opposite, of course, might be considered as an 

indicator of good design (or implementation). 

Thus, the proposed dynamic fI-fO distribution measure for 

method stereotypes can be used to assess software systems, 

regarding to the extent in which the implemented behavior of 

methods matches the intended behavior of the software 

specified by the design. 

V. CASE STUDY

We conducted a case study in order to verify our 

assumptions about the expected behavior of method 

stereotypes. 

A. Definition and design 

We formulated two research questions: 

RQ1: Are the behavior of methods of different stereotypes 

similar or different? 

RQ2: Are the behavior of methods of the same stereotype 

consistent across different software? 

The context of our study is represented by the source code 

and execution traces of three open-source Java software 

systems: ArgoUML (version 0.22, 924 KLOC), a UML 

modeling tool; muCommander (version 0.8.5, 85 KLOC), a file 

manager; and JabRef (version 2.6, 148 KLOC), a bibliography 

reference manager.  We chose these systems for three reasons: 

(i) they are used in existing benchmarks in software 

maintenance research [28]; (ii) their domains and sizes are 

different; and (iii) they have a set of publicly available 

TABLE 2.  DYNAMIC FI-FO CATEGORIES FOR METHODS

   fO

fI 
0 1 F M 

1 1-0 1-1 
1-FB 

1-FU 

1-MB 

1-MU 

F 
FB-0 

FU-0 

FB-1 

FU-1 

FB-FB 
FB-FU 

FU-FB 

FU-FU 

FB-MB 
FB-MU 

FU-MB 

FU-MU 

M 
MB-0 

MU-0 

MB-1 

MU-1 

MB-FB 
MB-FU 

MU-FB 

MU-FU 

MB-MB 
MB-MU 

MU-MB 

MU-MU 

Notation (fI-fO) 

0  = no method call 

1 =  a single method call 
FB  =  a few (2, 3,or 4), balanced methods calls 

FU  =  a few (2, 3,or 4), unbalanced methods calls 

MB =  many (5 or more), balanced methods calls 
MU =  many (5 or more), balanced methods calls 



execution traces
1
.  Each set of traces corresponds to the 

execution of several scenarios for each system.  The traces are 

XML files generated by the Eclipse Test & Performance Tools 

Platform (TPTP), and they capture every method executed in a 

given scenario since the program is started until it is ended. 

B. Procedure 

In order to extract the method stereotypes we used 

JStereoCode [27], an Eclipse plug-in that identifies code 

stereotypes from Java systems.  The tool produced a 

classification consisting of 34 method stereotypes (including 

combined stereotypes), which we considered in the rest of the 

study.   

For each system, we used the corresponding set of traces to 

classify the executed methods as one of the 30 dynamic fI-fO

categories listed in Table 2. 

We merged the stereotype and the fI-fO information to 

calculate the distribution of methods over the dynamic fI-fO

categories for each method stereotype.  The calculated 

distributions were averaged over all traces per software system 

to get robust estimates of the distributions.  The resulting 

distributions over dynamic fI-fO categories were used for 

further analysis. 

To assess whether the difference between two distributions, 

according to the dynamic fI-fO distribution measure, was large 

or small we needed to generate a large set of distributions of 

the same kind with random parameters.  With this large set of 

                                                          
1
 http://www.cs.wm.edu/semeru/data/benchmarks/ 

randomly chosen distributions of the right kind, we could 

calculate the expected value of their difference according to the 

dynamic fI-fO distribution measure and also the standard 

deviation of these measured differences.  Our expected value 

( E ) and standard deviation (σ ) calculations are based on a 

random selection of distributions and we assume that the values 

of the measured differences are distributed normally.  

Accordingly, a measured difference value calculated for two 

stereotype distributions over the dynamic fI-fO categories is 

small if the value is less than σ33.21 −= EL  (i.e., the lowest 

1% range of the distribution of the measured difference values), 

which means that it is much smaller than what is expected for 

two randomly chosen distributions.  The difference value is 

large if it is greater than σ96.12 −= EL  (i.e., above the lowest 

2.5% range of the measured difference value distribution, and 

within the 95% range of the value distribution) or, in other 

words, if the value is in the expected wide range for two 

randomly chosen distributions.  If the measured difference 

value calculated for two stereotype distributions is in the 

intermediary range [ ]σσ 96.1,33.2 −− EE , the value is 

considered moderately large. 

C. Results 

After analyzing the dynamic fI-fO category distributions 

corresponding to method stereotypes, we found that the 

frequency values of these distributions follow log-normal 

distributions with parameters ( )sm,  with values in the ranges 

of [ ]0,2−   for m  and [ ]8.2,2.2  for s .  That is, the distributions 

Fig.  1.  Distribution of (a) method stereotypes and (b) dynamic fI-fO category in three Java systems.  In both cases the vertical axis shows the 

percentage of methods belonging to the method stereotypes and dynamic fI-fO categories, respectively, shown on the horizontal axis. 



of the frequency values are such that their logarithms are 

normal distributions with mean m and standard deviation s.  

In accordance with the previously described procedure for 

the estimation of the values of E  and σ , we generated 100 

randomly chosen distributions using frequency values provided 

by log-normal distributions with parameters in the above given 

ranges.  We calculated the dynamic fI-fO distribution measure 

for pairs of these distributions and found the values of E  and 

σ  to be 4838.4=E  and 1817.1=σ .  Consequently, a 

measured difference for two stereotype distributions is 

considered small if it is below 2628.01 =L , large if it is above 

9328.02 =L , and moderately large if it is in the interval of 

[ ] [ ]9328.0,2625.0, 21 =LL . 

We used the KL divergence to assess the overall similarity 

of the three software systems that we considered by comparing 

the distributions of methods over method stereotypes and also 

over the dynamic fI-fO categories.  Fig.  1 shows the two sets 

of distributions for the three considered software.  Table 3 and 

Table 4 show the calculated pair-wise KL divergence values.  

All the values are below 1L , indicating that the software 

systems are, in general, similar to each other in terms of the 

distribution of their methods over method stereotypes and 

dynamic fI-fO categories. 

Next, we compared the method stereotypes using the 

dynamic fI-fO distribution measure in the context of each 

software system considered in the study.  The results for 

method stereotypes to which a larger number of methods 

belong to (at least 1% of all methods) in ArgoUML are shown 

in Table 5.  Fig. 2a shows the distributions over dynamic fI-fO

categories for three method stereotypes: collaborator, 

constructor, and initializer.  The calculated measure values 

shows that 32% of these are above 2L , 42% are in the range of 

moderately large values [ ]21, LL , and 16% are smaller than 1L .  

This confirms that the implementations of different method 

stereotypes within one software system are different in the 

large majority of the cases, as it is expected in a software 

system where the design intent is preserved through the 

implementation. 

Then, we compared method stereotypes across the three 

considered software using the dynamic fI-fO distribution m.  

The results are shown in Table 6 for a selection of method 

stereotypes with a large number of representative methods in 

the systems.  As an illustration of the distributions, Fig. 2b 

shows the three distributions over dynamic fI-fO categories for 

the collaborator stereotype.  The calculated measure values are 

mostly below 1L , with the exception of the controller

stereotype, and the get stereotype in the case of the 

muCommander.  This indicates that most of the method 

stereotypes are implemented consistently across the three 

software systems, but also that some controller methods may 

need revision and re-engineering in those systems, as well as 

some of get methods in the muCommander.   

In summary, the results indicate that the behavior of 

different method stereotypes in each of the considered systems 

is different, and that the behavior of the same method 

stereotype across the three systems is similar.  These results 

suggest that the three software systems are consistent in terms 

of designed and implemented behavior.  Our results also 

TABLE 4.  KL DIVERGENCES FOR DISTRIBUTIONS OVER DYNAMIC FI-FO

CATEGORIES

Software vs software KL divergence 

ArgoUML vs muCommander 0.13181 

muCommandervs ArgoUML 0.12799 

JabRef vs muCommander 0.09463 

muCommandervs JabRef 0.07578 

ArgoUML vs JabRef 0.05290 

JabRef vs ArgoUML 0.06574 

TABLE 3.  KL DIVERGENCES FOR DISTRIBUTIONS OVER METHOD 

STEREOTYPES

Software vs software KL divergence 

ArgoUML vs muCommander 0.11772 

muCommandervs ArgoUML 0.24544 

JabRef vs muCommander 0.01071 

muCommandervs JabRef 0.10955 

ArgoUML vs JabRef 0.06368 

JabRef vs ArgoUML 0.05051 

TABLE 5.  MEASURED DIFFERENCES FOR METHOD PROTOTYPES WITHIN ARGOUML 
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GET 0 1.583 1.164 2.437 2.538 1.869 1.824 1.992 1.791 1.836 0.859 

PROPERTY 0.884 0 0.262 0.301 0.553 0.297 1.196 0.532 0.623 0.545 0.553 

SET 0.601 0.461 0 1.512 1.615 0.638 1.441 0.609 1.213 0.607 0.029 

SET COLLAB 1.344 0.945 0.807 0 0.102 0.496 0.234 0.114 0.926 0.873 1.546 

COMMAND COLLAB 1.849 0.504 0.949 0.062 0 0.407 0.398 0.125 0.998 0.673 1.030 

CONSTRUCT 1.810 1.185 0.624 0.732 0.846 0 0.538 0.306 0.852 0.483 0.386 

FACTORY COLLAB 2.089 1.674 1.151 0.374 0.583 0.562 0 0.212 0.939 0.879 1.074 

COLLABORATOR 1.214 0.737 0.573 0.449 0.645 0.295 0.234 0 0.762 0.522 0.339 

CONTROLLER 0.034 0.280 0.219 1.071 1.179 0.341 0.177 0.774 0 0.458 0.522 

LOCAL CTRL 1.742 0.759 0.446 0.302 0.156 0.221 0.318 0.031 0.233 0 0.488 

INITIALIZER 1.208 0.270 0.158 0.229 0.115 0.425 1.179 0.853 0.864 0.547 0 



suggest that the dynamic fI-fO distribution measure is 

potentially useful for assessing the implementation of software 

systems in relation with their design intent. 

D. Threats to validity 

As with any case studies, any generalization is likely to be 

limited and should be done carefully.  In addition, due to the 

data available to us, some of the results should be interpreted 

with care.  Specifically, the available traces for the three 

systems covered only about 50% of the methods, on average 

i.e. not all methods in the code of the software get executed 

during the considered run-time executions of the software, and 

not all methods that may call a given method according to the 

static analysis of the software, do actually call the given 

method through the considered execution traces. In terms of 

conclusion validity, we expect that the results would change to 

some degree if we used traces that achieve full method 

coverage.  We expect that the differences would not be big 

enough to invalidate the major conclusions regarding the 

relationships between method stereotypes and the fI-fO 

categories. 

VI. CONCLUSIONS AND FUTURE WORK

We introduced an approach based on a dynamic measure to 

assess and quantify the extent to which the design intent 

expressed by method stereotypes is reflected by the run-time 

behavior of software systems.  In principle, OO methods are 

expected to consistently behave according to their design 

intent, i.e., that the implied behavior of the methods matches 

their actual run-time behavior.  However in practice this may 

not be the case and it is likely that some level of mismatch 

between the intended and actual run-time behavior of methods 

exists.  Our approach provides a way to measure this mismatch 

between design and implementation.  Large mismatch 

measures indicate low consistency between the design intent 

and the behavior of a system, while low mismatch indicates 

high consistency.  A qualitative assessment of software systems 

based on the fI-fO measure can support software maintenance 

activities.  We showed that it is possible to identify, for 

instance, method stereotypes and particular methods that 

contribute to the increase of the measured mismatch.  This will 

allow the focusing of the re-engineering effort on such 

identified methods. 

The proposed approach can be extended by considering 

multi-step call traces instead of the single step fan-in and fan-

out method calls.  Naturally, this would make the analysis more 

complicated, but could potentially reveal finer-grained aspects 

of the implementation of the design intentions.  We plan to 

apply our approach to a broader set of software systems to 

exemplify the design and implementation advice that can be 

derived from our fI-fO-based assessment approach.  We also 

intend to investigate the consideration of multi-step call traces 

to assess the implementation of design intentions. 
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