Event-Based Communication for IoT Networking

Panayiotis Kolios, Christos Panayiotou, Georgios Ellinas, and Marios Polycarpou

Abstract—In the Internet of Things (IoT), smart devices em-
bedded on a myriad of different objects will enable monitoring,
control, and optimization with potentially transformative impact
to the society. Evidently, operational efficiency has become
an essential factor in the proliferation of these devices since
higher efficiency will prolong device lifetime and achieve greater
autonomy.

In this work, the operational efficiency challenge is being
looked at from the device point of view as well as from the
networking side of things in which local and remote hosts need to
exchange information for monitoring, control, and optimization
functionalities. In the former case, a data-driven event triggering
technique is developed to minimize the interaction between
devices, while in the latter case an event-based communication
strategy is investigated to minimize the overall energy consump-
tion of the network. Both experimental results and results for a
real-world application are presented to demonstrate the many-
fold operational efficiency gains that can be realized using the
proposed solution.

Index Terms—Internet of Things, Event-triggering, Monitor-
ing, optimization and control

I. INTRODUCTION

IoT is a technology that promises to revolutionize social and
economic activity by enabling horizontally integrated produc-
tivity solutions as opposed to the current vertical paradigm
[1]. To do so, IoT devices combine computing capabilities
with sensing, communication, and actuation capabilities to: a)
collect and exchange information in order to gain new insights
on processes/systems (i.e., monitoring), b) take preemptive
or responsive actions based on feedback (i.e., control), and
c) review and revise the employed activities when deemed
necessary (i.e., optimize) [2] [3].

The increased complexity associated with these three tasks
together with the necessity for greater autonomy, of mostly
battery-powered embedded devices, calls for higher efficiency
across all executed operations. For instance, upcoming com-
munications standards (such as the 802.11ah [4] and LTE-
MTC [5]) that are specifically designed for IoT applications
define active/sleep states to enable sporadic exchange of infor-
mation and extended power-down periods to conserve battery
capacity. This intermittent operation has also attracted consid-
erable attention by the research community that is currently
investigating possible event-triggering techniques to reduce
sensing and actuation tasks as well [6] [7] [8]. As opposed
to continuous operation, and even periodic triggering, event-
triggering deals with actions that take place only when specific
events have occurred. These events could either be due to

P. Kolios, C. Panayiotou, G. Ellinas, and M. Polycarpou are mem-
bers of the KIOS Research Center for Intelligent Systems and Net-
works and the Department of Electrical and Computer Engineering,
University of Cyprus, e-mail:{pkolios, christosp, gellinas,
mpolycar}@ucy.ac.cy

simple discrete state changes, predefined interrupt sequences,
or spontaneous violations to some set threshold. Most often
the choice is governed by the degree of predictability of the
system to be managed:

1) Discrete state changes are employed for systems with
unpredictable behavior,

2) Interrupt sequences are designed for systems that can be
precisely expressed mathematically,

3) Threshold techniques are developed for systems that
exhibit behavioral patterns which adequately reflect re-
current behavior. Events are triggered whenever the actual
observations made exceed the set thresholds defined by
the system model.

The third category of systems appeals to many real-life
settings that experience diurnal patterns, including daily com-
muting and home dwelling. Importantly, IoT devices have
dramatically simplified the collection and analysis of data
for the extraction of the underlying behavior patterns, and
have enabled the design of new data-driven event-triggering
approaches for monitoring, control, and optimization [9].

In accordance, the primary focus of this work is on the
study of systems that exhibit recurrent patterns. Individual IoT
devices are deployed to conduct the aforementioned manage-
ment actions and to inform remote hosts of any unanticipated
changes. To conserve resources, these devices are assumed
to operate in duty cycles, i.e., they sporadically get activated
to execute their actions and power down computing and
communication circuitry for the rest of the time.

Under this regime, a novel data-driven event-triggering
technique is developed based on behavior models (to cap-
ture the underlying patterns that suffice). The proposed tech-
nique considers the tradeoff between estimation accuracy and
volume of event triggers generated. Obviously, fewer event
triggers result in less information being exchanged by local
and remote hosts, and reduce the energy consumption of each
individual host (both for processing the interrupts and for
communicating the events between the local and remote hosts).
Moreover, the overall energy consumption of the emerging
event-based communication paradigm (from inter-networking
devices employing event triggering) is also studied. Notably,
the idlying energy consumption while waiting for a remote
host to wake up may prolong the active duration and reduce en-
ergy savings. In addition, the end-to-end delay in exchanging
event interrupts may be unacceptable for different applications.
Both these challenges are addressed in the sequel.

In the following section, related work is reviewed and back-
ground material is included. Section III develops the proposed
data-driven event-triggering technique and demonstrates its
applicability in a real-world public transport scenario. Section
IV studies the derived event-based communication paradigm
and conducts extensive experimental results to study the

performance of this networking approach. Finally, Section V
concludes this work with key insights obtained and elaborates
on future research efforts.

II. BACKGROUND AND RELATED WORK

Event-triggering is becoming an increasingly popular com-
putation and communication approach especially for embed-
ded and mobile devices where resources must be thriftily used.
The potential impact of this approach is already experienced
on consumer electronics such as smartphones and tablets that
advertise standby times that are several orders of magnitude
larger than active times. A typical smartphone, for instance,
provides 10 hours of active Internet usage while standby time
reaches 250 hours. Event-triggering tries to strike a balance
between the two by performing necessary actions whenever
particular events have occurred and power down at every other
time.

Among the various event-triggering techniques that are
explored in the literature, threshold techniques are the most
popular for several reasons. Firstly, these techniques assume
that a system model exists. Evidently, the majority of ap-
plication scenarios have to do with systems that experience
recurrent patterns which can be extracted using data analytics,
and can be used to build a behavior model. Noticeably,
extracting behavioral patterns is one of the main reasons why
data analytics have been very popular in recent times, with a
large volume of research work steered towards that direction
(including the works in [10] and [11]). Secondly, thresholds
can be purposefully designed to intelligently trade off accuracy
with the number of events triggered and, thirdly, thresholds
can be dynamically adapted to reflect changes in the system
behavior.

Threshold techniques can be broadly classified into sample-
and stream-based approaches. As their names suggest, sample-
based thresholds deal with individual data elements while
stream-based thresholds consider data streams and the prop-
erties that they entail. An early survey is provided in [12].
Limit checking is the simplest and most popular sample-based
approach with events triggered whenever sample data exceeds
the set limits. The alternative change checking approach trig-
gers events based on the differences detected on the current
sample from previously sampled data. Trend checking is one
such approach whereby variations in the samples are used to
create thresholds instead of the absolute values [13]. Doing
so allows for earlier detection of events at the expense of
increased sensitivity. Statistical values are also commonly used
instead of absolute values in checking for changes [14]. The
first few moments are frequently used in conjunction with
statistical tests such as hypothesis testing and run-sum testing
(as elaborated in [15]). The advantage of statistical values is
that small changes can be detected more effectively without
penalizing sensitivity.

As previously emphasized, stream-based approaches con-
sider properties of data streams to set triggering thresholds.
Signal processing is utilized for this category, whereby various
different features are extracted and analyzed [16]. Transforms
(including Fourier and Z transforms, wavelets, etc) are often

used for feature extraction while statistical relationships are
subsequently used for analysis. Another approach is process
analysis of either single or multiple signals that deals with
changes in the signals to detect unanticipated events [17].
This is mainly achieved by analytical redundancy, whereby
various excitation inputs to the system are used to identify
behavioral patterns. Correlation methods are frequently used to
identify relevant patterns, in addition to linear and non-linear
parameter estimation methodologies such as least squares and
artificial neural networks [18]. Residuals of various forms
are also used to describe the difference between the actual
system behavior and that of the model [13]. These residuals are
computed using parity equations (through transfer functions
or state-space formulations) or state-observers (that compute
the changes between the triggering events and the associated
system behavior). Thresholds are then set based on the latest
residual values. The main drawback of this approach is that
residuals change continuously due to the inherent model
uncertainty resulting in increased complexity.

Statistical analysis greatly simplifies feature extraction and
analysis. Similar to statistical solutions for sample-based ap-
proaches, stream-based statistical analysis focuses on purely
data-driven tools to detect unanticipated events [19]. Principal
component analysis is one such tool, whereby a small num-
ber of uncorrelated variables (i.e., principal components) are
used to describe a larger multi-variable model. The principal
components maintain most of the information describing the
system but greatly speed up the analysis.

In the sequel, statistical analysis is used to develop a novel
data-driven event-triggering technique for IoT applications.
This technique is used to intelligently generate triggering
events that balance estimation accuracy to activity level. The
resulting event-based communication paradigm (that suffices
for networking devices operating based on event-triggering) is
also investigated. Key insights are offered on the optimizations
that need to take place in order to reduce the overall energy
consumption when practical considerations are introduced.

III. DATA-DRIVEN EVENT TRIGGERING

The proposed technique first quantizes data streams into a
number of consecutive segments, builds a model of the system
based on statistical measures on these segments, and derives
thresholds across the segments for event triggering. Depending
on the application scenario, data streams could be split into
segments of a specified dimensional space, with the temporal
and spatial dimensions being the prominent two examples. It
is assumed that recurrent patterns start at the first segment and
end at the last segment of the data stream.

Let each segment (I, f) belong to the set £L = {1,...,L}.
Then, t;7(n), {l, f} € L is set to be the n'" data sample across
segment (I, f). With a total of N available samples, the first
moment 6;7(n) can be calculated as follows:

N
Os(N) = = S tgn) VLI €L)

n=1

and subsequent sample moments can be computed as
05 (N) = LSV tip(n)¥, for the k" moment. Clearly,

higher order moments provide better description of each
segment’s distribution. More importantly though is the fact
that sample moments can be updated recursively with every
new data sample collected and thus there is no need to collect
and store raw data samples but instead the respective moments
only. For the k*" sample moment, the updating step is derived
as follows:

N+1
bup (N +1)* = ﬁ > y(n+ 1) @
1 nz}lv
N1 D () + g (N + 1)]k>
" 3)
_ NOy(N)* + g (N + 1)) @

N +1

As shown in eq. (4), the updating step requires knowledge
of the latest moment value, 6; f(N), and the actual number of
samples NV used to compute that value. Hence, each sample
moment can be updated dynamically with every new sample
using only these two elements. In addition, central moments
can be computed from sample moments through the binomial
transform, with the k*" central moment given as ¥;¢(N)* =
Yo () (C1F 0 (N)H (Bup (N)).

The proposed technique assumes that a system model con-
sists of the first A moments for each segment of the data
stream which are used to approximate the distribution of the
data stream. This model is then used to calculate probability
bounds that are to be used to set the event-triggering threshold.
An event is triggered within a particular segment if the
latest data sample exceeds the threshold. With 6;;(N) being
the first sample moment (i.e., the mean) as defined in eq.
(1) for segment (I, f), then the upper and lower probability
bound are given by 6;;(N) + « and 6;7(N) — « respectively,
where « is the threshold value. An out-of-bound event is
triggered whenever the data sample in segment (I, f) violates
the probability bounds.

In the derivations that follow these threshold values are
calculated for a target S of triggered events. The combination
of event interrupts triggered across particular segments is given
by the binomial coefficients in matrix C = (%) with rows
identifying all possible combinations of choosing S number
of segments out of the total number of segments L. Hence,
entry C,, of the matrix, determines the sth segment (s =
{1,...,8}) where an event is triggered in the r*" possible
combination of events (r = 1,..., R with R = m)
An illustrative example of matrix C is shown below to aid
understanding. For this example it is assumed that L = 40
and S = 5.

1 2 3 4 5

T3 6 10 17 23

2|7 17 24 38 40
C: T,

"l20 27 30 37 40

In this example, the 15° combination of events is assumed
in segments 3, 6, 10, 17, and 23. At every other segment the
accumulated values of the sampled data does not fall outside
the thresholds and thus no event is triggered. Also, with
every event trigger the uncertainty associated with the actual
system state, vanishes. Then, the probability of consecutive
events triggered between an arbitrary pair of segments can be
expressed as follows:

®)
where p(l, f) expresses the probability of no event triggers be-
tween segment (I, f). Probability p(l, f) is defined as follows:

p(l, f) =plir(N) —a < Sy <0 (N)+a) (6

Moreover, in addition to the probabilities between consec-
utive events, border conditions should also be incorporated.
The leftmost border deals with the probabilities from the first
segment up to segment [of the 1%% event interrupt. Similar to
(5), this probability can be expressed as follows:

p(1,1) = p(1,2)xp(1,3) x... x p(1,1—1) x (1—p(1,1)) (7)

This is to say that all remote hosts are informed of the start
of a new phase by either a real event interrupt (from the local
host) or a virtual indication from a predefined schedule. The
rightmost border includes the probabilities for all segments
that follow after the last event trigger. This probability can be
expressed as follows:

p(f, L) =p(f, f+1) xp(f, f+2) x...xp(f, L) (8)

Then, the probability of all possible combinations of events
is expressed as follows:

R S-1

p=>_][] P(Cre, Cras1)] x p(1,Cr1) x p(Crs, L) (9)

r=1s=1

with p(C,, Crsy1) defined by eq. (5), p(1,C,1) by eq. (7)
and p(C,g, L) by eq. (8). Since all possible combinations of
events are included in (9), the total probability should be equal
to p = 1. It should be noted here that the only unknown
parameter in this system of equations is threshold « in the
bound described by eq. (6).

The bisection method [20] can be used to solve the system
of equations in (5) in order to compute the unknown parameter
«, as described by Algorithm 1 below. The bisection method
assumes that the solution lies within the interval (a,, a,,) which
is iteratively reduced to reach a favorable precision. To do so,
the center point (i.e., a = 0.5%(a, +a,)) of this interval is first
calculated. This value is subsequently used to evaluate eq. (9)
and test feasibility. The center point a is then assigned to either
a, or a, depending on which section retains feasibility (i.e.,
p < 1). The procedure continues until a favorable precision €
is reached i.e., a,, — a, < € and finally the threshold value o
is returned.

In summary, the proposed technique uses the first X mo-
ments for each segment of a particular data stream to build a
model of the system. Using these moments, a threshold « is
computed to set a probabilistic bound that anticipates a total of

Algorithm 1 Bisection Method

Ensure: a, =0, a, = A

1: while (a,, —a,) > € do
2: a:(a“QiL)

3: Solve p in (9)

4: if p > 1 then

5: Ay = Q

6: else

7: a, =a, x=a

8: end if

9: end while

10: return o

S event interrupts triggered along the identified segments. As
exemplified above, higher precision can be achieved by com-
puting higher order moments for each segment and reducing
the € parameter in the bisection method.

With regards to the complexity of the proposed technique,
there are 22— data sample calculations between all seg-
ments and K moment calculation updates (expressed in eq.
(4) above) for each segment. With regards to bound updates,
there are R combinations of events that need to be considered
(as expressed by eq. (9) above) that exponentially increase
with S. Finally, the bisection method has linear convergence
with a total of logs (<) iterations carried out, where ¢ is the
initial interval at the start of the iterative procedure.

A. Public Transport Case Study

To demonstrate the applicability of the proposed technique,
a public transport scenario is considered in which vehicles
operating along various service routes are remotely monitored.
Current state-of-the-art solutions employ mostly periodic trig-
gering whereby onboard units report location and mobility
information to remote hosts at constant time intervals. Using
the proposed technique, we investigate the tracking accuracy
that can be achieved based on the proposed event-triggering
approach and for varying number of target event triggers, S.

Specifically, bus route 150 of the Transportation Organiza-
tion of Nicosia District (OSEL) in Cyprus, was considered.
Road segments between consecutive bus stops on this route
were used to quantize the data streams and onboard units
were installed on all buses operating on the specific route to
measure the travel times along consecutive road segments. The
mobility model (consisting of travel times between consecutive
road segments) was built using the first =4 moments of the
measured travel times. Of the 500,000 samples collected, 80%
were used to build the mobility model and the rest were used
to test the derived thresholds.

The proposed technique was implemented in Matlab, and
for the bisection method parameter A = 60 minutes was
used that covers all round trip times and a stopping precision
€ = 1 sec was set. Figure 1 depicts the tradeoff that exists
between the event triggering volume and the length of the
travel time thresholds. More specifically, Fig. 1a shows the
threshold values obtained for a range of target event triggers
while Fig. 1b provides box plots for the event triggers created

4

3
8
Event interrupts, K

! -

L | +

+ I - +

=

Hoo:

; RN
Threshold value, o (sec)

Threshold value, c (sec)

2 25 3 5 55 6

35 4 45
Event interrupts, K

(a) (b)

Fig. 1. a) Travel time thresholds for varying number of target event triggers,
and b) experimental performance with the test sample.

based on the set threshold values when simulating the buses’
mobility using the test sample.

As clearly shown in the figure, the threshold drops ex-
ponentially with increasing number of triggered events. For
instance, a total of .S = 4 target interrupts results in a threshold
of around 1 minute. This is to say that of the total travel
time of each bus along the particular service route that lasts
approximately 50 minutes, only 4 event interrupts need to be
handled in order to maintain an estimated tracking accuracy
of 1 minute. This is also demonstrated with the simulation
results depicted in Fig. 1b. Compared to periodic triggering
with interrupts triggered every minute during the entire trip
duration, event-triggering achieves a 12x gain.

As emphasized above, the reduction in triggering events
allows devices to power down for longer periods in order to
conserve battery and minimize the wireless channel utilization,
since only intermittent connectivity is needed. In practice
however, remote hosts may consume significant energy while
listening over the wireless channel for a specific local host to
wake up and exchange information. In the following section,
the networking aspects of event-based communication are de-
tailed and the transmit/idling tradeoff that arises is thoroughly
investigated.

IV. EVENT-BASED COMMUNICATION

As previously emphasized, the key benefit of event-
triggering is that devices sporadically wake up to process
and communicate event interrupts and at every other time
unutilized computing and communication circuitry powers
down to conserve resources. This operation is in contrast
to current Internet practices where devices, have perpetual
availability and communication can be instantaneously be
established between any pair of nodes in the network.

Of course, several techniques have been introduced to date
to achieve energy savings based on periodic triggering. For
instance, the IEEE 802.3az standard [21] for energy-efficient
Ethernet powers down the transmitters when no exchange of
data is necessary and periodically probes the communication
link to check if there is data waiting for exchange. A similar
strategy is also employed in the upcoming IEEE 802.11ah
standard for the IoT where extended power down periods are
defined. However, as shown in the previous section, event-
triggering can achieve significantly higher gains compared to

periodic triggering and, as such, event-based communication
is an excellent candidate for future IoT applications.

The difference between periodic and event triggering is that
in the former case there is a fixed predetermined period of
time that devices need to wait before the host becomes active
again to be able to exchange data. In the latter case, the
duration of time that a local host needs to wait (until a remote
host becomes available) is randomly distributed and only
probabilistically bounded (as previously discussed). Hence, the
energy consumed by an active device waiting for a particular
remote host to wake up can grow substantially and thus this
overhead needs to be considered in the overall energy budget.

Let 7 be the transmit time duration in communicating an
event interrupt. The mean waiting time incurred while waiting
for an event interrupt to be triggered at remote host j is ﬁ,
where A is the total duration of each monitoring phase (similar
to the previous section), and s; is the set number of event
triggers by remote host j. Evidently, the latter calculation
assumes that event triggers follow the uniform distribution
across all segments. Then, the total energy consumption of
local host 7 in the active state that needs to communicate an
event to remote host j is given by eq. (10):

e(i,j)zsi(2xsj +7)Prx (10)
with Prx being the transmit power used by the communi-
cations circuitry. As shown in [22], the power consumed by
communications circuitry on mobile devices is approximately
the same for both listening and transmitting data. Thus, only
Prx is necessary in the energy budget expressed by eq. (10).
Equation (10) demonstrates that waiting times decrease with
an increasing number of event interrupts that are triggered
by remote hosts (effectively forcing them to wake up and
exchange data). At the same time, an increasing number of
event triggers raises the energy consumption of the local
host. Hence, the challenge is to devise intelligent ways of
selecting the volume of events that should be triggered (and
the respective thresholds) by each device in order to minimize

the overall energy consumption.

The networking scenario considered hereafter assumes that
each hosti € V = {1,...,V} wants to communicate its event
interrupts to a subset Z(i) C V of remote hosts. Upon an
event trigger, the local host wakes up and probes connection
requests to a particular remote host until that host wakes
up and establishes communication. The local host powers
down immediately after data exchange. Problem (P1) derives a
fractional integer programming formulation to find the number
of event interrupts s; that each device should trigger in order
to minimize the overall energy consumption.

(PHmin Y Y~ e(i,j) (11)
i jEZ()
st. s, > S(i), s, €Z, YieV (12)

where the e(7, j) term in the objective function is expressed
in eq. (10) and S(7) is the minimum number of event triggers
necessary at node ¢ to meet the target threshold values of the
system model, as expressed in the previous section. It should

be emphasized here that problem (P1) assumes that node ¢
has direct access to each of the remote hosts in Z(¢). When a
multi-hop path from source i € V to destination j € Z(¢) is
necessary to reach j, then the end-to-end delay in waiting for
intermediate nodes to wake up (with set #(i,j) containing
all nodes in the end-to-end path) equals 3 ;s ﬁ.
To ensure timely delivery of event interrupts, this delay is
usually bounded by some deadline D;;. Problem (P2) is an
extension to problem (P1) whereby this deadline constraint is
also considered.

(P2)min Y " Y~ e(i,j) (13)
i JEZ(7)
sty A _p, (14)
o C 2xs, — Y
heH (i,7)
s;>8(i), s; €Z, YieV (15)

A. Performance Analysis

To study the performance of event-based communication a
network of V' = 30 nodes is considered and the set Z(7)
is randomly populated. A fixed transmit power is assumed
for all devices at Prx = 0.1W and A = 60 minutes
as used in Section III-A. S(i), Vi € V is assumed to be
uniformly distributed in the interval U(1, 10). Both (P1) and
(P2) have been implemented in Matlab and Yalmip’s BnB
solver has been used to compute the optimal solution. For
each scenario depicted below, 1000 Monte Carlo simulations
were conducted.

Figure 2 depicts average values obtained by solving (P1) to
optimality by varying 7 and for varying cardinality of set Z (7).
The plots in Fig. 2a depict the normalized energy consumption
of the whole network against varying values of 7, the plots
in fig. 2b depict the volume of event interrupts that are in
excess of the minimum target S(i) of each node, and the
plots in Fig. 2c¢ depict the total number of nodes for which
the volume of event triggers have been raised above S(¢) in
order to minimize the total energy consumption for the entire
network.

As expected, the energy consumption increases substantially
with 7 and the cardinality of set Z(i). More interestingly, the
excess volume of event triggers (as shown in Fig. 2b) varies
substantially with 7. Smaller transmission times force nodes to
increase their triggering volume in order to minimize waiting
time while higher transmission times force nodes to remain
active for longer periods and thus the waiting time diminishes
(and so does the need to raise the volume of event triggers
above S(i)). The effect on the cardinality of set Z(4) is less
severe for this networking scenario. As shown in the figure,
the plot with cardinality 1 has marginally higher accumulated
volume of event triggers compared to the rest of the cases
while the difference diminishes for higher cardinality values.
At the same time, a comparison between Figs. 2b and 2c shows
that lower cardinality in set Z(i) causes a few nodes to raise
their volume of event triggers substantially higher than the
rest.

Similar trends are observed by solving problem (P2) as well
and thus the results are omitted. However, the key difference

O

)
09r 1)
)
)

£ 081 | —e—1z(

0.7r

0.6

0.5F

energy

041

0.3r

0.2r

Nor

0.1

0 10 20 30 40 50 60
Transmission time, ©

(a)

25 T T T T T

201

Excess event triggers

. . .
0 10 20 30 40 50 60
Transmission time, ©

(0)

Number of nodes with excess triggers

0 10 20 30 40 50 60
Transmission time, ©
(c)

Fig. 2. Performance analysis of problem (P1) showing (a) the normalized
energy consumption in the network, (b) the accumulated volume of excess
event triggers, and (c) the total number of nodes with excess event triggers.

is that a larger number of event interrupts are triggered as
D;; (ie., the end-to-end deadline) is reduced. This is due
to the fact that more frequent triggers reduce waiting times
for the exchange of events and thus achieve lower end-to-end
communication delays.

V. CONCLUSIONS

Event triggering is well suited for a broad range of IoT so-
lutions that employ embedded devices with limited resources.
In this work, special emphasis is given in application scenarios
where [oT devices are used to monitor, control, and optimize
the operation of systems that experience recurrent patterns.
A novel data-driven event-triggering technique has been de-
veloped to extract recurrent patterns and to enable event

triggering that trades off estimation accuracy with the number
of triggering events. The great potential of the proposed
technique has been demonstrated for a real-world application
(tracking the mobility of public transport buses).

Moreover, the paper considers the networking challenges
that emerge when devices (that employ event-triggering) are
interconnected. Both the energy-efficiency aspects and the
quality of experience perceived by devices have been analyzed
and mathematical programming formulations were derived to
enable optimized parameter setup. Future work will delve
further into the connectivity aspects of this novel networking
approach and experiment with the applicability of event-based
networking for different IoT solutions.

ACKNOWLEDGMENTS

This work is supported by the European Research Council
under the Advanced Grant FAULT-ADAPTIVE ERC-2011-
AdG-291508.

REFERENCES

[1] J. Rifkin, The Zero Marginal Cost Society: The Internet of Things,
the Collaborative Commons, and the Eclipse of Capitalism, Palgrave
Macmillan, Apr. 2014.

[2] GSMA, “Connected Living Linking the Physical and Digital Worlds”,
The Mobile Economy 2014, 62-64, April 2014.

[3] J.A. Stankovic, “Research Directions for the Internet of Things”, IEEE
Internet of Things Journal, 1(1):3-9, Feb. 2014.

[4] E. Khorov, “Low Power Wi-Fi: How IEEE 802.11ah is Transforming
M2M (Tutorial)”, IEEE ISWCS, Aug. 2014.

[5] Qualcomm, “LTE MTC: Optimizing LTE Advanced for Machine-Type
Communications”, www.qualcomm.com/Ite-mtc, Nov 2014.

[6] C. Cassandras, “Event-driven Control, Communication, and Optimiza-
tion”, Chinese Control Conference, July 2013.

[71 M. Lemmon, “Event-Triggered Feedback in Control, Estimation, and
Optimization”, Networked Control Systems - Lecture Notes in Control
and Information Sciences, 406:293-358, 2010.

[8] W. Heemels, K.H. Johansson, and P. Tabuada, “An Introduction to Event-
triggered and Self-triggered Control”, IEEE Conference on Decision and
Control, Dec. 2012.

[9] O. Vermesan, and P. Freiss, Internet of Things: Converging Technologies
for Smart Environments and Integrated Ecosystems, River Publishers
Series in Communications, 2014.

[10] H. Hu, Y. Wen, T.S. Chua, and X. LI, “Toward Scalable Systems for
Big Data Analytics: A Technology Tutorial”, IEEE Access, 2:652-687,
June 2014.

[11] X. Wu, X. Zhu, G.Q Wu and Wei Ding, “Data Mining with Big Data”,
IEEE Trans. on Knowledge and Data engineering, 26(1):97-106, Jan.
2014.

[12] M. Basseville, “Detecting changes in signals and systems- a survey”,
Automatica, 24(3):309-326, 1988.

[13] R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault
Detection to Fault Tolerance, Springer, 2006.

[14] H. Stark, and J. Woods, Probability, random processes and estimation
theory for engineers, Prentice Hall, 1994.

[15] H. Akaike, “A new look at the statistical model identification”, IEEE
Trans. on Automatic Control, 19(6):716-723, 1974.

[16] S. Stearns, Digital signal analysis, Hayden Book Company, 1975.

[17] D. Hall, and J. Llinas, Handbook of Multisensor Data Fusion, CRC
Press LLC, 2001.

[18] X.W. Chen, and X. Lin, “Big Data Deep Learning: Challenges and
Perspectives”, IEEE Access, 2:514-525, May 2014.

[19] K. Slavakis, G.B. Giannakis, and G. Mateos, “Modeling and Opti-
mization for Big Data Analytics”, IEEE Signal Processing Magazine,
31(5):18-31, Sept. 2014.

[20] R.L. Burden, J. D. Faires, “The Bisection Algorithm”, Numerical
Analysis (3rd ed.), PWS Publishers, 1985.

[21] K. Christensen, et al., “IEEE 802.3az: the road to energy efficient
ethernet”, IEEE Communications Magazine, 48(11):50 - 56, Nov. 2010.

[22] K. Pentikousis, “In Search of Energy-Efficient Mobile Networking”,
IEEE Communications Magazine, 48(1):95 - 103, Jan. 2010.

