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Abstract 
As software systems have grown in scale and complexity 
the test suites built alongside those systems have also 
become increasingly complex. Understanding key aspects 
of test suites, such as their coverage of production code, is 
important when maintaining or reengineering systems. 
This work investigates the distribution of unit tests in Open 
Source Software (OSS) systems through the visualization of 
data obtained from both dynamic and static analysis. Our 
long-term aim is to support developers in their 
understanding of test distribution and the relationship of 
tests to production code. We first obtain dynamic coupling 
information from five selected OSS systems and we then 
map the test and production code results. The mapping is 
shown in graphs that depict both the dependencies between 
classes and static test information. We analyze these graphs 
using Centrality metrics derived from graph theory and 
SNA. Our findings suggest that, for these five systems at 
least, unit test and dynamic coupling information ‘do not 
match’, in that unit tests do not appear to be distributed in 
line with the systems’ dynamic coupling. We contend that, 
by mapping dynamic coupling data onto unit test 
information, and through the use of software metrics and 
visualization, we can locate central system classes and 
identify to which classes unit testing effort has (or has not) 
been dedicated.  
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1. INTRODUCTION AND MOTIVATION  
Achieving improvements in software testability, alongside 
other quality and productivity goals, is crucial to 
contemporary software development. It is widely 
acknowledged that software systems are growing larger and 
becoming more complex [1], and yet the resources directed 
towards testing are not keeping pace [2]. This is because 
testing is known to be an expensive process, one that can 
consume upwards of 50% of the total time and cost needed 

for software development [3]. Although such figures are 
typically associated with waterfall-like processes where 
testing is treated as a ‘phase’, the centrality of testing is not 
just a phenomenon of plan-based development approaches: 
Agile software development methods such as eXtreme 
Programming (XP) also give testing significant attention 
[4]. The practice of Test-Driven Development (TDD), for 
example, requires that extensive test code be developed and 
maintained to ensure that the ‘furthermost’ components of 
the production code work correctly [5]. In these methods, 
in fact, unit tests are viewed as core, integral parts of the 
program [6]. In noting the importance of testing, Beck [7] 
recommended that developers spend between 25% and 
50% of their time writing tests.  

Irrespective of the development method adopted, then, 
testing is a high-cost activity. That said, effective testing is 
also a high- value activity. Unit tests – which exercise 
individual (or small groups of) software units (e.g., 
software classes) – provide a powerful mechanism for 
validating existing features when in the process of 
developing new functionality [6]. When well- designed, the 
use of unit tests is known to improve software quality from 
the early stages of development and to enable the detection 
of defects more effectively when compared to other 
verification strategies [8]. The ideal ratio of test code to 
production code (particularly in systems implemented with 
methods similar to TDD) is said to be 1:1; however, the 
typical ratio in OSS is estimated to be 2:3 [9] or less. This 
latter ratio suggests that unit tests are generally not 
available for all production classes in OSS systems. Thus, 
in a typical use profile, production classes that are perhaps 
heavily executed may not have any directly associated unit 
tests.  

As noted above, contemporary software systems can be 
challenging to understand [10], given complex interactions 
between classes and objects. Moreover, some of those 
interactions only become evident during program 
execution. For instance, complex structural features, such 
as inheritance, polymorphism and dynamic binding, as well 
as the presence of dead code, are likely to appear only when 
code is run [11]. As such, their incidence and effects can be 
precisely assessed only by using dynamic measurements 
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rather than traditional static measurements. Equally, 
understanding test code can be a challenge due to the fact 
that tests are not always well-structured [12].  

This research analyzes test adequacy in several OSS 
systems by augmenting standard static analysis approaches 
with dynamic analysis and visualization techniques. In this 
research, we collect and combine dynamic coupling and 
unit test data in order to provide a more complete picture of 
unit tests’ distribution (i.e., the distribution of the unit tests 
over system’s classes), across five software systems. Novel 
visual representations are developed to present the dynamic 
information directly in relation to unit tests. The work thus 
contributes a novel view that combines dynamic coupling 
and unit test data in order to support greater understanding 
of unit tests’ distribution in OSS. The field of software 
visualization offers promise in aiding engineers to better 
understand certain aspects of software behavior [13]. It has 
also been suggested that software metrics should be 
examined through appropriate visualizations, thus 
achieving improved understanding beyond the ‘raw’ 
numbers of the metrics alone [14]. In short, using 
visualizations to support program comprehension and the 
understanding of software artifacts (including test artifacts) 
appears to be effective and useful [4, 10, 15-17].  

We contend that visualizing such data could be especially 
helpful during maintenance and reengineering tasks, as the 
visualization process elucidates the hierarchy of the 
production classes and the distribution of unit tests 
corresponding to the production classes. In addition, such 
visualizations would provide developers and testers with a 
high-level view of the dependencies within a system and 
the possible utilization of methods for future testing 
activities, i.e., what components are not being tested, and 
where testing effort should be focused.  

The remainder of this paper is structured as follows. 
Section 2 presents background information on software 
testability and dynamic software metrics, respectively, 
followed by a summary of related work. The study design 
and our research objectives are presented in Section 3. 
Section 4 describes the data collection process and the OSS 
systems evaluated in this research. This is followed by the 
results and a discussion of those results in Section 5. 
Threats to validity are presented in Section 6. Finally, 
Section 6 concludes the study and presents thoughts on 
future work.  
 

2. BACKGROUND AND RELATED WORK  
Prior to describing our own empirical work in detail we 
now provide background information on the nature of 
software testability followed by a discussion of the 
importance of dynamic metrics in relation to the work 
reported here. We also review several works related to this 
study.  
 
A. Software Testability  
It follows logically that improving the testability of 
software should enable developers to achieve higher quality 
outcomes for that software. However, defining, measuring 
and then improving testability present significant 
challenges in their own right. Like many non-functional 

properties of software, testability has been acknowledged 
as an elusive concept, and its measurement and evaluation 
have been considered to be inherently difficult [2]. 
Although several standards and individual studies have 
defined testability, they have done so in various ways, 
reflecting the fact that they were motivated by different 
purposes. Thus, testability has been defined based on test 
effort, test coverage or the ability to examine if 
requirements are met. For example, the IEEE standard 
defines testability as “the degree to which a system or 
component facilitates the establishment of test criteria and 
the performance of tests to determine whether those criteria 
have been met”. Another definition is “the degree to which 
a system can be unit tested and system tested” [18]. The 
relevant ISO standard [19] defines testability as “attributes 
of software that bear on the effort needed to validate the 
software product”. Thus, the IEEE definitions consider 
software testability from a test criteria point of view. The 
ISO definition, in contrast, considers testability based on 
the effort needed to test a software product.  

Software classes with low levels of testability may be less 
trustworthy, even after successful testing [20]. Classes with 
poor testability are also more expensive to repair when 
problems are detected late in the development process. In 
contrast, classes with good testability can dramatically 
increase the overall quality of the software, and reduce the 
cost of testing [21]. Some researchers relate software 
testability and test efficiency to the effort and cost of 
conducting those tests [2, 21]. Testability has also been 
related to internal characteristics of software systems, 
including various attributes of software design and code 
[22-24]. 
  
B. Dynamic Metrics  
Dynamic metrics, which are used to capture the dynamic 
behavior of a software system, have been found to be 
directly related to a range of software quality attributes, 
including complexity, maintainability and testability [25, 
26]. Their use has gained traction given that traditional 
static software metrics may not be sufficient for 
characterizing and predicting the quality of OO systems 
[27-29]. Dynamic metrics are computed based on data 
collected during program execution (i.e., at runtime) and 
are most frequently obtained from the execution traces of 
the code (although in some cases simulation can be used 
instead of the actual execution), and therefore they can 
directly reflect the quality attributes of a system in 
operation [30]. Our recent survey on dynamic measurement 
research shows that dynamic metrics are attracting growing 
attention from researchers, mainly because of the inherent 
advantages of this class of metrics over their static 
counterparts [30].  

That is not to say that static metrics have no value, and this 
value may be elevated further if they are combined with 
data collected through dynamic analysis [31]. The two 
forms are complementary; they should therefore be used 
alongside one another to build strong affordances about the 
software under investigation. We follow this thinking and 
combine static test information with code run-time 
properties collected during software execution. 
Specifically, we collect a dynamic coupling metric that is 
based on runtime method invocations. Method invocation 
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information of system classes is captured and then 
visualized using dependency graphs. This is explained in 
more detail in Section 3 (C. Metrics Definition).  
 
C. Related Work  
Extensive effort in both software engineering research and 
practice has been directed to supporting the understanding 
and maintenance of software artifacts. Of particular 
relevance here is work that has used static and/or dynamic 
analysis techniques. While the two approaches were 
initially used separately, combining static and dynamic 
analysis techniques has been of growing interest. Many 
works (including [10, 32]) have proposed and assessed 
various methods, techniques and tools that use data 
obtained from both static and dynamic analysis to support 
program understanding. Visualization, in particular, has 
been used in several previous works for the purpose of 
supporting developer understanding of different aspects of 
production code [10, 15, 16]. Test understanding has been 
the focus of several works that sought to explicate the 
relationship between production and test code, while other 
works have considered the structure of unit tests and test 
suites. Visualization of test information as a means of 
supporting developer understanding has also been 
considered in prior work [4, 17]. We now briefly discuss 
the most relevant of these prior related studies.  

Cornelissen et al. [4], based on information obtained 
through dynamic analysis (though generated via 
simulation), used UML sequence diagrams to visualize test 
cases to gain knowledge about the structure of software in 
order to support program understanding. They asserted that 
such visualizations could be beneficial in program 
understanding and for documentation purposes. 
Visualization of test code dependencies was used by van 
Rompaey and Demeyer [17] to localize unit tests and to 
investigate the relationship between test and production 
code. Their focus was on both the composition of and 
dependency between test and production units as well as 
among the unit tests themselves. The dependency 
information was obtained from static properties of the 
system. Although a number of coupling and cohesion 
indicators were recorded, they were used only to identify 
the dependency between classes and their associated unit 
tests. However, the authors recommended that size and 
complexity information of the various software 
components should also be considered to provide a more 
detailed and comprehensive assessment of the proposed 
visualization approach. In similar work, Zaidman et al. [33] 
used visualization to investigate the co-evolution between 
software production code and test suites. Their study 
focused on mining software history information from 
repositories in order to detect testing information from 
different versions of software projects. The authors also 
observed a signification correlation between test effort (i.e., 
test-writing activity) and test coverage levels in different 
releases. The work also proposed three different 
visualization views that could be used to study how test 
code co-evolves over time between different releases.  

Bruntink and van Deursen [23] used several static OO 
complexity metrics to measure class-level testability in 
order to inform the planning and management of 
subsequent testing activities. Their empirical study found a 

strong correlation between a number of static class-level 
measures and their defined testability measures. In 
following these findings we also identified some significant 
relationships between dynamic software properties 
(represented in terms of dynamic coupling and execution 
frequency) and the same class-level testability measures 
suggested by Bruntink and van Deursen [23] in a recent 
study of our own [24]. Hauptmann et al. [12] used a clone 
detection technique to identify and locate tests in order to 
support better understanding of these tests. The technique 
was applied to 4000 tests across seven industrial systems. 
In general, clone detection was found to provide useful 
information for targeting test automation effort. The 
findings also revealed that significant numbers of clones 
exist in all examined “manually written” tests.  

In following the studies just described we build on these 
works (specifically those works that used visualization 
and/or dynamic analysis to support comprehension and 
understanding such as [4, 17]) in terms of the metrics used 
and visualization support provided. The key elements of the 
work conducted and reported in this paper include the 
following:  

• The metric data collected in this work include a 
dynamic coupling measure that represents the run-
time dependencies between classes/objects;  

• The visualization provided in this work combines 
both the dynamic coupling information collected 
from the production code with static test data 
collected from the associated unit tests;  

• Graph metrics are used to characterize the 
visualizations and so provide additional insights.  

The design of the study is now presented in detail.  
 
3. STUDY DESIGN  
As noted in Section I, understanding test code is an 
important task in software development, particularly in 
relation to the activities of maintenance, reverse 
engineering and refactoring. In the object-oriented 
paradigm, production code and test code are similar in 
nature (i.e., written in a similar manner); thus, analyzing 
and understanding them requires similar skills and 
methods. In this section, we state our research objectives, 
we describe our data collection methods and we specify the 
OSS systems analyzed.  
 
A. Objectives  
The main objectives of this work are to:  

• Examine the utility of combining dynamic and static 
information to expose test distribution.  

• Represent test distribution information in a 
visualization that combines static and dynamic 
analysis data.  

• Demonstrate the application of the visualization on 
sample OSS systems, including systems of different 
size.  

In achieving the above objectives this research will enable 
us to assess whether dynamic information, here represented 
by dynamic coupling, might be useful when added to unit 
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test information to represent the distribution of unit tests in 
a sample of software systems. A key aim of this work is to 
determine whether production classes and unit tests are 
evenly distributed; that is, do all highly and/or tightly 
coupled classes have dedicated unit tests and test classes? 
A secondary aim is to develop a new visualization that 
combines dynamic information associated with production 
code and test information, with a view to supporting better 
understanding of the distribution of test suites in software 
systems.  
 
B. Contributions  
The findings of this work contribute to the general body of 
knowledge on software understanding (and more 
specifically, test understanding) by visualizing a new 
combination of static and dynamic information that could 
aid the test understanding process. The methods developed 
in this study should provide developers with knowledge of 
the unit testing distribution and activities in OSS systems.  

One possible use of the proposed visualization is when 
maintenance and reengineering activities are planned. The 
visualization should enable engineers (and in particular, 
maintainers and reengineers) to explore the distribution of 
unit tests in relation to the dynamic behavior of the software 
before conducting their work. It should also benefit 
program understanding by providing a visual 
representation of the dependencies based on the actual use 
of the properties of the system. Newcomers to a project 
could also use these visualizations to understand which 
aspects have been directly covered with unit tests in relation 
to their dynamic dependencies view [17]. The proposed 
visualization could also be beneficial for Agile-like 
methods, in which tests (and in particular unit tests) serve 
as documentation [4].  
 
C. Metrics Definition  
Coupling has long been shown to have a direct impact on 
the quality of software, primarily through its relationship to 
the characteristics of complexity and maintainability. Two 
classes/objects are said to be coupled if at least one of them 
acts upon the other [34]. All other things being equal, the 
greater the coupling level of an artifact, the greater the 
complexity, and the harder it is to maintain that artifact 
[35]. As stated above, previous research also suggests that 
coupling has a direct impact on class-level testability [2, 
24]. For many years coupling has been measured statically, 
based on various structural properties of software [36]. 
While undoubtedly useful, this naturally does not account 
for coupling between objects at runtime. By also 
considering this information, we should be able to obtain a 
more complete picture of the ‘true’ testability of a system.  

In recent years dynamic coupling has received increasing 
research attention [30]. In this study we measure dynamic 
coupling based on runtime method invocations/calls. 
Assuming there are two classes, class A and class B, A and 
B are said to be coupled if a method from class A (caller) 
invokes a method from class B (callee). We use the 
Dynamic Coupling Between Objects (DCBO) metric to 
represent these data. As the name implies, DCBO is the 
dynamic form of the well-known Coupling Between 

 
1 https://developers.google.com/java-dev-tools/codepro/doc/ 

Objects (CBO) metric [34]. In this research, we use an 
automatic code instrumentation method represented in 
Aspect Oriented Programming (AOP) to collect this 
dynamic metric data, in line with several previous works 
(e.g., [35-37]). Metrics data are collected using the AspectJ 
framework - a well-established Java implementation of 
AOP. For any class, the DCBO metric computes the total 
number of classes that are invoked by that class during 
execution.  
 

4. DATA COLLECTION AND OSS 
SYSTEMS’ SELECTION  
Through the use of tools and plugins we measure the size 
of the OSS systems selected for this study using a range of 
static metrics. The Kilo Lines of Code (KLOC) and 
Number of Classes (NOC) metrics were collected by the 
CodePro Analytix1 static analysis tool and were 
subsequently verified using the Eclipse Metrics Plugin2 (by 
comparing the values of the metric data collected by the 
two tools and resolving the few discrepancies). The 
Number of Test Cases (NTC) metric was collected through 
the JUnit framework and its results were verified manually 
by the first author. The author checked the naming of the 
unit test and, if needed, the calls made from unit tests. 
Dependency graphs were generated using NodeXL. Test 
coverage data were collected using both the CodeCover and 
Emma coverage tools.  

To identify unit tests and associate them with their 
corresponding production classes we used two different 
established traceability techniques [38]. First, we used the 
Naming Convention technique, which reflects the widely 
suggested practice (for instance, in the JUnit 
documentation) that a unit test should be named after the 
corresponding class(es) that it tests, by adding “Test” to the 
original class name. Second, we used a Static Call Graph 
technique, which inspects method invocations in the test 
case. The latter process was carried out manually by the 
first author. The effectiveness of the Naming Convention 
technique is reliant on developers’ efforts in conforming to 
the recommended coding standard, whereas the Static Call 
Graph approach reveals direct references to production 
classes in the unit tests. It is important to note here that we 
consider core system code only. That is, only production 
classes that are developed as a part of the system are 
assessed. Additional classes (including those in jar files) are 
excluded from the measurement process.  

We identified five OSS systems to be used in this study, via 
the following selection criteria: all software systems must: 
1) be fully open source, 2) have unit tests available, 3) be 
written in Java, and 4) cover a range of systems sizes. For 
the latter criterion we used a classification motivated by the 
prior work of Zhao and Elbaum [39], but with changes in 
its structure in order to meet the growing scale of OSS 
systems. We therefore categorized application sizes into 
bands based on the number of KLOC: tiny (fewer than 1 
KLOC), small (1 up to 10 KLOC), medium (10 up to 100 
KLOC), large (100 up to 1000 KLOC), and extra-large 
(more than 1000 KLOC). Our initial aim was to have at  

2 http://metrics2.sourceforge.net 
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least one project fit into each of the small, medium and 
large size categories, as considering systems of different 
size should enable us to test our approach at different 
scales. The systems selected for our experiment are: 
FindBugs, JabRef, Dependency Finder, MOEA and 
JDepend. Table I shows some of the general characteristics 
of the selected systems, including size information in 
KLOC and NOC for the production code, and NTC and 
Test KLOC for the test code. As shown, out of the five 
selected systems, one is large, three are medium and one is 
a small-sized system. Table I also shows test coverage 
information for the five systems. Statement coverage levels 
vary from 13.9% in the case of FindBugs to 77.2% for 
MOEA. MOEA also has the highest class coverage at 
86.5%, where the lowest class coverage value is recorded 
for FindBugs at 26.5%.  

In order to arrive at dynamic metrics values that are 
associated with typical, genuine use of a system the 
selected execution scenarios must be representative of such 
use. Our goal is to mimic ‘actual’ system behavior, as this 
will enhance the utility of our results. Execution scenarios 
are therefore designed to use the key system features, based 
on the available documentation and user manuals for the 
selected systems, as well as our prior knowledge of these 
systems. We present here the details of the specific 
execution scenario developed for each system. A brief 
description of all five selected systems is provided in Table 
II. Graph data packages for all five systems are available 
for replication purposes3. 

FindBugs  
We used FindBugs’ main GUI tool to analyze jar and 
source code files of three other Java OSS systems, two of 
large size (i.e., FindBugs itself and Apache JMeter) and one 
of medium size (i.e., Dependency Finder). During the 
execution, we activated cloud-based storage by loading the 

 
3 http://goo.gl/nuGZ4u 

tool’s external cloud plugin. Finally, all analysis reports 
were then exported for all three systems in various formats.  

JabRef  
The tool is used to generate and store a list of references 
from an original research report. We included all reference 
types supported by the tool (e.g., journal articles, 
conference proceedings, reports, standards). Reports were 
then extracted using all available formats (including XML, 
SQL and CSV). References were managed using all the 
provided features. All additional plugins provided at the 
tool’s website were added and used during this execution.  

Dependency Finder  
This scenario involves using the tool to analyze the source 
code of three large systems: FindBugs, Apache JMeter, and 
Apache Ant) and one medium-sized system (Colossus). We 
computed dependencies, dependency graphs and OO 
metrics at all layers (i.e., packages, classes, features). 
Analysis reports were extracted and saved individually in 
all possible formats.  

MOEA  
MOEA has a GUI diagnostic tool that provides access to a 
set of algorithms, test problems and search operators 
supporting multi-objective optimization. We used this 
diagnostic tool to apply those algorithms on all the 
predefined test problems. We applied each of the 
algorithms at least once to each problem. We displayed 
metrics and performance indicators for all results provided 
by those different problems and algorithms. Statistical 
results of these multiple runs were displayed and saved at 
the end of the run.  

JDepend  
We designed a small GUI to provide access to all of the 
quality assessment and reporting functionalities of JDepend 
(Note: this additional code was excluded from the 
measurement collection and analysis.) The tool was then  

TABLE I. GENERAL CHARACTERISTICS OF THE SELECTED OSS SYSTEMS  

 

TABLE II. BRIEF DESCRIPTIONS OF THE SELECTED SYSTEMS  
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used to load and analyze four OSS systems, three of 
medium size (i.e., Dependency Finder, JabRef, and 
barcode4j) and one of large size (i.e., FindBugs). We used 
all three user interfaces provided by the tool (namely: 
swing-graphical, textual and XML) during this execution.  
 

5. RESULTS AND DISCUSSION  
This section presents the results, analysis and discussion of 
our empirical investigation of the proposed measurement 
and visualization approach. A dependency graph is used to 
visually depict the dependencies between classes in each of 
the five systems. Dependencies, shown as undirected 
edges, represent method invocations between classes, 
shown as nodes. An undirected edge between nodes A and 
B means that the two nodes are coupled. That is, a 
dependency between classes A and B represents at least one 
invocation from a method in class A to a method in class B, 
and/or vice versa. A description of the dependency graph 
node symbols is provided in Table III. For tightly coupled 
classes the size of the vertex represents the relative degree 
of coupling.  

To compare node (class) dependency, and to generally 
quantify the level of association that a node has with other 
nodes in the graph, we measure their Centrality. Centrality 
is a well-known concept in graph theory and has been used 
increasingly in recent times in Social Network Analysis 
(SNA). For each node on the graph we collect two metrics: 
Degree Centrality and Betweenness Centrality. Degree 
Centrality measures the total number of links (connections) 
for a node. This metric directly reflects the dynamic 
coupling information, which is obtained from the DCBO 
metric, demonstrating messages sent or received by a class 
(also known as Import and Export Coupling). Betweenness 
Centrality, on the other hand, is a measure of the number of 
times a node acts as a bridge between two other nodes in 
the graph.  

Figures 1 to 5 show dependency graphs for all five systems. 
Due to space limitations, however, we show full 
dependency graphs only for the JDepend and Dependency 
Finder systems, whereas for the other three systems we 

 
4 http://goo.gl/nuGZ4u 

show only a snapshot of the dependency graph. Given that 
all visualization graphs should be presented in a complete  

form and seen in clear coloring we provide full high-
resolution versions elsewhere4.  

As shown in Table IV and visually in Figure 1, the 
framework.JDepend and JavaPackage classes of the 
JDepend system are shown to have the highest levels of 
(Degree and Betweenness) Centrality. Both classes are also 
directly tested through dedicated unit tests. Other classes, 
including swingui.JDepend and JavaClass, have high 
levels of Degree Centrality (both have the second-highest 
value) but have no associated unit tests. We also note that 
the FileManager and PropertyConfigurator classes have 
dedicated unit tests associated with them even though they 
are not shown to be central to the system’s operation (i.e., 
their Centrality levels are low, especially in terms of 
Betweenness Centrality).  

A comparison of the different levels of Centrality for tested 
classes across our five selected OSS systems is presented 
in Table V. In this table we compare results from a 
proportion of the classes from the ‘top’ and ‘bottom’ of 
their ranked lists. That is, for each system, we rank the 
Centrality data values and then divide the data into four 
groups based on three quartile data points. The 1st (Q1 - the 
lower) and the 3rd (Q3 - the upper) quartiles split off the 
bottom and top 25% of the data points in terms of centrality, 
respectively, whereas the 2nd quartile (Q2 - the median) 

 
Fig. 1. JDepend full Dependency Graph 

TABLE III. DEPENDENCY GRAPH NODE SYMBOLS  

 

TABLE IV. CENTRALITY METRICS FOR JDEPEND  
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reflects the middle 50% of the data. Those classes above 
the Q3 threshold are relatively highly coupled, and those 
below the Q1 threshold are coupled loosely.  

For Dependency Finder (Figure 2) 
Centrality values for classes above the Q3 threshold (being 
46 classes, with some exceeding the threshold for both 
Centrality measures). We found that almost half of the 
classes had no associated unit tests. For example, the 
dependency.Printer class has a Degree Centrality value of 
53 (the second highest in the system) and its Betweenness 
Centrality is ranked 5th highest in the system, yet it has no 
associated unit tests. This class is considered to be central 
to the system based on its dynamic coupling values. In 
contrast, we observed other classes with very low levels of 
Centrality but with dedicated unit tests. For example, the 
RegularExpressionParser and PrinterBuffer classes both 
have devoted unit tests even though they have the lowest 
Centrality values, with only a value of one for Degree 
Centrality and zero for Betweenness Centrality. This latter 
result indicates that these classes do not appear to be central 
to the system’s operation in terms of their dynamic 
coupling.  

A generally similar pattern of unit tests’ distribution is 
evident in all five systems examined. Figures 3 through 5 
show a snapshot from the FindBugs, JabRef and MOEA 
dependency graphs, respectively. In considering the Q3 
classes by Centrality in JabRef (71 classes) we found only 
nine (among 71) to have devoted unit tests. Similarly, only 
eleven classes with the highest Betweenness Centrality 
measure were found to have dedicated unit tests.  

In regard to the MOEA system, unit tests are present for 25 
(66%) of the classes above the Q3 Degree Centrality 
threshold and for 21 (55%) classes above the Q3 value for 
Betweenness Centrality. However, MOEA also has the 
highest proportions of tested classes below the Q1 
Centrality measure thresholds, with 45% and 53% of these 
classes having unit tests. This may be a reflection of the 
generally high levels of test coverage in MOEA (see Table 

II). The lowest percentages of tested classes above Q3 for 
both Degree and Betweenness Centrality are evident for 
FindBugs (although it is also the largest of the five systems 
examined). It has 11 (~7%) classes with associated unit 
tests among the 164 classes in Q3, and only 1 tested class 
(< 1%) in Q1 for the Degree Centrality classes. For 
Betweenness Centrality, there are 4 tested classes in Q3 and 
2 classes in Q1.  

To provide a more comprehensive assessment of the 
relationship between the Centrality metrics values and the 
availability of unit tests for production classes we used the 
nonparametric (two-tailed) Mann-Whitney U test (as the 
data come from non-normal distributions). We investigate 
the following hypothesis: “there is a significant difference 
between centrality metrics values of production classes 
with associated unit tests and those without associated unit 
tests”. We also measure the effect size (ez) using the 
following nonparametric formula (1)[40]:  

ez = Z/ÖN             (1) 
where N is the number of observations, Z is the z-value (also 

known as the standard score). 
 

We classify the effect size using Cohen’s classification:  
small effect size when 0 < ez < 0.3, medium when 0.3 £ ez 
< 0.5 and large when ez ³ 0.5.  

We report the values of our Mann-Whitney U test and 
effect size for TLOC and NTC in Table VI. Significant p- 
values (a) are shown in bold. We found significant a in 
only two of the five examined systems (i.e., FindBugs and 
Dependency Finder). Even through the p-values are 
significant in these systems, the effect size values are small 
for both Centrality metrics. The other three systems did not 
show any significant values. We therefore reject the 
hypothesis and conclude that there is no significant 
difference between Centrality metrics values of production 
classes with associated unit tests and those without 
associated unit tests.  

Several observations can be made based on the results just 
presented. The main observation, enabled by the visual 
representations of the dependency graphs and the centrality 
measurements, is that there is no statistically significant 
relationship between dynamic coupling (and centrality 
metrics) and unit test coverage – unit tests do not appear to 
be distributed in line with the systems’ dynamic coupling. 
In the five OSS systems examined, it is evident that many 
classes (i.e., more than 40% of the classes as shown in three 
of the five examined systems) that are loosely coupled and 
have few connections have received testing attention and 
effort (i.e., they have dedicated unit tests). Loosely coupled 
classes (shown at the outside of the graphs) have fewer 
connections and so are not intensively accessed by other 
classes. On the other hand, high proportions of classes in 
each system (up to 69% of the classes as shown in 
Dependency Finder) that are tightly coupled (i.e., highly 
linked/accessed by other classes) have no dedicated unit 
tests.  

Of particular note is that this distribution pattern is present 
in all five systems, regardless of their test coverage levels. 
However, the specific numbers of tested and untested 
classes varies from one system to another. From Table IV  

TABLE V. LEVELS OF CENTRALITY IN THE EXAMINED SYSTEMS  

 

TABLE VI. CENTRALITY METRICS MANN-WHITNEY U TEST RESULTS 
WITH EFFECT SIZE 
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it is evident that the proportion of unit tests in relation to 
coupling Centrality levels is different in all five systems. 
This suggests that, even in mature OSS systems such as 
these, the dispersed nature of contributions to the project 
may mean that test distribution can be uneven, and 
provision of tests is reliant on the attention of the individual 
developers.  

The results presented here suggest that the distribution of 
unit tests may require more attention from engineers/testers 
but also from those managing software development. We 
contend that the suggested visualization will help in 
focusing and optimizing testing effort by allowing 
engineers to identify and initially target central system 
classes and to dedicate relatively less effort to those non-
central classes. We also suggest that the centrality metrics 
themselves could be helpful in providing quantitative 

 
Fig. 2. Dependency Finder full dependency graph.  

 
Fig. 3. FindBugs dependency graph snapshot.  

 
 

Fig. 4. JabRef dependency graph snapshot.  Fig. 5. MOEA dependency graph snapshot. 
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support for the visualizations of the dependency graphs. 
The two Centrality metrics provided us with a 
comprehensive insight into the levels of dependency 
between system classes.  

 

6. THREATS TO VALIDITY  
We acknowledge a number of threats to the validity of our 
study. One of the possible threats is the selection of the 
execution scenarios. All of the execution scenarios used 
here were designed to mimic as closely as possible ‘actual’ 
system behavior, based on the available system 
documentation and, in particular, indications of each 
system’s key features. We acknowledge, however, that the 
selected scenarios might not be fully representative of the 
typical uses of the systems. Analyzing data collected based 
on different scenarios might give different results. This is a 
very common threat in most dynamic analysis research. 
However, we worked to mitigate this threat by carefully 
considering user manuals and other documentation of each 
of the examined systems. Most listed features were visited 
(at least once) during the execution. We will examine other 
scenarios in the future and compare the results from these 
different scenarios.  

Another possible threat to validity is the limited number 
and form of the OSS systems investigated. Results 
discussed here are derived from the analysis of five OSS 
systems. The consideration of a larger number of systems, 
perhaps including closed-source systems as well as larger 
systems, would enable further evaluation of our results.  

Varied availability of testing information could be another 
validity threat in our study. We used the available test 
information for the five systems in our analysis, and as such 
we did not have access to any information about the testing 
strategy employed. Test strategy and criteria information 
could be informative if combined with the test metrics, 
given that test criteria can inform testing decisions, and the 
number of test cases designed is highly influenced by the 
selected test strategy. Moreover, a more comprehensive 
picture of the analysis could be gained by also considering 
indirect tests.  

Finally, we did not direct any attention to test quality – our 
interest at this stage is in the existence or otherwise of unit 
tests for system classes. An analysis approach that 
considers both the quantity and quality of the tests 
developed would seem likely to be optimal, however, and 
will be the subject of our future research.  
 

7. CONCLUSIONS AND FUTURE 
RESEARCH DIRECTIONS  
In this paper we introduced a visualization that combines 
dynamic information obtained from production code with 
static test information to depict the distribution of unit tests 
in OSS systems. Five such systems of different sizes were 
selected for examination in this study. We extracted the 
DCBO metric to measure dynamic coupling at execution 
time through AOP. We then collected basic unit test 
information using automated tools as well as manual 
traceability and verification methods. We generated 

dependency graphs to show dependencies between classes 
using the collected dynamic coupling information. Test 
information was then added to the dependency graphs to 
show how unit tests were distributed in comparison to the 
dynamic coupling information. The goal of this 
visualization is to assist reengineers and maintainers – and 
their managers – to observe and understand the distribution 
of unit tests in a software system based on a dynamic view 
of that system. The visualization is further supported by the 
use of graph Centrality metrics that provide insight into the 
production classes and unit tests distribution.  

Based on the five OSS systems studied, we observe that 
unit test and dynamic coupling information ‘do not match’ 
in that there is no significant relationship between dynamic 
coupling and centrality metrics and unit test coverage. In 
other words, unit tests do not appear to be distributed in line 
with the systems’ dynamic coupling. Many of the tightly 
coupled classes do not come with any associated direct unit 
tests, whereas other loosely coupled classes, which do not 
look to be central, appear to have received direct testing 
effort.  

Visualization of the combined static test code data and 
dynamic coupling measurement data can provide a detailed 
view of how unit tests are actually distributed in relation to 
the coupling level of each class in the system. The 
suggested visualization and its associated Centrality 
metrics may help developers and managers to focus and 
optimize their test effort through the initial targeting of 
central system classes. Furthermore, data gathered from 
dynamic coupling measurement provides a comprehensive 
view of the dependencies of the system in relation to test 
information – a view that can be obtained only during 
software execution.  

This work is still at an early stage and further validation of 
the approach is needed. Future work should also investigate 
the cause of this uneven distribution. It is important to 
examine this visualization approach with real software 
developers to evaluate the usefulness of the proposed 
approach in terms of improving program comprehension 
and understanding processes. One possible way to 
investigate this work would be through the use of a 
controlled user study/experiment with real software 
developers and maintainers. This study can also be 
extended by including testing strategy and indirect testing 
information into the mapping, to provide a more 
comprehensive view of testing activities and their 
distribution.  
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