
Ticket Coverage: Putting Test Coverage into Context
Jakob Rott

Technische Universität München
Munich, Germany

rott@fs.tum.de

Rainer Niedermayr
University of Stuttgart, CQSE GmbH

Stuttgart, Germany
niedermayr@cqse.eu

Elmar Juergens, Dennis Pagano
CQSE GmbH

Garching b. München, Germany
{juergens,pagano}@cqse.eu

Abstract—There is no metric that determines how well the
implementation of a ticket has been tested. As a consequence,
code changed within the context of a ticket might unintentionally
remain untested and get into production. This is a major problem,
because changed code is more fault-prone than unchanged
code. In this paper, we introduce the metric ticket coverage
which puts test coverage into the context of tickets. For each
ticket, it determines the ratio of changed methods covered by
automated or manual tests. We conducted an empirical study on
an industrial system consisting of 650k lines of Java code and
show that ticket coverage brings transparency into the test state
of tickets and reveals relevant test gaps.

Keywords-test coverage; ticket coverage; test gaps; regression
testing; agile development; continuous software quality

I. INTRODUCTION

In long-lived systems, bugs typically occur in code areas
that have been recently changed [1] [2]. As a consequence, test
managers put great emphasis on thoroughly testing modified
code.

However, with modern agile development processes that
endorse short release cycles, for large systems it is nearly
impossible to execute the complete suite of tests before a
release—especially if it contains a large number of manual
tests.

As changes made since the last test phase are presumably
more bug-prone than unchanged parts, selecting test cases that
execute the changed code would help to narrow down the
scope and save resources. But without suitable analyses it is
difficult to reliably identify changed code and to determine
which changed code chunks have been covered by automated
or manual tests at a given point in time.

To make things even more complicated, tests often have
to be performed with development still ongoing during an
iteration. Since the documentation of requirements is often
scarce, testers often do not know exactly what they need to
test and discount special cases by mistake.

It is therefore not surprising that a substantial amount of
changes reaches production untested, despite systematically
planned and executed testing processes [3].

So what can be done to systematically focus testing efforts
on changed code in agile development projects?

Since development activities are typically guided by user
stories, a meaningful way to narrow down the scope is to focus
testing on the changes made within the course of a given user
story. Usually, these changes are documented in tickets that

eventually correspond to user stories—either directly or by
means of aggregation.

Tickets are written in natural language and therefore also
understandable to non-coders, such as testers. But since a
ticket does not necessarily describe all special cases that the
developer implemented, a tester typically will not be able to
cover all changes given the ticket alone.

Fortunately, in many systems there is a reliable connection
between tickets and code changes via commit messages, such
that code areas changed due to a ticket can be identified.

Our contribution is a new metric, ticket coverage, that un-
veils, which of the changes made in the course of a given ticket
are left untested. To investigate the usefulness of the metric in
practice, we conducted a first empirical study. We show that
ticket coverage yields meaningful results and that it enables
testers to reveal important test gaps. Moreover, we present
how the metric can be further improved by systematically
excluding unimportant test gaps with certain characteristics
from the computation.

The remainder of this work is organized as follows. In
Section II we define important terms and introduce ticket cov-
erage. Section III discusses related work. Section IV describes
our approach to measure ticket coverage. In Section V we
report on the empirical study we performed to investigate its
usefulness. Finally, Section VI concludes the paper with our
ideas for future work.

II. TERMS AND DEFINITIONS

This section explains terms used in this paper and introduces
the ticket coverage metric.

A ticket documents a requested feature or a reported bug.
It is written in natural language and stored in a ticket tracking
system. The proposed metric requires a ticket-based imple-
mentation process.

We call methods that were added or changed during the
implementation of a ticket and not tested afterwards test gaps.
Eder et al. showed that bugs occur more likely in changed-
untested methods than in others [3].

Test coverage data is often not limited to coverage that stems
from the execution of test cases, but also includes coverage
recorded during startup routines, which are executed uncon-
ditionally at each startup of a program. We use the term test-
dependent coverage to refer to coverage recorded during the
(actual) execution of test cases, and test-independent coverage

ar
X

iv
:1

80
4.

07
59

9v
1

 [
cs

.S
E

]
 2

0
A

pr
 2

01
8

Ticket #7409

16 changed/
added methods
in ticket
implementation

7 methods [43,75 %]
executed during test

4 methods [25,00 %]
executed during startup

5 methods [31,25 %]
not tested

Fig. 1. Representation of ticket coverage for a sample ticket as stacked
bar chart. 16 methods were added or changed during the implementation of
the ticket. 11 methods got executed during the test execution; 7 exclusively
through the test case (light gray), 4 of them test-independently during the
program startup (dark gray). 5 methods were not tested (black).

to refer to coverage recorded during startup routines prior the
test execution. We distinguish between these two coverage
sources and report the values separately, because we consider
test-independent coverage to be less meaningful.

The metric ticket coverage gives information about the test
state of a ticket. It relates to the methods that were added
and changed during the implementation of a given ticket,
and expresses which ratio of these methods was tested. The
proposed metric uses coverage data at the granularity level
of methods1, as methods are the smallest named executable
entities. Ticket coverage is easily interpretable without code
knowledge by visualizing the amount of covered methods that
were changed during the implementation a ticket. Tables or
stacked bar charts can be used to present the results (see
example in Figure 1) and enable test managers to quickly get
an overview over the testing state of important tickets.

III. RELATED WORK

The idea to compute ticket coverage and use it as a metric
is new to the best of our knowledge.

Related work exists in the area of code coverage, selective
regression testing, and defect prediction.

Code coverage metrics and test adequacy criteria have been
a major research focus for the last decades [4]. Code coverage
metrics express which ratio of the code of a software is exe-
cuted when running the test cases. Much effort has been spent
in assessing the relationship between code coverage and test
suite effectiveness [5] [6] [7] [8]. The metrics can be computed
at different levels (e.g., at the method, line, or branch level) and
are widely used in practice. To our knowledge, code coverage
has not yet been linked to tickets and computed for the changes
conducted in the implementation of a ticket.

Selective regression testing makes use of techniques to
derive an appropriate subset of existing test cases with the
goal to reduce the test effort. Most techniques perform their
selection based on information about the code, modifications,
and code coverage [9] [10]. However, selective regression
testing does not work well in practice. Graves [11] showed

1The coverage at the method level considers a method as covered if at least
one of its statements is executed.

Fig. 2. Relation between ticket, method changeset and coverage.

that minimalized test suites created with regression test selec-
tion techniques yield only equivalent fault detection results
to slightly larger test suites created by randomly selecting
test cases. Another study conducted at Wincor Nixdorf [12]
confirmed that this technique is not suitable to significantly
reduce the effort for manual tests.

While selective regression testing tries to reduce an existing
test suite such that, e.g., all changed code (and code invoking
changed code) is still covered, we identify untested changes
made in the course of a specific ticket. Therefore, our work
focuses on assessing the completeness of the covered code
after the test execution, while selective regression testing is
applied before the test execution to determine the relevant test
cases. Moreover, our approach deals with changed methods
but does not consider the control flow or dataflow.

Defect prediction uses code characteristics, change metrics,
and information about past defects to build models that can
predict fault-prone code areas. Most prediction models are
built for predictions at the component or class level [13]
[14], recent studies also proposed predictions at the method
level [15] [16]. Eder et al. suggested that the probability of
bugs is increased in changed-untested methods [3]. We do
not predict faults or fault-prone areas, but we focus on code
modifications which have an increased probability of bugs if
they are untested (compared to unchanged code). We aggregate
the untested changes at the level of tickets.

Sherlund [17] developed a prototype which focuses on
testing program modifications and requires that modified code
must be executed in order to satisfy the test criteria. While the
set-up is comparable to the one used in our work, the major
difference lies in the scope of the changed code. Sherlund
computed changes by comparing the most recent code version
with the code at a certain reference point, while we compute
the changes for a specific ticket by investigating all associated
commits.

IV. APPROACH

Ticket coverage integrates the set of added or changed
methods during the implementation of a ticket with method-
based coverage information recorded during the test execution.
Figure 2 shows the relation between ticket, method changeset,
and coverage.

A. Identify the method changeset of a ticket

When working on a ticket, developers commit changes to
the source code into the version control system. It is common
practice to include the ticket number in the commit message.

To determine the method changeset of a ticket, we first fetch
all commits from the version control system whose message
contains the number of the particular ticket. Then, we retrieve
the changed files from each of these commits and parse the
files using a shallow parser. That allows us to identify the
methods in the files. Next, we use the commit diff to filter
the methods so that only methods with changed lines remain.
Finally, we accumulate the obtained methods of all commits
associated with the ticket. The resulting set includes methods
that got added or changed during the implementation. Methods
that existed prior to the ticket implementation and got deleted
or existed only temporarily (added and deleted within the
ticket implementation) may also exist, but they are not relevant
for the computation of the ticket coverage.2

B. Gather coverage data

Coverage data, the second component of ticket coverage, is
obtained by executing automated or manual tests. Profilers are
attached to the program execution and record which methods
get executed.

Ticket coverage is more meaningful if the coverage data is
obtained from the actual test execution. If it is not possible
to record test-exclusive coverage in isolation, test-independent
coverage data from the execution of startup routines might
be included. Test-independent coverage does not allow us
to infer anything for a specific test case and needs to be
treated differently. To identify methods with test-independent
coverage, we collect coverage once for the application startup.

V. STUDY

This section reports on the empirical study that we con-
ducted on a real-world software project to investigate the
usefulness of ticket coverage.

A. Study Object

We selected Teamscale3 as study object. Teamscale is a
software solution for the continuous quality analysis of pro-
gram source code. It is designed as a client-server application:
the front-end is written in JavaScript and consists of about
90k lines of code, the backend is implemented in Java and
comprises about 650k lines of code.

At the time when the study was conducted, a SVN repos-
itory was used to manage the source code. The repository
contains the source-code history of more than 11 years in more
than 70,000 commits. All tickets are managed in Redmine4

and each ticket is classified either as Feature, or Bug, or
Maintenance. Each commit message starts with the ticket

2Note that the removal of a method that prior overrode a method in a super
class can influence the logic. However, ticket coverage is based on methods
and not on the control flow.

3https://www.teamscale.com
4http://www.redmine.org

number (this is enforced by an Eclipse plugin), therefore it
is possible to draw a connection between a commit and the
corresponding ticket.

The development team has about 30 developers on aver-
age and consists of both very experienced developers and
students. The team follows a strict development process [18]
which specifies coding guidelines, stipulates automated tests
and involves a reviewing process. It is worth mentioning
that developers are encouraged to improve nearby code that
contains minor structural flaws when performing changes in
the same artifact. As a consequence, code of methods that are
not directly related to the processed ticket may get changed
and appear as changed within that ticket.

B. Research Questions

In this study, we examine the ticket coverage metric. We
want to find out whether this new metric is suited to reveal
relevant test gaps (i.e., added and changed untested methods
in the context of tickets) and identify its strengths and weak-
nesses. We study the following three research questions:

RQ1: How many of the detected test gaps are relevant
for developers? We assume that some of the detected test
gaps are relevant, represent a risk, and should be closed by
extending test cases, while other gaps may be less relevant
and not necessarily worth testing. Therefore, we want to find
out how many test gaps are relevant from the view point of
developers to understand the benefit of this metric.

RQ2: Why are some test gaps irrelevant and can they
be excluded systematically? We investigate characteristics of
test gaps that are considered as irrelevant to identify indicators
for automatically detecting these test gaps. The answer to this
research question helps improve the precision of the metric by
filtering out irrelevant test gaps.

RQ3: How much ticket coverage is independent of the
actual test case? We want to find out the ratio of the measured
coverage that originates from the actual test cases as well as
the ratio that is test-independent because it results from the
startup of the system. We consider coverage gained during
the startup as much less expressive because testers do not
(systematically) perform any ticket-specific checks (actual vs.
expected behavior) during this phase. Therefore, we need to
know the impact of test-independent coverage to understand
the validity of the ticket coverage values.

C. Study Design

For the study, we randomly picked 54 tickets based on these
criteria:

• the implementation of the ticket was conducted within the
last 20 months to increase the likelihood that developers
remember their work

• code changes of the ticket involved Java code (i.e., tickets
that affected only JavaScript code were excluded5)

5Our current implementation does not support coverage data from
JavaScript profilers. We reserve this for future work.

https://www.teamscale.com
http://www.redmine.org

• at most 3 tickets from the same developer were picked
to avoid developer or task specific effects

The selected tickets consisted of 37 feature tickets, 10 bug
tickets, and 7 maintenance tickets. 9.46 Java methods were
added or modified on average in the selected tickets.

For each of the 54 chosen tickets, we wrote a specification
for a manual test case and asked the assignee of the ticket
to validate the specification to ensure that it was sufficient
and proper. Then, we executed the test case on a version
of the system under test that was built from the code base
at the ticket completion timestamp. While executing the test
case, JaCoCo6, which was attached to the JVM as a Java
agent, recorded the coverage data at the method level. If a
test case required the study object to be in a specific state
(e.g., architecture-analysis completed), we prepared this state
in advance without recording coverage for that. Since the
JaCoCo coverage data included the whole run of the JVM
for each built version, the startup coverage was determined by
recording the coverage of the system initialization itself.

Then, we computed the ticket coverage for each ticket as
presented in IV.

The study design of the research questions is as follows:

RQ1: We discussed the test gaps that were found for
the investigated tickets with the corresponding assignees. We
conducted a survey in which the developers were asked to
rate the findings either as relevant or irrelevant. Subsequently,
we analyzed the ratio of test gaps that were rated as relevant.
Then, we categorized the justifications of developers why they
considered certain test gap as not relevant.

RQ2: We collected all methods that were added or changed
but not executed during the test case. Then, we divided these
test gaps into important findings and potentially unimportant
findings. For the unimportant findings, we created categories
with distinguishing characteristics and provided a suggestion
for each one on how to detect and exclude its methods
automatically using static analysis.

The classification in important and potentially unimportant
was verified in RQ1.

RQ3: To answer this question, we calculated the ratio
of covered methods in the startup coverage to all covered
methods (of the ticket) to find out how much ticket coverage
is independent from the actual test.

D. Results

In total, 511 methods (avg. per ticket: 9.46) got added or
changed during the implementation of the 54 analyzed tickets.
Out of these, 110 methods (avg. per ticket: 2.04) were not
executed during the coverage recording and therefore represent
test gaps. Out of the remaining 401 covered methods, 364 were
exclusively executed by the test case and 37 methods were
already executed during program initialization. The results of
the research questions are:

6http://www.eclemma.org/jacoco

RQ1: How many of the detected test gaps are relevant
for testers? Table I presents the results. 20 methods (18.2%)
out of the 110 untested methods found were rated as critical by
the developers. 56 (50.9%) were rated as uncritical, 3 (2.7%)
were rated as not coverable by manual tests, and 28 (25.5%)
were rated as not interesting. RQ2 provides more details on
the developers’ reasons for this statement.

In two cases, the developers answered that the untested
method should have been executed during the test case. A
check revealed that those 2 methods were no false positives,
but the developer was wrong: In the first case, we discovered
that the test case, which had previously been verified as
complete, was missing a specific ticket-relevant case. In the
second case, we found a comment indicating that the untested
method was pre-implemented for later usage and not in use at
that time.

Even though all test cases were verified as proper and
sufficient for the respective tickets as mentioned above, the
developers answered in 18 cases that the revealed test gap
method was not executed because of the test case definition.
For example, once, an analysis execution should have been part
of the test case and not a precondition. According to the test
case definition, we inspected only the results of the analysis
(and recorded the coverage information for that), but this was
not sufficient to cover the implementation changes.

The largest category of untested methods is built up of 54
methods that were rated as not ticket relevant (i.e., undertaken
changes are not related to the ticket) methods or as refac-
torings. The developers gave clarifying comments for 31 of
these methods why they are not ticket relevant or not supposed
to be executed as they were not changed semantically. We
categorized the reasons and assigned each method to one or
more of the following categories:

• 15 methods: removal of throws declaration led to removal
of throws declarations of all caller methods

• 8 methods: method was renamed
• 7 methods: value that got used multiple times in a method

was extracted to a constant
• 5 methods: method got extracted from an existing method

and reused in multiple locations
• 2 methods: method parameter or a return type changed

and caller methods had to be adapted
In one quarter of the analyzed tickets with untested methods,

the developers rated at least two-thirds of the test gaps as worth
testing. In total, 39 (35.5%) of the 110 test gaps found were
rated as worth testing within the scope of the analyzed ticket.

RQ2: Why are some test gaps irrelevant and can they
be excluded systematically? Out of the 110 test gaps found,
we considered 28 methods as not worth testing due to their
characteristics. Table II shows the categories of these methods.

We gathered implementations of the toString method in
one category as we consider those as uncritical test gaps. Since
every implementation overrides the toString method of the
Object class, all of them can easily be found automatically.

13 methods were simple getters which return a value and do

http://www.eclemma.org/jacoco

TABLE I
CATEGORIZATION OF TEST GAPS BY DEVELOPERS.

Category Sub Category Frequency

critical:
20/110 (18,2%)

should be executed 2 1,8%

uncomplete test case 18 16,4%

rather uncritical:
56/110 (50,9%)

not ticket relevant or refactoring 54 49,1%

exception thrown by fatal errors 1 0,9%

overridden method 1 0,9%

need other coverage:
3/110 (2,7%)

IDE integration code 1 0,9%

method for unit test 2 1,8%

uninteresting
according to RQ2:

28/110 (25,5%)

simple getter 12 10,9%

too trivial to test 12 10,9%

toString method 4 3,6%

answer missing 3 2,7%

Σ 110 100%

TABLE II
METHODS THAT WERE CONSIDERED AS IRRELEVANT FOR TESTERS WERE

SEPARATED IN THREE CATEGORIES.

Category Frequency

toString method 4 (3.6%)

simple getter 12 (10.9%)

“too trivial to test” 12 (10.9%)

Σ unimportant methods 28 (25.4%)

not contain any additional logic. A simple getter can easily be
detected automatically, because it is named after the member
to be returned, does not to have any parameters and consists
of only a single statement.

We considered methods that are “too trivial to test” as a
further category for irrelevant test gaps. For the classification,
the number of statements was decisive. The category contained
7 constructors that invoked only the super class constructor
with at most one additional variable assignment (method
length: 1 to 2 statements), and 5 methods that were returning
only a boolean value (method length: 1 statement).

With this research question, we wanted to find out in a
manual analysis which categories of irrelevant test gaps appear
and how many methods are assigned to them. The presented
methods can be detected and excluded automatically in order
to improve the ticket coverage computation.

RQ3: How much ticket coverage is independent of the
actual test case? The boxplots in Figure 3 give an overview
over the execution distribution of the method changesets. Out
of the 401 changed and tested methods, only 37 (9.2%) had
been executed during the startup of the system.

Figure 4 shows the ratio of methods covered by the test
cases and the ratio of methods executed during the system
startup. The coverage of half of the tickets did not contain any
startup coverage. In 75% of the executed methods, the ratio of
test-independent coverage does not exceed 18%. The average
ratio of startup coverage is 13.3% per ticket. The average ratio
of startup coverage in the tested parts of the tickets is 15.2%.

We discuss two outliers, which were completely covered

during startup routines or not covered at all, in more detail.
Ticket #33 was fully covered during the startup. In this

ticket, a huge JavaScript implementation took place and only
a few Java lines were changed to register the new JavaScript
files. This changed method is executed at each start of the
system.

Ticket #6 remained completely uncovered. In this ticket,
a functionality was implemented that handles special kinds
of connection errors. When performing the tests, we were
not able to reproduce the errors in order to execute the error
handling code.

The first 5 tickets displayed in Figure 4 involved only
changes to methods which were exclusively reachable by unit
tests. As we did not execute unit tests, no coverage information
existed for those tickets.

E. Interpretation

RQ1: According to the developers, ticket coverage allows
us to find relevant untested methods. 18.2% of the untested
methods were assigned to the critical category (see Table I),
because the developer of the ticket either thought the method
should have been covered or the developer recognized that the
test case was incomplete.

The high number of methods that contained ticket-irrelevant
changes or were refactorings could be traced back to the
performed development process that encourages nearby code
improvements (refer to Section V-A for details). Therefore,
the metric computation could be improved by detecting and
filtering methods that were changed only due to refactorings
(which do not change the semantical behavior of the code).

As we focused only on manual tests performed on the
web interface, we did not consider coverage that could be
gained from unit tests or by testing the IDE plugin. Integrating
additional coverage would be feasible.

RQ2: To improve the usefulness of the ticket coverage as
metric, it is important to exclude irrelevant test gaps. What we
did manually in this study can be automated for the proposed
categories.

Percentage of

methods executed

exclusively during

test case exec.

Percentage of

methods executed

already in

system startup.

Percentage of

methods

not executed.

0.0 0.2 0.4 0.6 0.8 1.0

#19
#36
#37

#33

#35
#34

#6

Fig. 3. Boxplots that visualize the percentages of coverage during startup
and test and the percentages of changeset methods not executed.

#
1

#
2

#
3

#
4

#
5

#
6

#
7

#
8

#
9

#
1
0

#
1
1

#
1
2

#
1
3

#
1
4

#
1
5

#
1
6

#
1
7

#
1
8

#
1
9

#
2
0

#
2
1

#
2
2

#
2
3

#
2
4

#
2
5

#
2
6

#
2
7

#
2
8

#
2
9

#
3
0

#
3
1

#
3
2

#
3
3

#
3
4

#
3
5

#
3
6

#
3
7

#
3
8

#
3
9

#
4
0

#
4
1

#
4
2

#
4
3

#
4
4

#
4
5

#
4
6

#
4
7

#
4
8

#
4
9

#
5
0

#
5
1

#
5
2

#
5
3

#
5
4

Fig. 4. Overview over the ratio of methods either covered exclusively through
the test case (light gray) or the system’s startup (dark gray). Fraction of not
executed methods is filled in black. The shaded boxes (#1-#5) show tickets
involving only changes to unit test code, which was not executed in this study.

#9 #13 #10 #18 #31#30#21#15#14

Fig. 5. Ticket coverage with (left side) and without (right side) irrelevant
methods according to RQ2. The ratio of methods executed exclusively through
tests increased. Colors: light gray = method is executed exclusively through
test case; dark gray = method is covered during system startup; black =
untested methods (i.e., open test gaps).

Simple getter methods can be identified using static analysis.
For methods that were considered as too trivial to test, a simple
count of the statements could be used to detect these. toString
methods override the toString implementation of the Object

class and can therefore easily be identified.
In the conducted study, 28 of 110 test gaps (25.4%) were

marked as uninteresting. To investigate the effect of blacklist-
ing these methods, we recalculated the ticket coverage for the
corresponding tickets. The results can be seen in Figure 5. As
expected, the ticket coverage values increased after removing
the noise. As a consequence, less incompletely tested tickets
remain which need to be investigated manually.

In mission-critical systems, excluding trivial methods might
not be appropriate.

RQ3: We consider the coverage achieved during the system
startup as acceptably low in the investigated study object. Only
9.2% of the covered methods were executed during the startup
and in one half of the analyzed tickets the ticket coverage was
completely test-dependent.

We found a high ratio of startup coverage in 5 tickets which
were dealing with system parts that are related to the program
initialization. It was striking that the changesets of those tickets
consisted of at most two methods. For tickets that partially
deal with initialization procedures, the influence of methods
executed during the startup might be smaller.

If the possibility exists to activate the profiler after the
initialization of the program (instead of activating it before
the program start), it will not be necessary to determine the
startup coverage.

The results of this research question show that some part
of the achieved ticket coverage may be test-independent. The

influence in our particular study, in which we executed and
recorded each test case separately, was limited and did not
distort the results. However, it could be different in, e.g.,
exploratory testing or whenever coverage is not recorded in
isolation for a ticket.

F. Threats to Validity

In this section, we discuss the threats to the internal,
external, and construct validity of the study.

1) Internal Threats: Threats to internal validity comprise
reasons why the results could be invalid for the study object.

The responses gained from the developer survey regarding
the relevance of the presented test gaps are a threat to validity.
Developers may not share the same view on the assessment
whether a method is test relevant. We mitigated this threat
by involving 20 different developers and assigned at most 3
tickets to each developer.

A threat to the current implementation of the metric com-
putation are syntactic code changes that do not change the
semantic of a method. For example, the rename of an identifier
within a method implies that the method was changed for
a certain ticket, even though its semantic did not change.
Consequently, this leads to a one-sided error because the com-
puted set of changed methods may be larger than it actually
is; nevertheless ticket coverage reveals at least the relevant
gaps. A future version of the implementation should include
a refactoring detection to filter out semantically unchanged
methods, increasing the ratio of relevant test gaps.

Another threat is caused by the development process that
did not use feature branches at that time, such that the imple-
mentation of a ticket is not isolated from other development
activities. Therefore, changes to methods of different tickets
conducted at the same time may overlap. As a consequence,
a method that was changed within the scope of ticket #1 and
then moved to another class during the development of ticket
#2 before completing ticket #1 would no longer be recognized
as changed within #1. However, the moved method would still
be recognized within #2 though, thus no method will travel
under the radar.

Like for all coverage metrics, a threat regarding the metric
itself is that it considers which methods got executed during
the test. It does not take into account whether these methods
were tested with appropriate test assertions (in terms of com-
parison against expected values). Therefore, coverage metrics
should be employed with caution. They are not necessarily a
meaningful indicator for test effectiveness, especially not for
system tests [8].

2) External Threats: Threats to external validity concern
the generalization of the study results.

The study was conducted for the Java code of the study
object Teamscale. The results for Teamscale may not be appli-
cable to other open- and closed-source projects and may hold
only for Java code. Therefore, further studies are necessary to
determine whether the results are generalizable.

The identified criteria for methods that are potentially not
worth testing in RQ1 and RQ2 comprise another threat re-
garding generalization. While we and the developers involved
in the survey assume that these methods are less likely to
contain faults, testing may still be useful because even simple
methods can be faulty. Therefore, it is necessary to empirically
investigate the fault-proneness of simple methods (such as
short getters, setters and delegation methods) to be able to
make valid decisions regarding these methods. Furthermore,
the goal of testing and the impact of faults should be consid-
ered when reflecting about filtering out methods; a company
that is developing safety-critical software and aims to identify
as many faults as possible should take another decision than
a company that wants to reduce the costs of testing.

3) Construct Validity: Threats to construct validity concern
the relationship between theory and observation, i.e., how
accurate we measure the studied concept.

A threat to construct validity is that we defined the spec-
ifications for the manual test cases ourselves. Therefore, the
test cases may not have been proper or complete to test the
associated ticket. To mitigate this threat, we asked the ticket
assignees to verify the developed test cases and adjusted the
test cases according to their feedback.

VI. CONCLUSION AND FUTURE WORK

We presented the ticket coverage metric which expresses
how well the changes conducted for a certain ticket are covered
by tests. The metric helps testers and their managers to get an
overview over the testing state of tickets. Furthermore, the
metric can point to test gaps, i.e., untested changes in the
source code, so that they can be tackled by testers.

The conducted empirical study confirmed that the revealed
test gaps are relevant and useful for testers. We identified
that some of the test gaps were caused by incomplete test
cases, a problem that occurs in many real world systems. The
study results also suggested how our first implementation of
the metric can be improved: We identified methods that are
less likely to contain faults and may therefore not warrant
being testing. We classified them into groups and provided
suggestions on how to exclude them automatically to gain a
more expressive ticket-coverage result. Finally, we presented
how much coverage will be gained from startup routines if it is
not possible to isolate the program startup from the coverage
recording, and showed that its influence was negligible for our
study object.

For future work, we intend to apply a refactoring detection.
It will allow us to exclude automatically methods that were
not changed semantically from the ticket-coverage computa-
tion and thus, bring real changes into focus. Furthermore,
we want to replicate the study with further study objects,
further programming languages, and the inclusion of coverage
information from automated tests aside manual tests. Finally,
we plan to research whether ticket coverage is also a useful
support in an exploratory testing process.

ACKNOWLEDGMENT

This work was partially funded by the German Federal
Ministry of Education and Research (BMBF), grant “Q-Effekt,
01IS15003A”. The responsibility for this article lies with the
authors.

We thank Nils Göde for his valuable review.

REFERENCES

[1] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proceedings of the 27th International
Conference on Software Engineering (ICSE), pp. 284–292, IEEE, 2005.

[2] A. E. Hassan and R. C. Holt, “The top ten list: Dynamic fault predic-
tion,” in Proceedings of the 21st International Conference on Software
Maintenance (ICSM), pp. 263–272, IEEE, 2005.

[3] S. Eder, B. Hauptmann, M. Junker, E. Juergens, R. Vaas, and K.-H.
Prommer, “Did We Test Our Changes? Assessing Alignment between
Tests and Development in Practice,” in Proceedings of the 8th Interna-
tional Workshop on Automation of Software Test (AST), 2013.

[4] H. Zhu, P. A. Hall, and J. H. May, “Software unit test coverage and
adequacy,” ACM computing surveys (CSUR), vol. 29, no. 4, pp. 366–
427, 1997.

[5] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th International
Conference on Software Engineering (ICSE), ACM, 2014.

[6] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage criteria,”
Transactions on Software Engineering (TSE), vol. 32, no. 8, 2006.

[7] A. S. Namin and J. H. Andrews, “The influence of size and coverage
on test suite effectiveness,” in Proceedings of the 18th International
Symposium on Software Testing and Analysis (ISSTA), ACM, 2009.

[8] R. Niedermayr, E. Juergens, and S. Wagner, “Will My Tests Tell Me If
I Break This Code?,” in Proceedings of the 1st International Workshop
on Continuous Software Evolution and Delivery (CSED), ACM, 2016.

[9] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[10] G. Rothermel and M. J. Harrold, “Analyzing regression test selection
techniques,” Transactions on Software Engineering (TSE), vol. 22, no. 8,
pp. 529–551, 1996.

[11] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel, “An
empirical study of regression test selection techniques,” Transactions
on Software Engineering and Methodology (TOSEM), vol. 10, no. 2,
pp. 184–208, 2001.

[12] E. Juergens, B. Hummel, F. Deißenböck, M. Feilkas, C. Schlögel,
and A. Wübbeke, “Regression test selection of manual system tests in
practice,” in Proceedings of the 15th European Conference on Software
Maintenance and Reengineering (CSMR), pp. 309–312, 2011.

[13] J. Nam, “Survey on software defect prediction,” Department of Compter
Science and Engineerning, The Hong Kong University of Science and
Technology, Tech. Rep, 2014.

[14] Y. Kamei and E. Shihab, “Defect prediction: Accomplishments and
future challenges,” in Proceedings of the 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), vol. 5,
pp. 33–45, IEEE, 2016.

[15] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-level bug
prediction,” in Proceedings of the International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp. 171–180, ACM,
2012.

[16] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on fine-
grained module histories,” in Proceedings of the 34th International
Conference on Software Engineering (ICSE), pp. 200–210, IEEE, 2012.

[17] B. A. Sherlund, “Logical modification oriented regression testing,” in
Defect prevention: presentations of the 12th International Conference
and Exposition on Testing Computer Software, pp. 287–303, 1995.

[18] F. Deißenböck, U. Hermann, E. Juergens, and T. Seifert, A Lean
Evolution and Development Process, 2014. Unpublished report.

