

1

Full citation: Tahir, A., & MacDonell, S.G. (2015) Combining dynamic analysis and visualization
to explore the distribution of unit test suites, in Proceedings of the 6th International Workshop on
Emerging Trends in Software Metrics (WETSoM2015). Florence, Italy, IEEE Computer Society
Press, pp.21-30. doi:10.1109/WETSoM.2015.12

Combining Dynamic Analysis and Visualization to
Explore the Distribution of Unit Test Suites

Amjed Tahir1 and Stephen G. MacDonell1,2
1Department of Information Science, University of Otago, Dunedin, New Zealand

2School of Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
 amjed.tahir@otago.ac.nz, stephen.macdonell@otago.ac.nz

Abstract
As software systems have grown in scale and complexity
the test suites built alongside those systems have also
become increasingly complex. Understanding key aspects
of test suites, such as their coverage of production code, is
important when maintaining or reengineering systems.
This work investigates the distribution of unit tests in Open
Source Software (OSS) systems through the visualization of
data obtained from both dynamic and static analysis. Our
long-term aim is to support developers in their
understanding of test distribution and the relationship of
tests to production code. We first obtain dynamic coupling
information from five selected OSS systems and we then
map the test and production code results. The mapping is
shown in graphs that depict both the dependencies between
classes and static test information. We analyze these graphs
using Centrality metrics derived from graph theory and
SNA. Our findings suggest that, for these five systems at
least, unit test and dynamic coupling information ‘do not
match’, in that unit tests do not appear to be distributed in
line with the systems’ dynamic coupling. We contend that,
by mapping dynamic coupling data onto unit test
information, and through the use of software metrics and
visualization, we can locate central system classes and
identify to which classes unit testing effort has (or has not)
been dedicated.

Keywords: test analysis; program comprehension;
unit testing; visualization; dynamic metrics; dynamic
analysis

1. INTRODUCTION AND MOTIVATION
Achieving improvements in software testability, alongside
other quality and productivity goals, is crucial to
contemporary software development. It is widely
acknowledged that software systems are growing larger and
becoming more complex [1], and yet the resources directed
towards testing are not keeping pace [2]. This is because
testing is known to be an expensive process, one that can
consume upwards of 50% of the total time and cost needed

for software development [3]. Although such figures are
typically associated with waterfall-like processes where
testing is treated as a ‘phase’, the centrality of testing is not
just a phenomenon of plan-based development approaches:
Agile software development methods such as eXtreme
Programming (XP) also give testing significant attention
[4]. The practice of Test-Driven Development (TDD), for
example, requires that extensive test code be developed and
maintained to ensure that the ‘furthermost’ components of
the production code work correctly [5]. In these methods,
in fact, unit tests are viewed as core, integral parts of the
program [6]. In noting the importance of testing, Beck [7]
recommended that developers spend between 25% and
50% of their time writing tests.

Irrespective of the development method adopted, then,
testing is a high-cost activity. That said, effective testing is
also a high- value activity. Unit tests – which exercise
individual (or small groups of) software units (e.g.,
software classes) – provide a powerful mechanism for
validating existing features when in the process of
developing new functionality [6]. When well- designed, the
use of unit tests is known to improve software quality from
the early stages of development and to enable the detection
of defects more effectively when compared to other
verification strategies [8]. The ideal ratio of test code to
production code (particularly in systems implemented with
methods similar to TDD) is said to be 1:1; however, the
typical ratio in OSS is estimated to be 2:3 [9] or less. This
latter ratio suggests that unit tests are generally not
available for all production classes in OSS systems. Thus,
in a typical use profile, production classes that are perhaps
heavily executed may not have any directly associated unit
tests.

As noted above, contemporary software systems can be
challenging to understand [10], given complex interactions
between classes and objects. Moreover, some of those
interactions only become evident during program
execution. For instance, complex structural features, such
as inheritance, polymorphism and dynamic binding, as well
as the presence of dead code, are likely to appear only when
code is run [11]. As such, their incidence and effects can be
precisely assessed only by using dynamic measurements

2

rather than traditional static measurements. Equally,
understanding test code can be a challenge due to the fact
that tests are not always well-structured [12].

This research analyzes test adequacy in several OSS
systems by augmenting standard static analysis approaches
with dynamic analysis and visualization techniques. In this
research, we collect and combine dynamic coupling and
unit test data in order to provide a more complete picture of
unit tests’ distribution (i.e., the distribution of the unit tests
over system’s classes), across five software systems. Novel
visual representations are developed to present the dynamic
information directly in relation to unit tests. The work thus
contributes a novel view that combines dynamic coupling
and unit test data in order to support greater understanding
of unit tests’ distribution in OSS. The field of software
visualization offers promise in aiding engineers to better
understand certain aspects of software behavior [13]. It has
also been suggested that software metrics should be
examined through appropriate visualizations, thus
achieving improved understanding beyond the ‘raw’
numbers of the metrics alone [14]. In short, using
visualizations to support program comprehension and the
understanding of software artifacts (including test artifacts)
appears to be effective and useful [4, 10, 15-17].

We contend that visualizing such data could be especially
helpful during maintenance and reengineering tasks, as the
visualization process elucidates the hierarchy of the
production classes and the distribution of unit tests
corresponding to the production classes. In addition, such
visualizations would provide developers and testers with a
high-level view of the dependencies within a system and
the possible utilization of methods for future testing
activities, i.e., what components are not being tested, and
where testing effort should be focused.

The remainder of this paper is structured as follows.
Section 2 presents background information on software
testability and dynamic software metrics, respectively,
followed by a summary of related work. The study design
and our research objectives are presented in Section 3.
Section 4 describes the data collection process and the OSS
systems evaluated in this research. This is followed by the
results and a discussion of those results in Section 5.
Threats to validity are presented in Section 6. Finally,
Section 6 concludes the study and presents thoughts on
future work.

2. BACKGROUND AND RELATED WORK
Prior to describing our own empirical work in detail we
now provide background information on the nature of
software testability followed by a discussion of the
importance of dynamic metrics in relation to the work
reported here. We also review several works related to this
study.

A. Software Testability
It follows logically that improving the testability of
software should enable developers to achieve higher quality
outcomes for that software. However, defining, measuring
and then improving testability present significant
challenges in their own right. Like many non-functional

properties of software, testability has been acknowledged
as an elusive concept, and its measurement and evaluation
have been considered to be inherently difficult [2].
Although several standards and individual studies have
defined testability, they have done so in various ways,
reflecting the fact that they were motivated by different
purposes. Thus, testability has been defined based on test
effort, test coverage or the ability to examine if
requirements are met. For example, the IEEE standard
defines testability as “the degree to which a system or
component facilitates the establishment of test criteria and
the performance of tests to determine whether those criteria
have been met”. Another definition is “the degree to which
a system can be unit tested and system tested” [18]. The
relevant ISO standard [19] defines testability as “attributes
of software that bear on the effort needed to validate the
software product”. Thus, the IEEE definitions consider
software testability from a test criteria point of view. The
ISO definition, in contrast, considers testability based on
the effort needed to test a software product.

Software classes with low levels of testability may be less
trustworthy, even after successful testing [20]. Classes with
poor testability are also more expensive to repair when
problems are detected late in the development process. In
contrast, classes with good testability can dramatically
increase the overall quality of the software, and reduce the
cost of testing [21]. Some researchers relate software
testability and test efficiency to the effort and cost of
conducting those tests [2, 21]. Testability has also been
related to internal characteristics of software systems,
including various attributes of software design and code
[22-24].

B. Dynamic Metrics
Dynamic metrics, which are used to capture the dynamic
behavior of a software system, have been found to be
directly related to a range of software quality attributes,
including complexity, maintainability and testability [25,
26]. Their use has gained traction given that traditional
static software metrics may not be sufficient for
characterizing and predicting the quality of OO systems
[27-29]. Dynamic metrics are computed based on data
collected during program execution (i.e., at runtime) and
are most frequently obtained from the execution traces of
the code (although in some cases simulation can be used
instead of the actual execution), and therefore they can
directly reflect the quality attributes of a system in
operation [30]. Our recent survey on dynamic measurement
research shows that dynamic metrics are attracting growing
attention from researchers, mainly because of the inherent
advantages of this class of metrics over their static
counterparts [30].

That is not to say that static metrics have no value, and this
value may be elevated further if they are combined with
data collected through dynamic analysis [31]. The two
forms are complementary; they should therefore be used
alongside one another to build strong affordances about the
software under investigation. We follow this thinking and
combine static test information with code run-time
properties collected during software execution.
Specifically, we collect a dynamic coupling metric that is
based on runtime method invocations. Method invocation

3

information of system classes is captured and then
visualized using dependency graphs. This is explained in
more detail in Section 3 (C. Metrics Definition).

C. Related Work
Extensive effort in both software engineering research and
practice has been directed to supporting the understanding
and maintenance of software artifacts. Of particular
relevance here is work that has used static and/or dynamic
analysis techniques. While the two approaches were
initially used separately, combining static and dynamic
analysis techniques has been of growing interest. Many
works (including [10, 32]) have proposed and assessed
various methods, techniques and tools that use data
obtained from both static and dynamic analysis to support
program understanding. Visualization, in particular, has
been used in several previous works for the purpose of
supporting developer understanding of different aspects of
production code [10, 15, 16]. Test understanding has been
the focus of several works that sought to explicate the
relationship between production and test code, while other
works have considered the structure of unit tests and test
suites. Visualization of test information as a means of
supporting developer understanding has also been
considered in prior work [4, 17]. We now briefly discuss
the most relevant of these prior related studies.

Cornelissen et al. [4], based on information obtained
through dynamic analysis (though generated via
simulation), used UML sequence diagrams to visualize test
cases to gain knowledge about the structure of software in
order to support program understanding. They asserted that
such visualizations could be beneficial in program
understanding and for documentation purposes.
Visualization of test code dependencies was used by van
Rompaey and Demeyer [17] to localize unit tests and to
investigate the relationship between test and production
code. Their focus was on both the composition of and
dependency between test and production units as well as
among the unit tests themselves. The dependency
information was obtained from static properties of the
system. Although a number of coupling and cohesion
indicators were recorded, they were used only to identify
the dependency between classes and their associated unit
tests. However, the authors recommended that size and
complexity information of the various software
components should also be considered to provide a more
detailed and comprehensive assessment of the proposed
visualization approach. In similar work, Zaidman et al. [33]
used visualization to investigate the co-evolution between
software production code and test suites. Their study
focused on mining software history information from
repositories in order to detect testing information from
different versions of software projects. The authors also
observed a signification correlation between test effort (i.e.,
test-writing activity) and test coverage levels in different
releases. The work also proposed three different
visualization views that could be used to study how test
code co-evolves over time between different releases.

Bruntink and van Deursen [23] used several static OO
complexity metrics to measure class-level testability in
order to inform the planning and management of
subsequent testing activities. Their empirical study found a

strong correlation between a number of static class-level
measures and their defined testability measures. In
following these findings we also identified some significant
relationships between dynamic software properties
(represented in terms of dynamic coupling and execution
frequency) and the same class-level testability measures
suggested by Bruntink and van Deursen [23] in a recent
study of our own [24]. Hauptmann et al. [12] used a clone
detection technique to identify and locate tests in order to
support better understanding of these tests. The technique
was applied to 4000 tests across seven industrial systems.
In general, clone detection was found to provide useful
information for targeting test automation effort. The
findings also revealed that significant numbers of clones
exist in all examined “manually written” tests.

In following the studies just described we build on these
works (specifically those works that used visualization
and/or dynamic analysis to support comprehension and
understanding such as [4, 17]) in terms of the metrics used
and visualization support provided. The key elements of the
work conducted and reported in this paper include the
following:

• The metric data collected in this work include a
dynamic coupling measure that represents the run-
time dependencies between classes/objects;

• The visualization provided in this work combines
both the dynamic coupling information collected
from the production code with static test data
collected from the associated unit tests;

• Graph metrics are used to characterize the
visualizations and so provide additional insights.

The design of the study is now presented in detail.

3. STUDY DESIGN
As noted in Section I, understanding test code is an
important task in software development, particularly in
relation to the activities of maintenance, reverse
engineering and refactoring. In the object-oriented
paradigm, production code and test code are similar in
nature (i.e., written in a similar manner); thus, analyzing
and understanding them requires similar skills and
methods. In this section, we state our research objectives,
we describe our data collection methods and we specify the
OSS systems analyzed.

A. Objectives
The main objectives of this work are to:

• Examine the utility of combining dynamic and static
information to expose test distribution.

• Represent test distribution information in a
visualization that combines static and dynamic
analysis data.

• Demonstrate the application of the visualization on
sample OSS systems, including systems of different
size.

In achieving the above objectives this research will enable
us to assess whether dynamic information, here represented
by dynamic coupling, might be useful when added to unit

4

test information to represent the distribution of unit tests in
a sample of software systems. A key aim of this work is to
determine whether production classes and unit tests are
evenly distributed; that is, do all highly and/or tightly
coupled classes have dedicated unit tests and test classes?
A secondary aim is to develop a new visualization that
combines dynamic information associated with production
code and test information, with a view to supporting better
understanding of the distribution of test suites in software
systems.

B. Contributions
The findings of this work contribute to the general body of
knowledge on software understanding (and more
specifically, test understanding) by visualizing a new
combination of static and dynamic information that could
aid the test understanding process. The methods developed
in this study should provide developers with knowledge of
the unit testing distribution and activities in OSS systems.

One possible use of the proposed visualization is when
maintenance and reengineering activities are planned. The
visualization should enable engineers (and in particular,
maintainers and reengineers) to explore the distribution of
unit tests in relation to the dynamic behavior of the software
before conducting their work. It should also benefit
program understanding by providing a visual
representation of the dependencies based on the actual use
of the properties of the system. Newcomers to a project
could also use these visualizations to understand which
aspects have been directly covered with unit tests in relation
to their dynamic dependencies view [17]. The proposed
visualization could also be beneficial for Agile-like
methods, in which tests (and in particular unit tests) serve
as documentation [4].

C. Metrics Definition
Coupling has long been shown to have a direct impact on
the quality of software, primarily through its relationship to
the characteristics of complexity and maintainability. Two
classes/objects are said to be coupled if at least one of them
acts upon the other [34]. All other things being equal, the
greater the coupling level of an artifact, the greater the
complexity, and the harder it is to maintain that artifact
[35]. As stated above, previous research also suggests that
coupling has a direct impact on class-level testability [2,
24]. For many years coupling has been measured statically,
based on various structural properties of software [36].
While undoubtedly useful, this naturally does not account
for coupling between objects at runtime. By also
considering this information, we should be able to obtain a
more complete picture of the ‘true’ testability of a system.

In recent years dynamic coupling has received increasing
research attention [30]. In this study we measure dynamic
coupling based on runtime method invocations/calls.
Assuming there are two classes, class A and class B, A and
B are said to be coupled if a method from class A (caller)
invokes a method from class B (callee). We use the
Dynamic Coupling Between Objects (DCBO) metric to
represent these data. As the name implies, DCBO is the
dynamic form of the well-known Coupling Between

1 https://developers.google.com/java-dev-tools/codepro/doc/

Objects (CBO) metric [34]. In this research, we use an
automatic code instrumentation method represented in
Aspect Oriented Programming (AOP) to collect this
dynamic metric data, in line with several previous works
(e.g., [35-37]). Metrics data are collected using the AspectJ
framework - a well-established Java implementation of
AOP. For any class, the DCBO metric computes the total
number of classes that are invoked by that class during
execution.

4. DATA COLLECTION AND OSS
SYSTEMS’ SELECTION
Through the use of tools and plugins we measure the size
of the OSS systems selected for this study using a range of
static metrics. The Kilo Lines of Code (KLOC) and
Number of Classes (NOC) metrics were collected by the
CodePro Analytix1 static analysis tool and were
subsequently verified using the Eclipse Metrics Plugin2 (by
comparing the values of the metric data collected by the
two tools and resolving the few discrepancies). The
Number of Test Cases (NTC) metric was collected through
the JUnit framework and its results were verified manually
by the first author. The author checked the naming of the
unit test and, if needed, the calls made from unit tests.
Dependency graphs were generated using NodeXL. Test
coverage data were collected using both the CodeCover and
Emma coverage tools.

To identify unit tests and associate them with their
corresponding production classes we used two different
established traceability techniques [38]. First, we used the
Naming Convention technique, which reflects the widely
suggested practice (for instance, in the JUnit
documentation) that a unit test should be named after the
corresponding class(es) that it tests, by adding “Test” to the
original class name. Second, we used a Static Call Graph
technique, which inspects method invocations in the test
case. The latter process was carried out manually by the
first author. The effectiveness of the Naming Convention
technique is reliant on developers’ efforts in conforming to
the recommended coding standard, whereas the Static Call
Graph approach reveals direct references to production
classes in the unit tests. It is important to note here that we
consider core system code only. That is, only production
classes that are developed as a part of the system are
assessed. Additional classes (including those in jar files) are
excluded from the measurement process.

We identified five OSS systems to be used in this study, via
the following selection criteria: all software systems must:
1) be fully open source, 2) have unit tests available, 3) be
written in Java, and 4) cover a range of systems sizes. For
the latter criterion we used a classification motivated by the
prior work of Zhao and Elbaum [39], but with changes in
its structure in order to meet the growing scale of OSS
systems. We therefore categorized application sizes into
bands based on the number of KLOC: tiny (fewer than 1
KLOC), small (1 up to 10 KLOC), medium (10 up to 100
KLOC), large (100 up to 1000 KLOC), and extra-large
(more than 1000 KLOC). Our initial aim was to have at

2 http://metrics2.sourceforge.net

5

least one project fit into each of the small, medium and
large size categories, as considering systems of different
size should enable us to test our approach at different
scales. The systems selected for our experiment are:
FindBugs, JabRef, Dependency Finder, MOEA and
JDepend. Table I shows some of the general characteristics
of the selected systems, including size information in
KLOC and NOC for the production code, and NTC and
Test KLOC for the test code. As shown, out of the five
selected systems, one is large, three are medium and one is
a small-sized system. Table I also shows test coverage
information for the five systems. Statement coverage levels
vary from 13.9% in the case of FindBugs to 77.2% for
MOEA. MOEA also has the highest class coverage at
86.5%, where the lowest class coverage value is recorded
for FindBugs at 26.5%.

In order to arrive at dynamic metrics values that are
associated with typical, genuine use of a system the
selected execution scenarios must be representative of such
use. Our goal is to mimic ‘actual’ system behavior, as this
will enhance the utility of our results. Execution scenarios
are therefore designed to use the key system features, based
on the available documentation and user manuals for the
selected systems, as well as our prior knowledge of these
systems. We present here the details of the specific
execution scenario developed for each system. A brief
description of all five selected systems is provided in Table
II. Graph data packages for all five systems are available
for replication purposes3.

FindBugs
We used FindBugs’ main GUI tool to analyze jar and
source code files of three other Java OSS systems, two of
large size (i.e., FindBugs itself and Apache JMeter) and one
of medium size (i.e., Dependency Finder). During the
execution, we activated cloud-based storage by loading the

3 http://goo.gl/nuGZ4u

tool’s external cloud plugin. Finally, all analysis reports
were then exported for all three systems in various formats.

JabRef
The tool is used to generate and store a list of references
from an original research report. We included all reference
types supported by the tool (e.g., journal articles,
conference proceedings, reports, standards). Reports were
then extracted using all available formats (including XML,
SQL and CSV). References were managed using all the
provided features. All additional plugins provided at the
tool’s website were added and used during this execution.

Dependency Finder
This scenario involves using the tool to analyze the source
code of three large systems: FindBugs, Apache JMeter, and
Apache Ant) and one medium-sized system (Colossus). We
computed dependencies, dependency graphs and OO
metrics at all layers (i.e., packages, classes, features).
Analysis reports were extracted and saved individually in
all possible formats.

MOEA
MOEA has a GUI diagnostic tool that provides access to a
set of algorithms, test problems and search operators
supporting multi-objective optimization. We used this
diagnostic tool to apply those algorithms on all the
predefined test problems. We applied each of the
algorithms at least once to each problem. We displayed
metrics and performance indicators for all results provided
by those different problems and algorithms. Statistical
results of these multiple runs were displayed and saved at
the end of the run.

JDepend
We designed a small GUI to provide access to all of the
quality assessment and reporting functionalities of JDepend
(Note: this additional code was excluded from the
measurement collection and analysis.) The tool was then

TABLE I. GENERAL CHARACTERISTICS OF THE SELECTED OSS SYSTEMS

TABLE II. BRIEF DESCRIPTIONS OF THE SELECTED SYSTEMS

6

used to load and analyze four OSS systems, three of
medium size (i.e., Dependency Finder, JabRef, and
barcode4j) and one of large size (i.e., FindBugs). We used
all three user interfaces provided by the tool (namely:
swing-graphical, textual and XML) during this execution.

5. RESULTS AND DISCUSSION
This section presents the results, analysis and discussion of
our empirical investigation of the proposed measurement
and visualization approach. A dependency graph is used to
visually depict the dependencies between classes in each of
the five systems. Dependencies, shown as undirected
edges, represent method invocations between classes,
shown as nodes. An undirected edge between nodes A and
B means that the two nodes are coupled. That is, a
dependency between classes A and B represents at least one
invocation from a method in class A to a method in class B,
and/or vice versa. A description of the dependency graph
node symbols is provided in Table III. For tightly coupled
classes the size of the vertex represents the relative degree
of coupling.

To compare node (class) dependency, and to generally
quantify the level of association that a node has with other
nodes in the graph, we measure their Centrality. Centrality
is a well-known concept in graph theory and has been used
increasingly in recent times in Social Network Analysis
(SNA). For each node on the graph we collect two metrics:
Degree Centrality and Betweenness Centrality. Degree
Centrality measures the total number of links (connections)
for a node. This metric directly reflects the dynamic
coupling information, which is obtained from the DCBO
metric, demonstrating messages sent or received by a class
(also known as Import and Export Coupling). Betweenness
Centrality, on the other hand, is a measure of the number of
times a node acts as a bridge between two other nodes in
the graph.

Figures 1 to 5 show dependency graphs for all five systems.
Due to space limitations, however, we show full
dependency graphs only for the JDepend and Dependency
Finder systems, whereas for the other three systems we

4 http://goo.gl/nuGZ4u

show only a snapshot of the dependency graph. Given that
all visualization graphs should be presented in a complete

form and seen in clear coloring we provide full high-
resolution versions elsewhere4.

As shown in Table IV and visually in Figure 1, the
framework.JDepend and JavaPackage classes of the
JDepend system are shown to have the highest levels of
(Degree and Betweenness) Centrality. Both classes are also
directly tested through dedicated unit tests. Other classes,
including swingui.JDepend and JavaClass, have high
levels of Degree Centrality (both have the second-highest
value) but have no associated unit tests. We also note that
the FileManager and PropertyConfigurator classes have
dedicated unit tests associated with them even though they
are not shown to be central to the system’s operation (i.e.,
their Centrality levels are low, especially in terms of
Betweenness Centrality).

A comparison of the different levels of Centrality for tested
classes across our five selected OSS systems is presented
in Table V. In this table we compare results from a
proportion of the classes from the ‘top’ and ‘bottom’ of
their ranked lists. That is, for each system, we rank the
Centrality data values and then divide the data into four
groups based on three quartile data points. The 1st (Q1 - the
lower) and the 3rd (Q3 - the upper) quartiles split off the
bottom and top 25% of the data points in terms of centrality,
respectively, whereas the 2nd quartile (Q2 - the median)

Fig. 1. JDepend full Dependency Graph

TABLE III. DEPENDENCY GRAPH NODE SYMBOLS

TABLE IV. CENTRALITY METRICS FOR JDEPEND

7

reflects the middle 50% of the data. Those classes above
the Q3 threshold are relatively highly coupled, and those
below the Q1 threshold are coupled loosely.

For Dependency Finder (Figure 2)
Centrality values for classes above the Q3 threshold (being
46 classes, with some exceeding the threshold for both
Centrality measures). We found that almost half of the
classes had no associated unit tests. For example, the
dependency.Printer class has a Degree Centrality value of
53 (the second highest in the system) and its Betweenness
Centrality is ranked 5th highest in the system, yet it has no
associated unit tests. This class is considered to be central
to the system based on its dynamic coupling values. In
contrast, we observed other classes with very low levels of
Centrality but with dedicated unit tests. For example, the
RegularExpressionParser and PrinterBuffer classes both
have devoted unit tests even though they have the lowest
Centrality values, with only a value of one for Degree
Centrality and zero for Betweenness Centrality. This latter
result indicates that these classes do not appear to be central
to the system’s operation in terms of their dynamic
coupling.

A generally similar pattern of unit tests’ distribution is
evident in all five systems examined. Figures 3 through 5
show a snapshot from the FindBugs, JabRef and MOEA
dependency graphs, respectively. In considering the Q3
classes by Centrality in JabRef (71 classes) we found only
nine (among 71) to have devoted unit tests. Similarly, only
eleven classes with the highest Betweenness Centrality
measure were found to have dedicated unit tests.

In regard to the MOEA system, unit tests are present for 25
(66%) of the classes above the Q3 Degree Centrality
threshold and for 21 (55%) classes above the Q3 value for
Betweenness Centrality. However, MOEA also has the
highest proportions of tested classes below the Q1
Centrality measure thresholds, with 45% and 53% of these
classes having unit tests. This may be a reflection of the
generally high levels of test coverage in MOEA (see Table

II). The lowest percentages of tested classes above Q3 for
both Degree and Betweenness Centrality are evident for
FindBugs (although it is also the largest of the five systems
examined). It has 11 (~7%) classes with associated unit
tests among the 164 classes in Q3, and only 1 tested class
(< 1%) in Q1 for the Degree Centrality classes. For
Betweenness Centrality, there are 4 tested classes in Q3 and
2 classes in Q1.

To provide a more comprehensive assessment of the
relationship between the Centrality metrics values and the
availability of unit tests for production classes we used the
nonparametric (two-tailed) Mann-Whitney U test (as the
data come from non-normal distributions). We investigate
the following hypothesis: “there is a significant difference
between centrality metrics values of production classes
with associated unit tests and those without associated unit
tests”. We also measure the effect size (ez) using the
following nonparametric formula (1)[40]:

ez = Z/ÖN (1)
where N is the number of observations, Z is the z-value (also

known as the standard score).

We classify the effect size using Cohen’s classification:
small effect size when 0 < ez < 0.3, medium when 0.3 £ ez
< 0.5 and large when ez ³ 0.5.

We report the values of our Mann-Whitney U test and
effect size for TLOC and NTC in Table VI. Significant p-
values (a) are shown in bold. We found significant a in
only two of the five examined systems (i.e., FindBugs and
Dependency Finder). Even through the p-values are
significant in these systems, the effect size values are small
for both Centrality metrics. The other three systems did not
show any significant values. We therefore reject the
hypothesis and conclude that there is no significant
difference between Centrality metrics values of production
classes with associated unit tests and those without
associated unit tests.

Several observations can be made based on the results just
presented. The main observation, enabled by the visual
representations of the dependency graphs and the centrality
measurements, is that there is no statistically significant
relationship between dynamic coupling (and centrality
metrics) and unit test coverage – unit tests do not appear to
be distributed in line with the systems’ dynamic coupling.
In the five OSS systems examined, it is evident that many
classes (i.e., more than 40% of the classes as shown in three
of the five examined systems) that are loosely coupled and
have few connections have received testing attention and
effort (i.e., they have dedicated unit tests). Loosely coupled
classes (shown at the outside of the graphs) have fewer
connections and so are not intensively accessed by other
classes. On the other hand, high proportions of classes in
each system (up to 69% of the classes as shown in
Dependency Finder) that are tightly coupled (i.e., highly
linked/accessed by other classes) have no dedicated unit
tests.

Of particular note is that this distribution pattern is present
in all five systems, regardless of their test coverage levels.
However, the specific numbers of tested and untested
classes varies from one system to another. From Table IV

TABLE V. LEVELS OF CENTRALITY IN THE EXAMINED SYSTEMS

TABLE VI. CENTRALITY METRICS MANN-WHITNEY U TEST RESULTS
WITH EFFECT SIZE

8

it is evident that the proportion of unit tests in relation to
coupling Centrality levels is different in all five systems.
This suggests that, even in mature OSS systems such as
these, the dispersed nature of contributions to the project
may mean that test distribution can be uneven, and
provision of tests is reliant on the attention of the individual
developers.

The results presented here suggest that the distribution of
unit tests may require more attention from engineers/testers
but also from those managing software development. We
contend that the suggested visualization will help in
focusing and optimizing testing effort by allowing
engineers to identify and initially target central system
classes and to dedicate relatively less effort to those non-
central classes. We also suggest that the centrality metrics
themselves could be helpful in providing quantitative

Fig. 2. Dependency Finder full dependency graph.

Fig. 3. FindBugs dependency graph snapshot.

Fig. 4. JabRef dependency graph snapshot. Fig. 5. MOEA dependency graph snapshot.

9

support for the visualizations of the dependency graphs.
The two Centrality metrics provided us with a
comprehensive insight into the levels of dependency
between system classes.

6. THREATS TO VALIDITY
We acknowledge a number of threats to the validity of our
study. One of the possible threats is the selection of the
execution scenarios. All of the execution scenarios used
here were designed to mimic as closely as possible ‘actual’
system behavior, based on the available system
documentation and, in particular, indications of each
system’s key features. We acknowledge, however, that the
selected scenarios might not be fully representative of the
typical uses of the systems. Analyzing data collected based
on different scenarios might give different results. This is a
very common threat in most dynamic analysis research.
However, we worked to mitigate this threat by carefully
considering user manuals and other documentation of each
of the examined systems. Most listed features were visited
(at least once) during the execution. We will examine other
scenarios in the future and compare the results from these
different scenarios.

Another possible threat to validity is the limited number
and form of the OSS systems investigated. Results
discussed here are derived from the analysis of five OSS
systems. The consideration of a larger number of systems,
perhaps including closed-source systems as well as larger
systems, would enable further evaluation of our results.

Varied availability of testing information could be another
validity threat in our study. We used the available test
information for the five systems in our analysis, and as such
we did not have access to any information about the testing
strategy employed. Test strategy and criteria information
could be informative if combined with the test metrics,
given that test criteria can inform testing decisions, and the
number of test cases designed is highly influenced by the
selected test strategy. Moreover, a more comprehensive
picture of the analysis could be gained by also considering
indirect tests.

Finally, we did not direct any attention to test quality – our
interest at this stage is in the existence or otherwise of unit
tests for system classes. An analysis approach that
considers both the quantity and quality of the tests
developed would seem likely to be optimal, however, and
will be the subject of our future research.

7. CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS
In this paper we introduced a visualization that combines
dynamic information obtained from production code with
static test information to depict the distribution of unit tests
in OSS systems. Five such systems of different sizes were
selected for examination in this study. We extracted the
DCBO metric to measure dynamic coupling at execution
time through AOP. We then collected basic unit test
information using automated tools as well as manual
traceability and verification methods. We generated

dependency graphs to show dependencies between classes
using the collected dynamic coupling information. Test
information was then added to the dependency graphs to
show how unit tests were distributed in comparison to the
dynamic coupling information. The goal of this
visualization is to assist reengineers and maintainers – and
their managers – to observe and understand the distribution
of unit tests in a software system based on a dynamic view
of that system. The visualization is further supported by the
use of graph Centrality metrics that provide insight into the
production classes and unit tests distribution.

Based on the five OSS systems studied, we observe that
unit test and dynamic coupling information ‘do not match’
in that there is no significant relationship between dynamic
coupling and centrality metrics and unit test coverage. In
other words, unit tests do not appear to be distributed in line
with the systems’ dynamic coupling. Many of the tightly
coupled classes do not come with any associated direct unit
tests, whereas other loosely coupled classes, which do not
look to be central, appear to have received direct testing
effort.

Visualization of the combined static test code data and
dynamic coupling measurement data can provide a detailed
view of how unit tests are actually distributed in relation to
the coupling level of each class in the system. The
suggested visualization and its associated Centrality
metrics may help developers and managers to focus and
optimize their test effort through the initial targeting of
central system classes. Furthermore, data gathered from
dynamic coupling measurement provides a comprehensive
view of the dependencies of the system in relation to test
information – a view that can be obtained only during
software execution.

This work is still at an early stage and further validation of
the approach is needed. Future work should also investigate
the cause of this uneven distribution. It is important to
examine this visualization approach with real software
developers to evaluate the usefulness of the proposed
approach in terms of improving program comprehension
and understanding processes. One possible way to
investigate this work would be through the use of a
controlled user study/experiment with real software
developers and maintainers. This study can also be
extended by including testing strategy and indirect testing
information into the mapping, to provide a more
comprehensive view of testing activities and their
distribution.

ACKNOWLEDGMENT
We would like to thank Ewan Tempero and Abbas Tahir
for their comments and constructive feedback on earlier
versions of this work.

REFERENCES
[1] I. Sommerville, D. Cliff, R. Calinescu, J. Keen, T. Kelly, M.

Kwiatkowska, et al., "Large-scale complex IT systems," Commun.
ACM, vol. 55, pp. 71-77, 2012.

[2] S. Mouchawrab, L. C. Briand, and Y. Labiche, "A measurement
framework for object-oriented software testability," Inf. Softw.
Technol., vol. 47, pp. 979-997, 2005.

10

[3] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing:
Wiley Publishing, 2011, pp. ix.

[4] B. Cornelissen, A. v. Deursen, L. Moonen, and A. Zaidman,
"Visualizing Testsuites to Aid in Software Understanding," in 11th
European Conference on Software Maintenance and Reengineering,
2007, pp. 213 - 222.

[5] K. Beck, Test Driven Development: By Example: Addison- Wesley
Longman Publishing Co., Inc., 2002.

[6] Y. Cheon and G. Leavens, "A Simple and Practical Approach to Unit
Testing: The JML and JUnit Way," in European Conference on
Object-Oriented Programming (ECOOP 2002), 2002, pp. 231-255.

[7] K. Beck, "Simple smalltalk testing: With patterns," The Smalltalk
Report, vol. 4, pp. 16-18, 1994.

[8] P. Runeson and A. Andrews, "Detection or Isolation of Defects? An
Experimental Comparison of Unit Testing and Code Inspection," in
14th International Symposium on Software Reliability Engineering,
2003, pp. 3 - 13.

[9] A. Van Deursen, L. M. F. Moonen, A. Bergh, and G. Kok,
"Refactoring test code," in Extreme Programming and Flexible
Processes (XP), 2001, pp. 92–95.

[10] D. B. Lange and Y. Nakamura, "Object-oriented program tracing
and visualization," Computer, vol. 30, pp. 63-70, 1997.

[11] E. Arisholm, L. C. Briand, and A. Foyen, "Dynamic Coupling
Measurement for Object-Oriented Software," IEEE Trans. Softw.
Eng., vol. 30, pp. 491-506, 2004.

[12] B. Hauptmann, M. Junker, S. Eder, E. Juergens, and R. Vaas, "Can
clone detection support test comprehension?," in IEEE International
Conference on Program Comprehension, 2012, pp. 209-218.

[13] J. I. Maletic, A. Marcus, and M. L. Collard, "ATask Oriented View
of Software Visualization," in Proceedings of the 1st International
Workshop on Visualizing Software for Understanding and Analysis,
2002, pp. 32-40.

[14] M. Lanza and R. Marinescu, Object-oriented metrics in practice:
Springer, 2006.

[15] B. Cornelissen, A. Zaidman, and A. v. Deursen, "A controlled
experiment for program comprehension through trace visualization,"
IEEE Trans. Softw. Eng., vol. 37, pp. 341-355, 2011.

[16] D. Jerding and S. Rugaber, "Using visualization for architectural
localization and extraction," Science of Computer Programming, vol.
36, pp. 267-284, 2000.

[17] B. van Rompaey and S. Demeyer, "Exploring the composition of
unit test suites," in IEEE/ACM International Conference on
Automated Software Engineering - ASE Workshops 2008, pp. 11-20.

[18] ISO/IEC/IEEE, "ISO/IEC/IEEE 24765 - Systems and software
engineering - Vocabulary," ed: ISO/IEC/IEEE, 2010.

[19] ISO, "Software engineering - Product quality-Part 1-9126 " in
Quality model ed. Geneva: International Organization for
Standardization 2001.

[20] A. Bertolino and L. Strigini, "On the use of testability measures for
dependability assessment," IEEE Trans. Softw. Eng., vol. 22, pp. 97-
108, 1996.

[21] J. Z. Gao, H.-S. Jacob, and Y. Wu, Testing and Quality Assurance
for Component-Based Software. Norwood, MA, USA: Artech House
Publishers, 2003.

[22] R. V. Binder, "Design for testability in object-oriented systems,"
Commun. ACM, vol. 37, pp. 87-101, 1994.

[23] M. Bruntink and A. v. Deursen, "An empirical study into class
testability," Journal of Systems and Software, vol. 79, pp. 1219-
1232, 2006.

[24] A. Tahir, S. G. MacDonell, and J. Buchan, "Understanding Class-
level Testability through Dynamic Analysis," in 9th International
Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE), Lisbon, Portugal, 2014, pp. 38- 47.

[25] S. Yacoub, H. Ammar, and T. Robinson, "Dynamic Metrics for
Object Oriented Designs," presented at the Proceedings of the 6th
International Symposium on Software Metrics, 1999.

[26] M. Scotto, A. Sillitti, G. Succi, and T. Vernazza, "A non- invasive
approach to product metrics collection," Journal of Systems
Architecture, vol. 52, pp. 668-675, 2006.

[27] T. A. Corbi, "Program Understanding: Challenge for the 1990s,"
IBM Systems Journal, vol. 28, pp. 294-306, 1989.

[28] V. Basili, L. Briand, and W. Melo, "A validation of object- oriented
design metrics as quality indicators," IEEE Trans. Softw. Eng., vol.
22, pp. 751-761, 1996.

[29] J. K. Chhabra and V. Gupta, "A survey of dynamic software
metrics," Journal of Computer Science and Technology, vol. 25, pp.
1016-1029, 2010.

[30] A. Tahir and S. G. MacDonell, "A systematic mapping study on
dynamic metrics and software quality," in 28th International

Conference on Software Maintenance (ICSM), Riva del Garda, Italy,
2012, pp. 326 - 335.

[31] M. D. Ernst, "Static and dynamic analysis: Synergy and duality," in
WODA 2003: ICSE Workshop on Dynamic Analysis, Portland, US,
2003, pp. 24 - 27.

[32] T. Systä, K. Koskimies, and H. Müller, "Shimba—an environment
for reverse engineering Java software systems," Softw. Pract. Exper.,
vol. 31, pp. 371-394, 2001.

[33] A. Zaidman, B. Rompaey, A. van Deursen, and S. Demeyer,
"Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining,"
Empir. Software Eng., vol. 16, pp. 325-364, 2011.

[34] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object
Oriented Design," IEEE Trans. Softw. Eng., vol. 20, pp. 476-493,
1994.

[35] A. Tahir, R. Ahmad, and Z. M. Kasirun, "Maintainability dynamic
metrics data collection based on aspect-oriented technology,"
Malaysian Journal of Computer Science, vol. 23, pp. 177-194, 2010.

[36] A. Zaidman and S. Demeyer, "Automatic identification of key
classes in a software system using webmining techniques," J. Softw.
Maint. Evol.: Res. Pract., vol. 20, pp. 387-417, 2008.

[37] B. Adams, K. De Schutter, A. Zaidman, S. Demeyer, H. Tromp, and
W. De Meuter, "Using aspect orientation in legacy environments for
reverse engineering using dynamic analysis-- An industrial
experience report," Journal of Systems and Software, vol. 82, pp.
668-684, 2009.

[38] B. Van Rompaey and S. Demeyer, "Establishing Traceability Links
between Unit Test Cases and Units under Test," in Proceedings of the
2009 European Conference on Software Maintenance and
Reengineering, 2009, pp. 209-218.

[39] L. Zhao and S. Elbaum, "A survey on quality related activities in
open source," SIGSOFT Softw. Eng. Notes, vol. 25, pp. 54- 57, 2000.

[40] C. O. Fritz, P. E. Morris, and J. J. Richler, "Effect size estimates:
Current use, calculations, and interpretation," Journal of
Experimental Psychology: General, vol. 141, pp. 2- 18, 2012.

