
A Distributed In-network Indexing Mechanism for the Internet of Things
Yasmin Fathy, Payam Barnaghi, Shirin Enshaeifar and Rahim Tafazolli

Institution for Communication Systems (ICS), Electronic Engineering Department, University of Surrey
Guildford, Surrey, GU2 7XH, United Kingdom

{y.fathy, p.barnaghi, s.enshaeifar, r.tafazolli}@surrey.ac.uk

Abstract—The current Web and data indexing and search
mechanisms are mainly tailored to process text-based data
and are limited in addressing the intrinsic characteristics of
distributed, large-scale and dynamic Internet of Things (IoT)
data networks. The IoT demands novel indexing solutions for
large-scale data to create an ecosystem of system; however, IoT
data are often numerical, multi-modal and heterogeneous. We
propose a distributed and adaptable mechanism that allows
indexing and discovery of real-world data in IoT networks.
Comparing to the state-of-the-art approaches, our model does
not require any prior knowledge about the data or their
distributions. We address the problem of distributed, efficient
indexing and discovery for voluminous IoT data by applying
an unsupervised machine learning algorithm. The proposed
solution aggregates and distributes the indexes in hierarchical
networks. We have evaluated our distributed solution on a
large-scale dataset, and the results show that our proposed
indexing scheme is able to efficiently index and enable discovery
of the IoT data with 71% to 92% better response time than a
centralised approach.

Keywords-Internet of Things (IoT); Wireless Sensor Net-
works (WSN); distributed Indexing; real-world data

I. INTRODUCTION

The Internet of Things (IoT) is a substantial part of the
future Internet. The term IoT was coined over a decade
ago. However, with the prevalence of low-cost sensors and
network-connected devices, the IoT has gained momentum
in recent years to push the boundaries between physical and
digital worlds. The IoT bridges the gap between ubiquitous
network-enabled devices that record physical world observa-
tions and measurements and provide services, applications,
and autonomous interactions and the network (e.g. Internet).
The data generated by sensory devices are often spatio-
temporal data streams that change over time. This demands
dealing with the data drift problem in which data character-
istics and descriptive statistics change over time. IoT data
streams are different from the conventional data streams [1].
They demand different requirements and more dynamic and
adaptive solutions.

The Wireless Sensor and Actuator Networks (WSANs)
play a central role in IoT infrastructure to allow autonomous
data collection and resource management. However, the
large-scale network-enabled devices impose challenges in
collecting, querying and processing their data and services
on the Internet. Indexing IoT resources allows fast and
efficient search and discovery for their data and services.
However, continuous scanning for the entire connected
devices is inefficient and computationally intensive. Effect-

ive distributed, scalable and efficient indexing solutions are
required to support data discovery and accessing for large-
scale IoT networks.

The problem of indexing IoT resources comprises two
key elements: building an indexing structure and developing
a query processing scheme. The processing scheme is to
identify the key attributes (e.g. location and type) in which
users can use these attributes to search (query) for a data
resource. Most of the existing indexing IoT frameworks
and solutions rely on using pre-defined resource links or
centralised data repositories which make them not scalable
for discoverable large-scale and uncoordinated networks of
devices and resources [2, 3].

The remainder of this paper is structured as follows.
Section II discusses the background and related work.
Section III details and discusses our architecture with a
focus on distributed indexing mechanism. Evaluation and
experimental results that are conducted and analysed in
our simulated environment against a centralised baseline
approach are discussed in Section IV. The conclusions, pos-
sible extensions and future work are discussed in Section V.

II. BACKGROUND AND RELATED WORK

Distributed indexing for IoT resources is to discover a
set of connected devices in an efficient manner to find and
have fast access to a resource that can have the requested
data. Many indexing approaches have been proposed and de-
veloped such as [4, 5]. For example, Geographic Hash Table
(GHT) [4] relies on a hash function that maps information
type into geographic coordinates; key-value pairs are used
to construct a distributed index wherein a key is an event
type name (e.g. high temperature), and the value is the data
location. This allows GHT to group nodes with the same
type of information together, albeit they might be far away.
However, GHT only supports binary events (i.e. either an
event occurs or it does not) and exact queries. Greenstein
et al. [5] extend GHT by introducing a Distributed Index
for Features in Sensor Networks (DIFS) to support range
queries. Indexes are constructed as a tree-based structure
in which each node in the tree stores information about
a certain range of values within a geographical area. The
non-root nodes in DIFS tree structure can have several
parents. However, DIFS is susceptible to have a distance
sensitivity problem if some of the parent nodes of a child
node in the tree are located far away in different geographic
areas. Moreover, constructing and updating DIFS structure
are costly [6]. This is because every node in the tree

978-1-5090-4130-5/16/$31.00 c©2016 IEEE



should be aware of the boundary of the entire geographical
area. Distributed Index for Multi-dimensional data (DIM)
is described in [7]. The work relies on dividing the whole
sensor field into partitions (i.e. zones) and preserving data-
locality by hashing multi-attribute events into geographic
zones. This allows constructing a multi-dimensional search
tree in which each geographical area is represented by multi-
attribute events to support routing multi-dimensional range
queries. However, routing algorithms are resource intensive
and are not well scaled with large-scale sensor networks [8].

Meliou et al. [9] introduce a probabilistic model-based
approach for constructing in-network spanning tree to min-
imise the communication overhead while processing queries
in WSNs. Each node in the tree has a constructed Gaussian
model by aggregating Gaussian models of its child nodes.
A summarisation mechanism is used to summarise data
from different tree levels for answering approximate user
queries with a specified accuracy. However, “Select” query
statements are received by all sensors in the network, and the
model can not answer spatial queries (i.e. query of sensor
observation and measurement data from specific locations).
Another distributed indexing solution is proposed in [10].
The indexing mechanism assumes that there is a one-to-one
relationship between the nodes (resources and services) and
their indexes. However, this results in a high complexity for
updating the indexes.

The IoT should support mechanisms for discovery and
query of IoT resources and their data. By IoT resource,
we refer to any resource (e.g. service, ubiquitous device)
in the WSN/Internet that publishes its data on the network.
Various IoT Discovery Services (DSs) have been surveyed
in [11]. Discovery services are mainly to find the data
providers (resources) for the requested queries given the
key search attributes (e.g. type and location). Most of
the existing DSs in the IoT are centralised [12]. Some
other discovery services offer limited functionalities. For
example, Linked Sensor Middleware (LSM), Global Sensor
Networks (GSN) middleware, and other similar solutions
usually provide limited and mainly centralised search and
discovery mechanisms [13].

A Distributed Hash Table (DHT)-based discovery service
is introduced in [14]. DHT locates distributed data effi-
ciently. However, it supports only exact match for a given
key. There are also solutions such as Wolfram Data Drop1

and Thingful2. Thingful relies on adding meta-data and the
description of resources manually. The search and discovery
functions in Wolfram Data Drop are based on specific data
streams for each instance (user performs operations on data
from a specific databin3). Other solutions such as Dyser
and SenseWeb/SenseMap [15] rely on a centralised index-

1http://www.wolframalpha.com/
2http://thingful.net/
3is a unique identifier for a Wolfram Data Drop instance (e.g. sensor)

ing approach which hinders their scalability for distributed
networks.

Overall, scalability and efficient update of the indexes in
dynamic IoT networks are the main drawbacks of these solu-
tions. This motivates us to compare our proposed distributed
indexing mechanism with a centralised solution. Our main
contribution is a novel distributed and efficient indexing
mechanism in a hierarchical distributed network to allow
discovery of IoT data. It is worth mentioning that wireless
related issues (e.g. transfer delay) are not within the scope
of the current work.

III. PROPOSED APPROACH

We have designed and developed an architecture for
distributed indexing of the IoT data. Figure 1 shows the
key components of the architecture design. The following
describes a step-by-step description of the indexing and
discovery process:

(i) Data are published by various IoT resources.
(ii) Every IoT data resource has a type (e.g. temperature),

location (i.e. longitude, latitude and altitude) and value
(e.g. 12◦C) attributes that can be queried.

(iii) Every IoT data resource has only one type (dew tem-
perature, relative humidity, visibility, wind direction,
temperature, or wind speed).

(iv) Data can be archived in Information Repositories (IRs)
or can be accessed directly via the resources.

(v) Gateways (GWs) are intermediary nodes that have
access to individual resources.

(vi) Discovery Services (DSs) aggregate indexes of GWs
together (only references to GWs with some associ-
ated information (e.g. set of types for the connected
devices)).

(vii) The query is composed of type, location, and time
attributes.

(viii) The indexing process is based on resources which allow
discovery of their data.

Gateways'(GWs) ………
………
………

0100<1100…….

22.5,<23,..

Information'
Repositories'

(IR)Discovery'Services'(DSs) ………
………
………

Query'Processing'(QP)

TimeLocationType

DataResources

Figure 1. The architecture for distributed indexing



In the proposed architecture, Query Processing (QP) receives
user queries and forwards them to DSs. DSs are responsible
for routing and locating a set of related GWs that might have
a resource that provides a response to the requested query,
or DS can search historical data that are archived in IRs.
The proposed indexing and discovery framework consists of
three main layers as shown in Figure 1. We have construc-
ted and evaluated our model by indexing approximately 6
million data records from different resources. Each resource
has a set of attributes (e.g. location, type, time). These are
explained in the following.

A. Real-world Dataset

We use a set of weather sensory data that are collected
from Automated Surface Observing System (ASOS)4. The
data are gathered from weather stations that are located in
different countries. The dataset has the following attributes;
source-name (i.e. station name), geographical co-ordinates;
longitude (e.g. 153.26) and latitude (e.g. -28.83), country
(we currently use data from 7 different countries; Belgium,
United Kingdom, Canada, Australia, Egypt, Japan and the
United States), time-stamp (e.g. 2014−01−0100 : 03 : 00),
air temperature in Celsius (e.g. 26.0), and dew point temper-
ature in Celsius (e.g. 17.0). Dew point is used to measure
atmospheric moisture. The dataset has also relative humidity
(e.g. 57.6%), wind direction in degrees from north (e.g.
80.0), and wind speed in knots (e.g. 5.0).

We remove the invalid values and apply interpolation to
fill missing values. We use Google Elevation API5 to get
altitude values given longitude and latitude values. We then
convert the geo-graphical co-ordinate system (longitude,
latitude, altitude) into Cartesian co-ordinates (X,Y, Z) for
clustering. We take into account that the geographical points
in our dataset are based on World Geodetic System (WGS-
84) [16] (it assumes earth is an ellipsoid rather than a
sphere). The conversion between the two co-ordinate sys-
tems are performed using the following equations:

X = (N + h) cosφ cosλ

Y = (N + h) cosφ sinλ

Z = ((1− e2)N + h) sinφ

(1)

Where λ, φ, h are longitude, latitude and altitude (in radian),
respectively, and N is the vertical radius of curvature (in
metres) and can be obtained by:

N =
a√

(1− e2sin2φ)
(2)

Where e = 0.081819190842622 and a = 6378137 are
constant values for eccentricity and semi-major axis (in
metres) and are WGS84 ellipsoid parameters that define
the ellipsoid’s shape. It is worth noting that X,Y, Z are in
metres.

4http://mesonet.agron.iastate.edu/ASOS/
5http://developers.google.com/maps/documentation/elevation/

Indexing IoT resources can be a multi-dimensional (loca-
tion and type). However, constructing the multi-dimensional
indexing has a high complexity. To this end, a partially
distributed indexing scheme is constructed that takes into
account the resource locations and aggregation of resource
types; this is referred to as “semi-distributed” approach.
Moreover, this approach is extended to a fully distributed
indexing scheme which also indexes the types within geo-
graphical areas; this is called the “fully-distributed” ap-
proach. Both schemes enable answering user queries, i.e.,
requests about a specific resource location and a given type.

B. Geo-location Clustering

IoT data are dynamic and often numeric and stream-
ing data. They are also time and location dependent. To
deal with their dynamicity, unsupervised statistical machine
learning algorithms are used such as Gaussian Mixture
Model (GMM), DBSCAN and spectral clustering. How-
ever, these techniques have parameter settings that need
to be known in advance or require running the algorithm
many times to determine the appropriate values for these
parameters. For example, DBSCAN requires the Eps and
MinPts values (MinPts is the minimum number of points in
Eps-neighbourhood of each point p), and spectral clustering
requires the number of clusters to be determined in advance.
One promising technique that can be used is Dirichlet Pro-
cess (DP)-means clustering algorithm [17]. DP-means is a
variant of k-means clustering algorithm with non-parametric
settings; the cluster cardinality is not known in advance, but
instead it is dynamic and can be inferred from the dataset.
DP-means has a cluster penalty (i.e. threshold) parameter
λ that controls creating new clusters; it has a key role in
deciding whether a data-point attaches/joins a cluster, or it
requires creating a new cluster.

We first cluster our dataset based on the resource locations
using DP-means. The output of clustering process is the
number of clusters k and list of data-points (i.e. resource
locations) that belong to these clusters. We have developed
a modified version of DP-means that is slightly different
from the original algorithm that is presented in [17]. The
modified DP-means pseudo-code is shown in Algorithm 1.
The main difference is that the threshold penalty parameter
λ is initialised by the mean of the standard deviation of data-
points (resource locations) (X,Y, Z) (λ = σX+σY +σZ

3 ).
This is because the statistical dispersion of different resource
locations in R3 (X,Y, Z) can give an indication of how
clusters could be significantly distinct from each others.
We also do not initially attach all data-points to the first
cluster and do not calculate the global mean as it was
explained in the original DP-means. Both of the resource
locations and cluster centroids are represented in Cartesian
plane. We can simply get the distance between each resource
location and each cluster centroid. Accordingly, we use a
modified version of Euclidean distance that is used to get



the distance between two points in R2 to work in R3 (as
shown in equation 3), where pi(x1, y1, z1) is a data-point,
µc(x2, y2, z2) is a cluster centroid and Dict(pi, µc) is the
distance between a point pi and a cluster centroid µc.

Dict(pi, µc) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (3)

Algorithm 1: The modified DP-means algorithm
Input : p1, ..., pn, data-points (resource locations)

e.g. p1=(x1, y1, z1), x1εX, y1εY, z1εZ
. n : number of data-points

λ : cluster penalty parameter
. λ = mean of σ for (X,Y, Z)

I : maximum number of iterations
Output: Clustering l1, ..., lk and number of clusters k

1) Init. cluster indicators zi = −1 for all data-points pi, i = 1, ..., n.
2) Init. k = 1, k : number of clusters
3) Randomly select k1 initial centroid (pi), i = 1, ..., n.

. l1 = {pi}
4) Repeat for I iterations

• Repeat for each point pi, i = 1, ...n

– Compute distic = Dict(pi, µc) for c = 1, ..., k
– If minc(distic) > λ,

set k = k + 1, zi = k, and µk = pi
– Otherwise, set zi = argminc(distic)

• Generate clusters l1, ..., lk based on
z1, ..., zk:lj = {pi|zi = j}.

• For each cluster lj , compute µj = 1
|lj |

∑
pεlj

p

. j = {1, 2, ...k}

C. Distributed Indexing

Indexing IoT resources is performed on a set of distributed
gateways. A gateway is a physical or logical node (i.e.
a machine that can act as an intermediary between the
devices (resources) and DSs). The number of gateways is
defined by the number of clusters obtained by the modified
DP-means clustering algorithm. Each gateway represents a
cluster (and its centroid) and has a direct access to the
IoT resources that belong to this cluster. These clusters
(gateways) are represented to the upper layer (DSs) by their
cluster centroids and a set of the types (e.g. temperature,
relative humidity) of their connected resources. The resource
attributes and values are accessed at the resource level, and
the gateway has only references to its connected resources.
However, a set of different types of the resources connected
to each gateway is sent along with its cluster centroid to the
higher-level DS that is linked to that gateway. By this way,
we make sure that we have an aggregated representation of
the connected resources to the lower layer (i.e. gateways)
at the upper layers (i.e. DSs) with less overhead. This is
referred to as “semi-distributed” approach. Extending this
approach to a fully distributed approach is performed by
building a tree structure per cluster which has n children,
where n is the number of types per cluster, and this is called
the “fully-distributed” approach.

Each DS node has a list of all cluster centroids and types
of their connected resources (devices/services). In “semi-
distributed” approach, DS will receive a user query (e.g.

temperature in a specific location), it will then select the
cluster (gateway) with the minimum distance between its
centroid and the requested query location and has type (e.g.
temperature) in the set of types associated to that cluster.
The gateway will then search to access a resource with the
requested attributes to retrieve the requested type value (e.g.
12◦C).

In “fully-distributed” approach, the gateway is not going
to search sequentially to find a connected resource with
the requested attributes, but instead, it will only access
the resources with a given type (temperature) because each
gateway has a tree structure of its types as explained earlier.

Our proposed solution considers the change in device
locations and availability. However, to mitigate the overhead
of frequent changes in indexes, our update mechanism is to
predict simply the cluster membership of a new resource
by selecting a gateway whose centroid has the minimum
distance with the location of the new data item (resource).
This enables on-line indexing and discovery. The compu-
tational complexity in this case (best case) is O(k) (k
is the number of clusters) where the new data-points are
attached to existing clusters. However, if a large number
of new devices connected to the network, the underlying
data might change significantly and we will need to re-
calculate the centroids to retain the accuracy of the indexes.
In this case, the computational complexity (worst-case) is
O(i∗n∗k), where i, n, k are the number of iterations, data-
points (resources) and clusters, respectively.

IV. EVALUATION

We use a centralised solution as our baseline model to
compare the results. This is because most of the existing
approaches and solutions are based on centralised indexing
as previously mentioned in Section II. In the centralised ap-
proach, all IoT data resources are connected to one gateway,
and the data are archived in one Information Repository (IR).
We compare the results of our proposed solution (semi-
distributed and fully-distributed) to the baseline approach.
Both solutions are tested under the same conditions and
implemented in Python. We apply both solutions on the same
dataset and have run the algorithms on an OS X machine
with 16 GB memory and a 2.6 GHz Intel Core i7 processor.

The following describes the metrics that are used in our
evaluations and the results are also presented and discussed.

A. Silhouette Coefficient

Silhouette coefficient is used to test the separation
between the clusters independently from the number of
clusters. It is a prominent quality measure of how each point
in a cluster is close (i.e. similar) to other points in the same
cluster when comparing to other points in other clusters. The
silhouette value ranges between −1 and 1. The higher value
of the coefficient means a better structure for the clusters.



The silhouette coefficient is defined as in [18].

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(4)

Where i is a data-point that is assigned to cluster a, a(i) is
the average dissimilarity of i to other data-points in the same
cluster (i.e. a), and b(i) is the lowest average dissimilarity
of i to any other clusters (i.e. neighbouring cluster). The
average value of s(i) for all data-points is the measure of
how data-points are clustered in the entire dataset.

We select different random samples from the dataset and
calculate the silhouette coefficient to show how the initial
value of λ (i.e. cluster penalty) is enough to cluster the
data. We compare silhouette coefficient for both k-means
and modified DP-means as shown in Figure 2. For k-means,
we then use the same number of cluster that is obtained
using modified DP-means algorithm to have a common base
for comparison (unlike DP-means, the k-means algorithm
requires the number of clusters in advance).

The modified DP-means has a minimum silhouette value
of 0.79 with different sample sizes which shows the close-
ness of assigned values into the clusters. DP-means slightly
outperforms k-means algorithm in our case. Initialising
the threshold penalty parameter λ value by the mean of
the standard deviation of data-points (resource locations)
(X,Y, Z) provides more robust results. The common ap-
proach in using k-means is to run the k-means algorithm
with a different number of cluster values (i.e. k) until
adequate silhouette value is obtained. Moreover, Figure 3

Figure 2. Silhouette analysis for k-means and modified DP-means

shows how 10, 000 data-points are clustered into 6 clusters.
X,Y, Z are Cartesian co-ordinate values in million (in
metres). It is worth mentioning that cluster k1 represents
resources whose locations are in [Canada, United States],
cluster k2 has resources with locations in [United Kingdom,
Belgium], and cluster k3 has all resources that are located
in Australia. Also, cluster k4 has all resources in Egypt,
cluster k5 has other resources that are located in Australia,
and k6 has all resources in Japan. It is noteworthy that

all the clustering and grouping of the data-points are done
automatically and without giving any prior knowledge about
the countries or the number of clusters.

Figure 3. Clustering 10, 000 data-points by modified DP-means

B. Response Time

We define response time as the total amount of time (in
seconds) that an indexing solution can take to respond to
requested queries. We measure the response time of our pro-
posed (semi-distributed, fully-distributed) and the baseline
centralised mechanisms. Figure 4 shows the comparison
of the response time between baseline centralised and our
proposed distributed indexing. It is shown that the proposed
distributed indexing is efficient and takes less time to find
responses for a set of queries comparing to the centralised
baseline. Our proposed approach is able to efficiently index
and enable discovery of the IoT data with nearly 71%
to 92% better response using semi-distributed and fully-
distributed indexing scheme, respectively, compared to the
centralised approach. This shows how the data are well
distributed on a set of gateways that allow fast search for
resources. Comparing semi-distributed and fully-distributed
approaches, it is evident that indexing resource type within
each cluster (gateway) in fully-distributed approach has a
high impact on reducing the response time by nearly 72.4%
comparing to the time the semi-distributed approach takes
to answer queries.

C. Success Rate

The proposed indexing and discovery mechanism supports
exact search queries (i.e. queries for exact locations and
types) that already exist in our dataset. Evaluating the
success rate of the proposed indexing mechanism is done
by evaluating the number of attempts that is required to
find a gateway that can answer the query. DS receives a
set of queries and by using the aggregation mechanism
it locates a set of related gateways that might have a
resource that provides a response to the requested query.
The gateways connected to this DS are queried according
to their probability to having a resource that could respond
to the query. If the first attempt is not successful, DS at
the upper layer will forward the query to the second most



Figure 4. Comparison between response time of baseline centralised and
our proposed distributed indexing schemes

probable gateway at the lower layer. This process continues
until it terminates either by finding the result or reaching to
a predefined value for the maximum number of attempts.

Although centralised approach guarantees answering the
query by sequential search, our proposed indexing provides
the same answer from the first selected gateway while min-
imising the response time. This confirms that selecting the
gateway based on the minimum distance between requested
location and cluster centroids works properly in reducing the
search space to answer the queries.

V. CONCLUSIONS AND FUTURE WORK

Dynamic IoT networks demand novel indexing and data
access and discovery solutions for large-scale streaming data
which are often numerical and multi-modal. We propose a
distributed indexing mechanism that is capable of answering
user queries for finding IoT data resource based on thematic
and spatial attributes. The main advantage of our approach
is that it provides an efficient mechanism to distribute and
query the connected resources on different gateways with
high success rate and less overhead. While increasing the
number of queries, the proposed semi-distributed and fully-
distributed schemes scale well and provide respectively 71%
and 92% better response time than a centralised approach.
Our current implementation mainly supports exact search
queries (i.e. exact locations and types). A future extension
of this work will focus on experiments to evaluate the
impact of a highly dynamic network (e.g. node mobility,
unreliable node connection/disconnection) on the indexing
and discovery performance. The work will also focus on
supporting approximated queries. However, we firstly need
to check if the requested location is within our co-ordinates
range. A possible solution is to check if λ > dm, where
dm is the maximum distance between cluster centroids
and the requested query location. This will allow finding
approximate relevance for location based queries where there
is no exact match for the queried location to obtain the
data. In future work, we will develop a crawler to find

the existing resources and will provide open API for third
parties to find and/or add existing IoT data resources and
including their links in our indexes. This work can change
the way the IoT resources are currently accessed and used.
It will have the same effect that Web search engines had
on the extensions and updates of the Web and Web-based
applications/services. Our indexing mechanism will allow
IoT networks to work and operate in large ecosystems
and connect closed systems. This will enable creating new
data-driven applications for crowd-sourced IoT, smart cities,
healthcare and in general will create data discovery infra-
structure for the next generation of IoT networks.

ACKNOWLEDGMENT
This work is supported by the European Commissions Seventh Frame-

work Framework Programme (EU FP7) in the CityPulse project (http:
//www.ict-citypulse.eu/) under contract number: 609035.

REFERENCES
[1] P. Barnaghi, W. Wang, L. Dong, and C. Wang, “A Linked-Data Model for Se-

mantic Sensor Streams,” in Green Computing and Communications (GreenCom).
IEEE, 2013, pp. 468–475.

[2] Y. Diao, D. Ganesan, G. Mathur, and P. J. Shenoy, “Rethinking Data Manage-
ment for Storage-centric Sensor Networks.” in CIDR, vol. 7, 2007, pp. 22–31.

[3] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting with
the soa-based internet of things: Discovery, query, selection, and on-demand
provisioning of web services,” IEEE Transactions on Services Computing, vol. 3,
no. 3, pp. 223–235, 2010.

[4] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker,
“GHT: a geographic hash table for data-centric storage,” in Proceedings of the
1st ACM international workshop on Wireless sensor networks and applications.
ACM, 2002, pp. 78–87.

[5] B. Greenstein, S. Ratnasamy, S. Shenker, R. Govindan, and D. Estrin, “DIFS:
A distributed index for features in sensor networks,” Ad Hoc Networks, vol. 1,
no. 2, pp. 333–349, 2003.

[6] M. Demirbas and X. Lu, “Distributed quad-tree for spatial querying in wireless
sensor networks,” in IEEE International Conference on Communications, ICC.
IEEE, 2007, pp. 3325–3332.

[7] X. Li, Y. J. Kim, R. Govindan, and W. Hong, “Multi-dimensional range queries
in sensor networks,” in Proceedings of the 1st international conference on
Embedded networked sensor systems. ACM, 2003, pp. 63–75.

[8] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: supporting scalable
multi-attribute range queries,” in ACM SIGCOMM Computer Communication
Review, vol. 34, no. 4. ACM, 2004, pp. 353–366.

[9] A. Meliou, C. Guestrin, and J. M. Hellerstein, “Approximating sensor network
queries using in-network summaries,” in International Conference on Inform-
ation Processing in Sensor Networks, 2009. IPSN 2009. IEEE, 2009, pp.
229–240.

[10] P. Liu, N. Kong, Y. Tian, X. Lee, and B. Yan, “A DHT-Based Discovery Service
for RFID Network,” in Internet of Things (iThings), Cyber, Physical and Social
Computing (CPSCom). IEEE, 2014, pp. 344–347.

[11] S. Evdokimov, B. Fabian, S. Kunz, and N. Schoenemann, “Comparison of
discovery service architectures for the internet of things,” in Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC). IEEE, 2010, pp. 237–244.

[12] E. Polytarchos, S. Eliakis, D. Bochtis, and K. Pramatari, “Evaluating discovery
services architectures in the context of the internet of things,” in Unique Radio
Innovation for the 21st Century. Springer, 2011, pp. 203–227.

[13] C. Perera, A. Zaslavsky, P. Christen, M. Compton, and D. Georgakopoulos,
“Context-aware sensor search, selection and ranking model for internet of
things middleware,” in IEEE 14th International Conference onMobile Data
Management (MDM), vol. 1. IEEE, 2013, pp. 314–322.

[14] F. Paganelli and D. Parlanti, “A DHT-based discovery service for the Internet of
Things,” Journal of Computer Networks and Communications, vol. 2012, 2012.

[15] D. Zeng, S. Guo, and Z. Cheng, “The web of things: A survey,” Journal of
Communications, vol. 6, no. 6, pp. 424–438, 2011.

[16] B. L. Decker, “World geodetic system 1984,” DTIC Document, Tech. Rep.,
1986.

[17] B. Kulis and M. I. Jordan, “Revisiting k-means: New Algorithms via Bayesian
Nonparametrics,” in Proceedings of the 29th International Conference on
Machine Learning (ICML-12), J. Langford and J. Pineau, Eds. ACM, 2012,
pp. 513–520.

[18] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis,” Journal of computational and applied mathematics, vol. 20,
pp. 53–65, 1987.


