
Modification and Developer Metrics at the Function Level:

Metrics for the Study of the Evolution of a Software Project

Gregorio Robles

Universidad Rey Juan Carlos

grex@gsyc.urjc.es

Israel Herraiz

Technical University of Madrid

israel.herraiz@upm.es

Daniel M. Germán

University of Victoria

dmg@uvic.ca

Daniel Izquierdo-Cortázar

Universidad Rey Juan Carlos

dizquierdo@gsyc.urjc.es

Abstract—Software evolution, and particularly its growth,
has been mainly studied at the file (also sometimes referred
as module) level. In this paper we propose to move from the
physical towards a level that includes semantic information
by using functions or methods for measuring the evolution
of a software system. We point out that use of functions-
based metrics has many advantages over the use of files or
lines of code. We demonstrate our approach with an empirical
study of two Free/Open Source projects: a community-driven
project, Apache, and a company-led project, Novell Evolution.
We discovered that most functions never change; when they do
their number of modifications is correlated with their size, and
that very few authors who modify each; finally we show that
the departure of a developer from a software project slows the
evolution of the functions that she authored.

Keywords-functions; metrics; software evolution; software
maintenance; mining software repositories

I. INTRODUCTION

Historically, software evolution has been studied at the

file level. Lehman already used in his laws of Software

Evolution the number of files (in his nomenclature modules)

as a measure of system growth [1]. Other authors have used

SLOC (source lines of code) for the same goals [2].

Our position in this paper is that by moving from the

file/SLOC (physical) to the function (physical and semantic)

level, we can gain better understanding of the evolution of a

software project. In our point of view, considering functions

is closer to the way developers work and conceive a software

system. And, as we will show in this paper, new insights can

be gained by doing so.

When starting with this research, we had the intuition

that the relationship that developers have with functions

is stronger to the one they have with files. We have

therefore specifically addressed two metrics from software

evolution research that have already been studied at the

file level, modification patterns and developer territoriality

(also known as code ownership), but this time considering a

granularity of functions. While the former is concerned with

the way that functions are changing (frequency of changes,

number of changes and temporal frequency of changes), the

latter is related to the developers that change the functions,

in particular if a “special” relationship exists between its

creator and the function, and if this relationship affects the

evolution of the function.

The remainder of this paper is structured as follows: next,

five hypotheses will be presented and briefly explained. We

describe the methodology used to address our hypotheses

in the fourth section and apply it to the case studies briefly

presented in the fifth. The next section contains the results

and their discussion. Finally, conclusions are drawn. Due to

the limited space for full papers at this workshop, a specific

section with related research has been omitted, although

there is a vast literature in the areas of software evolution,

modification patterns and code ownership.

II. HYPOTHESES

To demonstrate the advantages of the use of functions as

basis for software evolution metrics, we first have to under-

stand how functions evolve, and second how the evolution of

functions is affected by their authors. We ground our study

in the following hypotheses:

• Hypothesis #1: Most functions rarely change. We be-

lieve that most functions are created, they are modified

few times to get them “right”, and then they do not

evolve any further.

• Hypothesis #2: As functions age, they are less likely to

be modified. The older a function is, we hypothesize,

the less likely somebody will be willing to modify

it. Also, functions that implement their functionality

properly do not need to evolve (except if bugs are

found). This hypothesis is related to #1.

• Hypothesis #3: Most lines of a function are authored by

very few developers. It is acknowledged that developers

tend to keep ownership of their code [3], and therefore

most functions will be written by very few developers.

Furthermore most lines of code in a function will be

contributed by very few developers (and for most, only

by its original author).

• Hypothesis #4: Orphan functions are less likely to be

modified. When the original maintainer of a function is

no longer a contributor (the function is “orphan”), such

function tends to evolve slower than functions whose

authors are still participating in the project (“non-

orphan”).

III. METHODOLOGY

A. Identification of Functions

To study the evolution of individual functions we needed

to extract each function from each file revision and compare

to its predecessor. The procedure we used was, for every

revision of every file ever present in the repository (including

those that were deleted):

• Using exuberant tags extract the location where

each definition starts.

• For each function defined in a file find its ending

location. The end of a function is assumed to be

the location of the last closing brace before the next

definition (macros are not considered a definition, as

macros can appear in the middle of a function).

B. Analysis of the Evolution of Functions

We were also interested in knowing when the change was

only to comments or whitespace (such as reindentation). For

this reason we also computed what we call clean versions of

the functions. This was done by preprocessing each file: first

comments were removed (using mangle), and then it was

reindented (using indent). Functions were then extracted

as described above.

We compared then the functions present in each file

revision to its predecessor, and the result was a list of all

unchanged, modified, added and removed functions. These

data allowed us to track when a function was added, when it

had been changed (skipping changes to only their comments

or whitespace), and when it had been deleted. We also

tracked its size. We uniquely identified a function by its

name and file where it was found.

However tracking when a function is created is not trivial.

For instance, a function could be moved, copied, cloned,

imported from an external source, or the result of a merge

of a branch in the repository. In our study we discovered

that some functions are moved from one place to another

(potentially renamed) leaving the older version intact (which

might be removed later); also sometimes functions are

imported from an external source (such an external patch)

and the version control system has no history of the function

previous to such import.

For this reasons we decided to select a subset of functions

that did not suffer any of these changes, and which we

could track from their creation. We call this the set of

Selected functions. This set is created using the following

heuristic:

• Start with all the functions that exist in the last version

of the system.

• Eliminate functions that were added in the first revision

of a file. We expect this will eliminate functions that

were in files that were renamed or moved; it will also

eliminate those functions that were imported into the

project.

• Eliminate functions with the same name that were

present in another file, and then removed. We expect

to catch some of the functions that were individually

moved (with the same name).

• Eliminate functions that have been added at the same

time as at least another function was deleted (not

necessarily with the same name). We expect that this

will take care of renamed and refactored functions.

• Eliminate all functions that were added in a transac-

tion (commit) that added more than 10 functions. We

decided that if the transaction adds too many functions

then it is very likely that this is a merge with code

that had been developed somewhere else (this includes

a merge of a branch).

C. Analysis of the Ownership of Functions

Based on the meta-data that versioning systems offer,

we are able to follow on a per-line basis who and when

a line was last modified. Versioning systems provide an

option (blame or annotate) which shows the revision

where each line was last modified, giving the date and the

committer responsible for the changes to each line.

Table I presents an excerpt of the output of the

annotate option, which contains following fields: the first

column is the file revision when such line was last changed,

followed, in between parenthesis, by the username of the

person who committed this revision and the date of the

revision; and finally the content of the line from the file.

The analysis sequence starts by downloading the reposi-

tory at a given time, obtaining a local copy of the repository.

Then the source code is parsed and cleaned of comments,

blank lines and errors, and inserted into a database server

which is queried for statistical information on the data set. In

addition, functions are identified using exuberant tags,

and their starting and ending lines stored.

Combining the authorship information given at the line

level and the location of the functions, we are able to

compute the contribution of each author to a given function.

We refer to the author with the largest proportion of lines

of a function as its primary author.

The versioning system also provides information on the

activity of developers. We are interested in the date of the

last commit performed, as we assume that if there is no

recent activity (i.e., a commit) by a developer, then he has

abandoned the project. Functions whose primary author has

abandoned the project will be referred as orphan functions.

In this paper, we have chosen at least 36 months (3 years) as

the time of inactivity to consider all functions by a developer

as orphan functions. With this value, we believe to have a

sufficiently long time span to assure that the owner of the

functions is not part of the project. We leave for further

research the study of a more accurate value, which we have

the intuition is smaller then the one used.

[...]

1.246 (pj 13-Nov-01): Optional arg STRING supplies menu name for the keymap

1.246 (pj 13-Nov-01): in case you use it as a menu with ‘x-popup-menu’. */)

1.246 (pj 13-Nov-01): (string)

1.8 (rms 11-Sep-92): Lisp_Object string;

1.8 (rms 11-Sep-92): {

1.8 (rms 11-Sep-92): Lisp_Object tail;

1.8 (rms 11-Sep-92): if (!NILP (string))

1.8 (rms 11-Sep-92): tail = Fcons (string, Qnil);

1.8 (rms 11-Sep-92): else

1.8 (rms 11-Sep-92): tail = Qnil;

1.1 (jimb 06-May-91): return Fcons (Qkeymap,

1.137 (rms 13-May-97): Fcons (Fmake_char_table (Qkeymap, Qnil), tail));

1.1 (jimb 06-May-91): }

[...]

Table I
EXAMPLE OF A VERSIONING SYSTEM ANNOTATE OUTPUT.

If we apply the aforementioned concepts to the excerpt

shown in Table I, we see that the annotate output lists 13

lines by three different authors. Following our methodology,

we will not consider the first two lines by pj as they

are commented or blank lines. The function itself contains

eleven lines, one by pj, eight by rms and two by jimb. Thus,

rms would be considered the primary author of the function

as he has contributed most to it (with 72% of the lines of

the function). As the date of the last commit by developer

rms is from March 2001, we would consider this function

to be orphan.

IV. CASE STUDIES

We have selected two well-known free software projects

as case studies: Novell Evolution and the Apache httpd

web server. These projects have been under development

for over 10 years now and count with a large amount of

contributors and users, with a large number of committers

(69 for Apache, and 395 for Evolution).

The Apache web server is the most used web server; the

version under study (1.3) is basically in its maintenance

phase. Apache is a project that is primarily developed by

volunteers. Novell Evolution is a groupware solution for

the GNOME project that provides e-mail client, calendar,

contacts and task management similar in scope and func-

tionality to Microsoft’s Outlook. Although a free software

project, Evolution is backed by a group of professional

developers hired by Novell. At the time of this study Apache

has approximately 86 kSLOC, 8,021 commits and 29,999

revisions. For Evolution the totals are: 307,883 kSLOC,

28,570 commits, 113,915 revisions. Both systems are written

primarily in C.

V. RESULTS

A. Hypothesis #1: Most functions rarely change

To test this hypothesis we looked at the number of times

any given function has changed1, and at the quartiles of the

1Note that we do not consider the initial addition of a new function as
a change, as the versioning system does.

Quartile (%) 0 25 50 75 100

Apache
All 0 0 0 5 229
Selected 0 0 0 0 50

Evolution
All 0 0 1 3 634
Selected 0 0 0 0 129

Table II
QUARTILES OF THE NUMBER OF CHANGES PER FUNCTION. MOST OF

THE FUNCTIONS RARELY CHANGE. FOR INSTANCE, IN THE SET OF ALL

THE FUNCTIONS OF APACHE, 75% OF THE FUNCTIONS CHANGE 5
TIMES OR LESS.

distribution of that parameter. Table II shows the quartiles for

the cases of Apache and Evolution, both for all the functions

and the Selected functions. As that table shows, for the

case of Apache, 75% of the functions have been changed

6 times or less. If we consider only the Selected functions,

75% have not been changed. For Evolution, the numbers

are similar. In that project most functions are rarely changed,

and very few functions are modified many times, supporting

our hypothesis.

We were also surprised to find that in Apache 33% of

Selected functions (138 out of 408) that were never updated.

In other words, they were added, and never modified again.

For Evolution the proportion was 61%! (1955 out of 3175).

We doubt that all of them are dead-code. We speculate that

developers make sure most of the code is well tested before

they commit it to their projects.

Observation #1: Most functions change very few

times (or none).

B. Hypothesis #2: As functions age, they are less likely to

be modified

To test this hypothesis we considered only functions alive

(non-deleted) for the set of all functions. Due to hypothesis

#1 we know that the distribution of the number of changes

of functions is inverse exponential, so we want to eliminate

the effect of the number of changes of a function while

testing this hypothesis. We therefore considered functions

that have been modified at least once after they are created

(and have not being deleted to this day). For these functions

we computed their days-to-last-change: the number of days

between the creation of a function and its last modification.

The density distributions of days-to-last-change for both

projects are depicted in Figure 1. As it can be seen, most

functions are changed during their early days. There are

however a handful that are modified while very old. This

is expected: there are some areas of the software that

need to be updated all the time: for example areas where

new functionality is inserted into the system (such as GUI

callbacks to such functions).

50 100 200 500 1000 2000 5000

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Days to last change

(Apache)

Days passed from function creation to last change

P
ro

p
o
rt

io
n
 o

f
fu

n
c
ti
o
n
s

All functions

Selected functions

50 100 200 500 1000

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Days to last change

(Evolution)

Days passed from function creation to last change

P
ro

p
o
rt

io
n
 o

f
fu

n
c
ti
o
n
s

All functions

Selected functions

Figure 1. Density distribution of the days-to-last-change for non-deleted
and Selected functions in Apache and Evolution. Most functions are
modified early in their lifes.

We were surprised, however, that the distribution of

all non-deleted functions and Selected functions is almost

identical for both projects.

Observation #2: The older a function, the less

likely it will be modified.

C. Hypothesis #3: Most lines of a function are authored by

very few developers

To test this hypothesis we used two approaches. First, we

plotted the distribution of the number of authors that each

function has had. This is shown in Figure 2. The distributions

are inverse exponential for both projects, and for both sets

of functions in both projects.

2 4 6 8 10 12 14

1
0

2
0

5
0

1
0
0

5
0
0

Number of Authors

N
u
m

b
e
r

o
f
F

u
n
c
ti
o
n
s
 (

lo
g
)

All functions

Selected functions

Freq. of a function being

 modified a number of authors (Apache)

5 10 15

5
5
0

5
0
0

5
0
0
0

Number of Authors

N
u
m

b
e
r

o
f
F

u
n
c
ti
o
n
s
 (

lo
g
)

All functions

Selected functions

Freq. of a function being

 modified a number of authors (Evolution)

Figure 2. Distribution of number of authors for non-deleted and Se-

lected functions (in logarithmic scale) in Apache and Evolution. Most
functions are modified by a low number of authors.

Second, we conceived a metric we call function territori-

ality. The function territoriality of author a in function f is

the defined as the proportion of lines of code of f authored

by a. Thus if a function is only authored by one person,

such person has a 100% territoriality of that function.

Tables III and IV present the results for Apache and

Evolution on a biennial basis (for all years, February 28th).

As it can be observed, in both cases there is large proportion

of functions that contain lines exclusively of the primary

author (this is not surprising, as we have already shown

that many functions are never changed). On the other hand,

only one sixth of the functions in Apache, and values that

range from 4% to 8% in the recent years in Evolution, are

for functions where the primary author has contributed less

than 50% of the lines of code.

From the figures, we can observe that the territoriality of

functions in Apache is lower than in Evolution, as there is a

higher number of functions where the proportion of code by

the function’s primary author is lower. Also, for both cases,

as time passes, function territoriality becomes less marked

and the contribution of the primary author drops. Both case

studies are long-lived software projects and it is known that

many developers have left the project [4], this may be the

effect of maintenance tasks taken over by other developers

and consequently making the contribution of primary authors

shrink over time (and in some cases, over time, the primary

author of a function changes).

Observation #3: Most functions are authored by

very few persons.

D. Hypothesis #4: Orphan functions are less likely to be

modified

In hypothesis #3 we have observed that there exists high

territoriality of functions. At the same time we have observed

that as time passes, territoriality lessens. We know that there

is a high turnover in free software projects [4], which implies

that the maintenance of functions has to be done by other

developers.

To test this hypothesis, we need to compare the number

of changes to orphan and non-orphan functions. Ideally, we

would divide all functions into these two sets, being the

orphan functions those whose primary author performed a

last commit more than 36 months ago and the non-orphan

functions the rest. But to be on the safe side, we have used

smaller values of time for non-orphan functions in our study

as we thought that considering a developer who left the

project 35 months ago as still active is counterintuitive.

For our comparison, we take all functions of a given age

and will identify those orphan and non-orphan, using two

values in each case (more than 36 and 48 months for orphan

functions, less than 12 and 18 months for non-orphan). For

both sets of functions we compute the number of changes

on them in the last 36 months. We will then compare the

results between both sets. If our assumption is correct, the

number of changes to orphan functions should be less than

the number of changes to non-orphan functions.

Year # Funcs 0% to 24% 25% to 49% 50% to 74% 75% to 99% 100%

2008 2163 4 (0.18%) 342 (15.81%) 600 (27.74%) 410 (18.96%) 807 (37.31%)
2006 2160 4 (0.19%) 340 (15.74%) 597 (27.64%) 414 (19.17%) 805 (37.27%)
2004 2152 4 (0.19%) 339 (15.75%) 596 (27.7%) 405 (18.82%) 808 (37.55%)
2002 2044 5 (0.24%) 320 (15.66%) 587 (28.72%) 391 (19.13%) 741 (36.25%)
2000 1907 5 (0.26%) 328 (17.2%) 560 (29.37%) 333 (17.46%) 681 (35.71%)
1998 1310 0 (0.0%) 163 (12.44%) 548 (41.83%) 249 (19.01%) 350 (26.72%)
1996 648 0 (0.0%) 0 (0.0%) 28 (4.32%) 84 (12.96%) 536 (82.72%)

Table III
APACHE. NUMBER OF FUNCTIONS (AND SHARE) BY FUNCTION TERRITORIALITY OF THE PRIMARY AUTHOR.

Year # Funcs 0% to 24% 25% to 49% 50% to 74% 75% to 99% 100%

2008 12601 16 (0.13%) 1045 (8.29%) 3279 (26.02%) 4107 (32.59%) 4154 (32.97%)
2006 12553 4 (0.03%) 609 (4.85%) 2532 (20.17%) 2957 (23.56%) 6451 (51.39%)
2004 13933 2 (0.01%) 583 (4.18%) 3022 (21.69%) 3348 (24.03%) 6978 (50.08%)
2002 14548 0 (0.0%) 353 (2.43%) 2119 (14.57%) 3105 (21.34%) 8971 (61.66%)
2000 5415 0 (0.0%) 4 (0.07%) 263 (4.86%) 612 (11.3%) 4536 (83.77%)
1998 54 0 (0.0%) 0 (0.0%) 2 (3.7%) 2 (3.7%) 50 (92.59%)

Table IV
EVOLUTION. NUMBER OF FUNCTIONS (AND SHARE) BY FUNCTION TERRITORIALITY OF THE PRIMARY AUTHOR.

Age of Functions Type Primary Author Inactivity # Functions # Changes Mean Median Mode St Dev

> 36 months
Orphan

> 36 months 1569 25 0.02 0 0 (1547) 0.14
> 48 months 1410 23 0.02 0 0 (1390) 0.14

Non-Orphan
< 12 months 106 9 0.08 0 0 (98) 0.31
< 18 months 106 9 0.08 0 0 (98) 0.31

> 48 months
Orphan

> 36 months 1569 25 0.02 0 0 (1547) 0.14
> 48 months 1410 23 0.02 0 0 (1390) 0.14

Non-Orphan
< 12 months 81 8 0.10 0 0 (74) 0.34
< 18 months 81 8 0.10 0 0 (74) 0.34

> 60 months
Orphan

> 36 months 1563 24 0.02 0 0 (1542) 0.14
> 48 months 1410 23 0.02 0 0 (1390) 0.14

Non-Orphan
< 12 months 80 8 0.10 0 0 (73) 0.34
< 18 months 80 8 0.10 0 0 (73) 0.34

> 72 months
Orphan

> 36 months 1560 24 0.02 0 0 (1539) 0.14
> 48 months 1408 23 0.02 0 0 (1388) 0.14

Non-Orphan
< 12 months 64 8 0.13 0 0 (57) 0.38
< 18 months 64 8 0.13 0 0 (57) 0.38

> 84 months
Orphan

> 36 months 1510 24 0.02 0 0 (1489) 0.14
> 48 months 1380 23 0.02 0 0 (1360) 0.14

Non-Orphan
< 12 months 54 7 0.13 0 0 (48) 0.39
< 18 months 54 7 0.13 0 0 (48) 0.39

Table V
CHANGES TO ORPHAN VS NON-ORPHAN FUNCTIONS FOR APACHE. SEVERAL VALUES FOR MONTHS OF PRIMARY AUTHOR (OWNER) INACTIVITY ARE

SHOWN FOR ORPHAN AND NON-ORPHAN FUNCTIONS FOR FUNCTIONS OF THE SAME AGE.

Results obtained are shown in Table V for Apache and

Table VI for Evolution. As already known from hypotheses

#1 and #2, the number of changes to functions is low,

especially as functions age, so low numbers are expected.

We can see from both case studies that for all the values

(but one) the mean number of changes to orphan functions

is lower than to non-orphan functions for functions of the

same age. The rest of statistical measures (median, mode

and standard deviation) support the evidence that orphan

functions are less likely to be modified than non-orphan

functions, even for the only exceptional case in Evolution

where the mean of orphan and non-orphan functions is

similar. With the evidence presented we can conclude that

for these projects:

Observation #4: Non-orphan functions are

changed more often than orphan functions of

their same age.

VI. DISCUSSION

In the two projects under observation most functions

never change (or change very few times). This is perhaps

because most functions tend to implement a very specific

functionality and do not need to change or evolve once that

functionality is completed. 33% of the Selected functions

Age of Functions Type Primary Author Inactivity # Functions # Changes Mean Median Mode St Dev

> 36 months
Orphan

> 36 months 915 595 0.65 0 0 (616) 1.37
> 48 months 431 346 0.80 0 0 (266) 1.6

Non-Orphan
< 12 months 41 58 1.41 1 0 (17) 2.25
< 18 months 49 73 1.49 1 0 (18) 2.12

> 48 months
Orphan

> 36 months 771 477 0.62 0 0 (523) 1.35
> 48 months 431 346 0.80 0 0 (266) 1.6

Non-Orphan
< 12 months 27 44 1.63 1 1 (10) 2.2
< 18 months 34 59 1.74 1 1 (13) 2.03

> 60 months
Orphan

> 36 months 341 217 0.64 0 0 (228) 1.44
> 48 months 246 188 0.76 0 0 (156) 1.62

Non-Orphan
< 12 months 6 5 0.83 1 1 (3) 0.75
< 18 months 10 12 1.20 1 1 (5) 0.92

> 72 months
Orphan

> 36 months 254 174 0.69 0 0 (159) 1.42
> 48 months 179 153 0.85 0 0 (103) 1.64

Non-Orphan
< 12 months 6 5 0.83 1 1 (3) 0.75
< 18 months 9 11 1.22 1 1 (4) 0.97

> 84 months
Orphan

> 36 months 120 110 0.92 0 0 (64) 1.69
> 48 months 98 104 1.06 1 0 (48) 1.83

Non-Orphan
< 12 months 2 3 1.50 1 1 (1) 0.71
< 18 months 5 9 1.80 2 1 (2) 0.84

Table VI
CHANGES TO ORPHAN VS NON-ORPHAN FUNCTIONS FOR EVOLUTION. SEVERAL VALUES FOR MONTHS OF PRIMARY AUTHOR INACTIVITY ARE

SHOWN FOR ORPHAN AND NON-ORPHAN FUNCTIONS FOR FUNCTIONS OF THE SAME AGE.

in Apache (and 61% in Evolution) never changed once they

were created. We suggest further research on the low number

of changes to functions as we don’t know if this is because

of good quality control from their authors (functions are

tested well before they are added) or because many of these

functions are dead-code; further dynamic and static analysis

is needed to determine this.

Of the functions that change, does it matter if the author

is still within the project or not? We found that, for these

two projects the answer is yes. Perhaps it is the reticence

of developers to modify somebody else’s code, or the lack

of understanding of what the code of somebody who is

no longer within the project does. This triggers important

questions: is it more productive to ignore the orphan code,

or it is more productive to keep modifying it? How can we

reduce the impact of authors departing a project? This is

an issue that is even stronger in industry, where personal

rotation is always present.

Some more consequences may be drawn from evidence

#4. First, it is a demonstration that the evolution of software

also depends on the original developers staying in the

project. Even if the software code base has not suffered

changes, a developer abandoning the project affects the

project. Second, we may infer that orphan functions are

changed less often because they are more difficult to change

and hence more difficult to maintain. If this is true, developer

turnover could be another hint for software decay (which

underlies the assumption that a unit of code is decayed if it

is harder to change than it should be, measured in terms of

effort, interval and quality) as stated by Eick et al. [5] or in

the sense of software aging by Parnas (“programs lose their

appeal and that maintenance becomes a burden, the same

for good and bad programs”) [6].

All the results shown in this paper let us think that

functions may better serve as the minimal structure for the

study of software evolution, in detriment of other granu-

larities usually used as files or SLOC. As we have seen,

they could be considered as the atoms, the basic unit, of

software evolution. They have special characteristics that are

of great advantage for this: they have semantic meaning,

many seldom change, and they are closely related to their

authors.

VII. THREATS TO VALIDITY

In terms of internal validity, the biggest threat to our

study is that we track names of functions, and we only

track them within the main trunk of the version control

system of the project. We do not track the history of a

function outside the version control system (if a function

has a long evolution before it is inserted into the project

– for example, the initial code of Apache 1.3 is inherited

from version 1.2). If a function is renamed or relocated

we considered the original function as deleted and the

new name as a new one. To minimize such effects we

have selected a subset of the functions (we have called

this set Selected functions). As described in III-A, this set

is expected to contain functions with their entire history.

We were surprised that most observations are very similar

between Selected functions and all functions in both projects.

Another factor that could affect internal validity is code

reformatting. While tracking the evolution functions we have

made sure that we ignore any changes in whitespace and

reformatting. We have observed that, except for comments,

there are very few changes that do not affect source code and

show that most code is own by the person who is responsible

for it.

With regard to external validity we have chosen two

projects with rich history, but very different goals and do-

mains. One is a relatively small server application (Apache),

the other is a very complex and large mail client with

a very rich user interface (Evolution). In both cases the

results we observed are similar, giving us confidence that

the results herein presented will be observed in other open

source projects. Evolution has one peculiarity: it has been a

project where most of the development has been sponsored

by one organization (originally called Helix, renamed to

Ximian, and latter acquired by Novell—its current owner).

Even though it is an open source project, most of its lines of

code come from employees of its owner company (see [7]).

It is very likely that what we have observed in Evolution will

also be observed in commercial software. It is, nonetheless,

important to replicate this study with other projects, both in

industry and open source.

A. Reproducibility of the Study

According to the reproducibility classification criteria

proposed in [8], the attributes of this study are given

in Table VII. Detailed information can be obtained at

http://gsyc.urjc.es/˜grex/wetsom2012.

VIII. CONCLUSIONS

The main contributions of this paper are threefold. First,

we have proposed metrics for the evolution of functions

based on the number of times they have been modified,

and who make the modifications. Second, we have shown

that analyzing the evolution of software at the semantic

(function) level instead of at the physical (file, line) level

allows to gain a lot of understanding and new knowledge

on the software project under study. We have shown that

most functions rarely change, and if they do, they usually

change early in their lifes. And third, we have observed

Element Assessment Condensed
Assessment

Data source usable U

Retrieval methodology usable U

Raw dataset usable U

Extraction methodology usable U
likely available in future +

flexible *

Study parameters Usable U

Processed dataset Usable U
likely available in future +

flexible *

Analysis methodology Usable U

Results dataset Usable U

Table VII
REPRODUCIBILITY ASSESSMENT OF THIS STUDY.

that the change pattern of functions depends heavily on the

continuous participation of its creator in the software project.

While the first two contributions can be seen as a technical

improvement to technical-related issues of software evolu-

tion, the third one goes beyond and illustrates the importance

of the human factor in the field of software evolution and

maintenance, which in the opinion of the authors is an area

of software metrics that has not been sufficiently studied

until know. Future work should continue, with special atten-

tion to how this affects software maintenance, especially in

relation to software decay and/or software aging.

ACKNOWLEDGMENTS

The work of G. Robles and D. Izquierdo-Cortázar has

been funded in part by the European Commission under

project ALERT (FP7-IST-25809) and by the Spanish Gov.

under project SobreSale (TIN2011-28110).

REFERENCES

[1] M. M. Lehman and L. A. Belady, Eds., Program evolution:
Processes of software change. San Diego, CA, USA: Aca-
demic Press Professional, Inc., 1985.

[2] M. W. Godfrey and Q. Tu, “Evolution in Open Source
software: A case study,” in Proceedings of the International
Conference on Software Maintenance, San Jose, California,
2000, pp. 131–142.

[3] D. M. Germán, “Using software trails to reconstruct the evolu-
tion of software,” J. of Software Maintenance and Evolution:
Research and Practice, vol. 16, no. 6, pp. 367–384, 2004.

[4] G. Robles and J. M. González-Barahona, “Contributor turnover
in libre software projects,” in OSS, 2006, pp. 273–286.

[5] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus, “Does code decay? Assessing the evidence from
change management data,” IEEE Transactions on Software
Engineering, vol. 27, no. 1, pp. 1–12, 2001.

[6] D. L. Parnas, “Software aging,” in Proceedings of the Inter-
national Conference on Software Engineering, Sorrento, Italy,
May 1994, pp. 279–287.

[7] D. M. Germán, “An empirical study of fine-grained software
modifications,” in Proc Intl Conference in Software Mainte-
nance, Chicago, IL, USA, 2004.

[8] J. M. González-Barahona and G. Robles, “On the reproducibil-
ity of empirical software engineering studies based on data
retrieved from development repositories,” Empirical Software
Engineering, vol. 17, no. 1-2, pp. 75–89, 2012.

