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Abstract— Numerous smart city testbeds and system
deployments have surfaced around the world, aiming to provide
services over unified large heterogeneous IoT infrastructures.
Although we have achieved new scales in smart city installations
and systems, so far the focus has been to provide diverse sources
of data to smart city services consumers, while neglecting to
provide ways to simplify making good use of them. We believe that
knowledge creation in smart cities through data annotation,
supported in both an automated and a crowdsourced manner, is
an aspect that will bring additional value to smart cities. We
present here our approach, aiming to utilize an existing smart city
deployment and the OrganiCity software ecosystem. We discuss
key challenges along with characteristic use cases, and report on
our design and implementation, along with preliminary results.
Index Terms—IoT, smart city, data annotation, co-creation,

machine learning, classification, OrganiCity, FI-WARE.

INTRODUCTION
Smart cities have slowly been turning from a vision of the

future to a thing of the present, through the efforts of numerous
research projects, technology startups and enterprises, combined
with the recent advancements in informatics and
communications. It is currently a very active field research-wise,
with a lot of work dedicated to developing prototype
applications and integrating existing systems, in order to make
this move from a vision to reality.

Although a lot of emerging technologies in the smart city
context still compete in the same space, a number of actual use-
cases and methodologies have surfaced in multiple smart city
instances. For example, much buzz has been generated around
the smart city IoT testbed and experimentation concept, like in
the case of SmartSantander [11]. Another example is the
utilization of open data portals in smart cities, like CKAN [7] an
open source solution provided by a worldwide community and
Socrata [8] an enterprise solution backed upby a an IT company.
Additionally, technologies like MQTT and CoAP are frequently
utilized in recent smart city research projects to provide real-
time communication with the deployed infrastructure, and
progress towards becoming Internet standards.

However, there remain essential answers to be found
revolving around a central question: what do we do with all of
these data collected, and how do we make sense out of them by
extracting knowledge, i.e., something actually useful, going
beyond a technology demonstrator? Moreover, how do we

provide usefulness to citizens and how do we involve them in
the smart city lifecycle or engage them in the whole process?

Essentially, it gets to the point of asking how do we actually
make a city smarter, and the definition of a smart city itself. We
believe part of the answer to this question lies in creating more
"useful" information out of raw sensors or other kind of data
representing observations of the urban environment. For
example, certain events generate data reported by the city
sensing infrastructure, but are, more often than not, missing an
appropriate description. Consider the case of a traffic jam inside
the city center; it generates sensed values in terms of vehicles'
speed, noise and gas concentration. Moreover, in most cases,
such sensed values are reported by multiple devices or services
while missing useful correlations in the data streams. We
believe that adding data annotations to smart city data through
machine learning mechanisms or crowdsourcing mechanisms,
can help reveal a huge hidden potential in smart cities.

In this work, we discuss the design and implementation of
JAMAiCA (Jubatus Api MAChine Annotation), a system for
aiding smart city data annotation through classification and
anomaly detection, which is currently being employed in the
OrganiCity project ecosystem. On the one hand, it aims to
simplify the creation of more automated forms of knowledge
from data streams, while on theother hand it serves as a substrate
for crowdsourcing data annotations via a large community of
contributors that participate in the knowledge creation process.
We strongly believe that communities like data scientists,
decision makers and citizens should get involved in deployments
of Future Internet systems, for them to be practical and useful.

Regarding the structure of this work, we first report on
previous related work, and continue with a discussion on
challenges associated with knowledge creation in smart cities.
We then present a small set of use-cases to highlight how our
system relates to this vision. We continue with a presentation of
our design and system architecture, complemented with a
description of our current implementation and some preliminary
results we have produced so far.

We now proceed with a short introduction to the OrganiCity
project and the ways our system relates to its overall ecosystem.

A. OrganiCity and Co-creation
OrganiCity aims to engage people in the development of

future smart cities, bringing together three European cities:
Aarhus (Denmark), London (UK) and Santander (Spain). Co-
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creation with citizens is its fundamental principle, i.e., defining
novel scenarios for more people-centric applications inside
smart cities, exploiting the IoT technologies, heterogeneous data
sources and using enablers for urban service creation and IoT
technologies. It places organicitizens (i.e., citizens actively
involved in the project) at the heart of its life cycle, both by
helping shape application use-cases and by simplifying ways to
contribute data or other resources.

Fig. 1 provides an overview of OrganiCity. The project aims
to provide an Experimentation as a Service (EaaS) platform, i.e.,
it is designed to provide data streams from diverse sources inside
a smart city to various "consumers", like IoT experimenters,
SMEs, municipalities, etc. At the same time, it aims to allow the
participatory engagement of communities in co-creating urban
knowledge. This will be done by means of end-user applications
that provide meaningful representations of the produced smart
city data, and also "tools" thatwill allow these end-users tomake
their own contributions.

Figure 1: Overview of OrganiCity

JAMAiCA is meant to act as both an end-user tool and a
service for other applications to further extend the data
annotation functionality of OrganiCity. We follow an open-
source approach for the implementation of our system as we
believe that this will further entice more tech-savvy citizens to
engage actively in future revisions of the system.

PREVIOUSWORK

Although there have been pioneering studies and
applications on combining human and machine intelligence, it is
believed that research in this field is still at its infancy stage. [10]
presents a vision on the potential of combination patterns of
human and machine intelligence, identifying three possible
patterns sequential, parallel and interactive. Moreover, in [12]
authors present a crowd-programming platform that integrates
machine and human based computations. Their system
integrates mechanisms for challenging tasks like human task
scheduling, quality control, latency due to human behavior etc.

SONYC [19] is an example of a project with a very specific
use-case, employing machine learning algorithms to classify
acoustic readings into various types of noise encountered inside
an urban environment. It is a very interesting approach, with

similarities to our vision of providing a generic substrate to
simplify the process of knowledge extraction and data
annotation contributions. Moreover, learning from the crowds,
by using the crowdsourced labels in supervised learning tasks in
a reliable and meaningful way is invegistated in [17, 18].

Taxonomies are ubiquitous in organizing information, by
grouping digital objects/content to categories and/or mapping
them to abstract concepts expressing meanings, entities, events
etc. Most of the modern social networking applications (like
Flickr) or online collaborative tools (like Stack-Exchange) are
relying heavily on an underlying taxonomy. Building and cura-
ting a taxonomy is a challenging task that requires deep
knowledge of the data characteristics. Taxonomies are usually
created by small groups of experts and target a very specific
application domain. Folksonomies are quite popular in online
applications and they are categories of tags collectively
organized by the users of the applications. Such taxonomies
usually have weaknesses like double entries, misclassified tags,
entries with typos or ambiguities in the categories, and so on. By
processing in the background, it is possible to normalize
folksonomies by mapping categories to knowledge bases (like
Wikipedia or WordNet).

In [13], the authors propose a workflow that creates a
taxonomy from collective efforts of crowd workers. In
particular, the taxonomization task breaks down into
manageable units of work and an algorithm coordinates the
work. The algorithm takes every item and solicits multiple
suggested categories for it, from different workers. A new set of
workers then votes on the best suggested category for each item.
Afterwards, workers need to consider every item with all of
these ‘best’ categories and judge their relevance. These data are
later used to eliminate duplicate and empty categories, and to
nest related categories. Results show that the produced
taxonomy is competitive in quality and price compared to expert
information architects, although the adoption of machine
learning approaches could optimize the categorization process.
Although that taxonomies and tagging of objects with keywords
of the taxonomy, the problem is, that there is no common
agreement about the semantics of a tagging, and thus every
system uses a different representation. An effort for the
development of a common tagging ontology with Semantic Web
technologies is described in [14].

Designing and developing smart cities is a concept that has
drawn tremendous attention from the public and the private
sector. Each one of the scientific disciplines like urban
engineering, computer science, sociology and economics,
provide unique perspectives on making cities more efficient. In
most of these cases, multidisciplinary approaches are required to
tackle complex problems. A large number of projects are trying
to leverage modern information and communication
technologies, like IoT/Future Internet and the semantic web, in
order to build novel smart city services and applications. An
example is the SmartSantander project [11], that has developed
one of the largest Future Internet infrastructures globally,



located at the center of the city of Santander in Spain. A well-
established city-wide IoT experimentation platform that moved
testbeds from labs to the real world and that offers
experimentation functionality, both with static and mobile
deployed IoT devices, together with smartphones of volunteers
inside the urban areas. Another example is CitySDK [14] that
tries to harmonize APIs across cities and provide guidelines
about how information should be modeled, propose ways that
data should be exchanged and how services and applications
should be designed and developed. The project benefits from
semantic web technologies and focuses on application domains
like citizen participation, mobility and tourism.

Given that cities are dynamic and evolving ecosystems, there
is a need to continuously link, interpret and utilize information
before it is outdated. Therefore, real-time data processing and
stream-based annotation is a critical endeavor that has to be dealt
by smart city frameworks. CityPulse [3] introduces a framework
for real time semantic annotation of streaming IoT and social
media data to support dynamic integration into the Web. The
framework employs a knowledge-based approach for the
representation of the data streams and uses the Advanced
Message Queuing Protocol (AMPQ) to increase the
communication performance of the system, as the amount of
data generated by IoT devices can be enormous. It also presents
a lightweight semantic model to represent IoT data streams, built
on top of well-known models, such as TimeLine Ontology,
PROV-O, SSN and Event Ontology. In terms of creating high-
level concepts from the large amount of data produced, another
similar approach has been carried out in [9]. In both semantic
representation frameworks, pattern construction is performed
using the Symbolic Aggregate Approximation (SAX) technique.
The approach in [9], introduces a method to automatically create
a semantic ontology, without requiring preliminary training data,
using an extended k-means clustering method and applying a
statistical model to extract and link relevant concepts from the
raw sensor data. The framework can be used in control and
monitoring applications that use the sensory data to observe the
status of a physical entity or to provide an overall view of the
changes and related occurrences over aperiod of time, but it does
not for real-time processing. Finally, in [16] the authors propose
principles for semantic modelling of city data.

DATAANNOTATION IN SMART CITIES – CHALLENGES
In this section, we briefly discuss a set of key challenges

regarding data annotation in smart cities. All of them need to be
addressed in the near future, in order to enable a more engaging
and secure experience for citizens/contributors on the one hand,
and to produce a more meaningful result from the systems' side
on the other. We focus on this set of specific challenges, due to
their importance and our experience from OrganiCity.

Privacy and overall security issues are a central challenge in
the context discussed here. Consider the case of a volunteer
taking noise level measurements along his daily commute, or
being tasked to add annotation contributions by a smart city

system based on proximity to certain events. Even in such simple
scenarios, anonymization techniques should be used to ensure
that neither personal data, nor interactions are revealed.

Another important issue is the correlation of different types
of smart city data that can potentially point to the same event, in
other words, how to facilitate knowledge extraction through
such data. We currently havedata produced by IoT infrastructure
installed inside city centers. However, there is relatively small
research focus on discovering relations between these data, e.g.,
if noise level readings are related to data referring to a live
concert event, or can be attributed to a single event as results,
being produced by a specific situation taking place somewhere
inside the city.

Moreover, there is the issue regarding the nature of data
available in smart city data repositories, being data inserted by
humans or IoT infrastructures. Both sources can be unreliable,
or even malicious. With respect to sensing infrastructure, we
also have the issue of the hardware malfunctions, as well as
spatiotemporal effects on the data produced. In most cases, the
hardware utilized aims for large-scale deployments, thus being
not so accurate or having calibration issues. Additionally,
environmental conditions, e.g., excessive temperature or
humidity, may have an effect on the sensitivity of the sensing
parts. The issue is how to produce data annotation based on such
an infrastructure, which can function with a varying degree of
credibility during a single day. Reputation mechanisms are an
example of measures that can aid in this direction, either human
or machine-based, in order to filter out less reliable data sources.

The issue of end-user engagement with respect to data
annotation and knowledge extraction is, in our opinion, another
major challenge. We also think that user contribution is twofold:
end-users can contribute to a smart city system by adding data
annotations, but also contribute data through incentivization or
gamification. Although most current crowdsourcing platforms
utilize a desktop or web interface, the crowdsourcing of data
annotations does not have to be limited to that. It can also be
performed through smartphones andbe incorporated to the user's
everyday life. The interaction of end-users through such a tool
could help relate in a more personal way and help maintain the
interest in participating. Moreover, annotation of events or
sensed results could be more interactive and focus at users, or
even user groups, near the actual space of the event in question.

Smart city facilities usually integrate a large number of data
sources of various types sharing observations for environment,
air quality, traffic, transport, social events and so on. These data
sources might be static (they are not streaming data and have a
fixed value until they are updated by an offline process) ormight
be dynamic (streaming data constantly). Building a taxonomy on
this multi thematic environment is not straight forward as some
subcategories of tags might be shared between different types of
data sources and other might be orthogonal. Moreover, as the
dynamic data sources have a temporal dimension, annotations
might characterize the overall behavior and observations of the
data sources or observations falling into a specific time interval.
Furthermore, as data sourcesmight be mobile (e.g. an IoT device
on a bus or a smartphone) an annotation might characterize a



specific location inside the city and for a specific time interval.
Embedding in the taxonomy these spatiotemporal characteristics
introduces new requirements and extensions to the traditional
methods. Standards like W3 Web annotation data model and
protocols1 do not cover sufficiently these requirements.

Finally, implementing machine learning algorithms suited to
smart city data and real-time processing is another major
challenge. Handling city-wide data introduces additional
complexity, especially when considering relations between
different data types and sensing devices. Current mobile devices
have enough processing power to handle a broad set of use-
cases, especially when dealing with data from integrated sensors
(e.g., [19] uses on-device processing to classify urban noise
sources). This could also be utilized as a means to enhance
privacy, since processing would be performed locally, without
requiring sensitive data to be uploaded to the cloud.

Use cases
We now proceed with a set of characteristic use cases,

essentially highlighting our vision for our system and insights to
the aforementioned challenges.

IoT sensors to create better running and biking routes: This
use-case utilizes mobile and smartphone/smartwatch sensors to
monitor environmental parameters to infer better routes for
running and biking in terms of healthy environmental
conditions. Parameters that could be sensed include air quality,
noise pollution, pollen concentration, condition of roads, etc.
Machine learning techniques could be used to identify anomalies
in the sensed data, such as high pollutant or particle
concentrations, or locations with high noise levels. Alerts
regarding such events could be sent by the system to
participating end-users to quantify or validate such data through
annotations. Another use of data annotation contributions could
relate to the sentiments of participants for their surroundings.

The soundtrack of the city: The concept is to create the aural
and noise level maps of cities. This includes the use of
smartphones' microphones to record noise or distinctive sounds
of the urban landscape. Participants could use data annotations
to pinpoint street musicians, sounds from birds or other animals
and their place in the landscape, or sounds from public spaces
like train or bus stations, or city halls, etc. Machine learning
techniques could be used to generate general classifications that
could subsequently made more specific by end-users providing
additional data annotations. Users could also add descriptions
and their sentiments towards places and sounds.

Smart city event correlations: A diverse smart city IoT
infrastructure could "record" the same event from different
aspects; a traffic jam could take place at a certain point in time
(traffic data), while creating certain side effects, such as noise
from car horns or engines (noise data), unusual levels of
pollution (air quality data), etc. Since this kind of data is being
fed to the system with similar spatiotemporal characteristics,
such anomalies can be detected and correlated on a first level,
and then be validated by end-users to define additional
correlations.

1 https://www.w3.org/TR/annotation-protocol/

Figure 2: OrganiCity Annotation Service internal structure

ARCHITECTURE
OrganiCity federates existing smart city infrastructures,

integrating urban data sources and services. Federated resources
are exposed in this context, through a unified experimentation
service and a central Context Broker. Our data annotation
service is designed to operate on those unbounded incoming
streams, to provide the additional knowledge required and
increase their value and usefulness. JAMAiCA is capable of
consuming, processing and annotating each individual data point
to produce temporal annotations or nearby measurements to
generate spatial annotations.

There are two main components (see Fig. 2) responsible for
the whole annotation process:

The Annotation Component is responsible for maintaining a
directory of all possible annotations in the form of tags. Tags are
simple indicators of the annotated parameter, similar to the way
tagging is performed in photos in social networks, or the use of
hashtags in social status updates. Tag domains are created as
collections of tags (e.g., "high", "normal" and "low") with a
similar contextual meaning. Tag domains can be generic as those
mentioned before or more application specific (e.g., the tag
"contains a beach" for images). Users of the system can either
select one of the tag domains already available, or create their
own specifically for their application. Annotations are stored
with additional information like numeric or text values. These
entries can be user comments, a number that describes the
abnormality of an observation, or a confidence indicator.

The Machine Learning Component orchestrates the machine
learning process, including managing the executed jobs, training
the instances with provided or retrieved data, and the exchange
of real-time city data. Our system is capable of performing both
anomaly detection and classification jobs over the streaming
data. In both cases, after annotation jobs are added to the system
the initial training data need to be submitted. After the initial
training data are submitted, the annotation job starts with each
data point examined and the result posted to the Annotation
Component. The system is also agnostic of the actual machine
learning process, as it capable of using multiple external services
to identify extreme values or to classify data. This gives
flexibility to experiment with machine learning algorithms and
expandability to provide extra functionality in the future.



IMPLEMENTATION
In the rest of this section, we describe the technologies used

for the implementation of our system and provide some initial
results about the operation and the performance of the system.

In order to perform the analysis of the data, we use the
Jubatus Distributed Online Machine Learning Framework [1].
Jubatus uses loose model sharing, a general computational
framework for online and distributed machine learning. For
each annotation process, we deploy a dedicated instance (either
a jubaanomaly or jubaclassifier) and feed it with the provided
training data. Our service communicates with each instance
using RPC calls and with each call, the knowledge of the
instance is enriched, as new data is feedback to the training
mechanism in order to adapt its prediction and analysis engine.
This setup allows us to horizontally scale on demand the
machine learning infrastructure.

Data is fed to our system either directly or through an NGSI
context broker [4]. More options like ActiveMQ or MQTT
message queues can be implemented and then be added to the
system. For our main use case, JAMAiCA uses a query context,
provided during the creation of the annotation job, to register
for updates on an NGSI context broker. This query acts as a set
of selection parameters for the devices and sensors the job is
interested in. In our implementation, we use the FIWAREOrion
Context Broker as an input data source. After the subscription
is established, Orion uses POST HTTP requests to notify our
system of the newly received data following the NGSI
specification. In the direct case, data need to be fed to the
system via HTTP POST requests manually. The format of the
HTTP body needs to be the formatted according to NGSI
specification as well, for simplicity's sake.

For the development of both components, we use Java and
the Spring Boot framework [5]. Spring Boot is Spring's
convention-over-configuration solution for creating stand-alone,
production-grade Spring based applications, as it simplifies the
bootstrapping and development stages. It eases the process of
exposing components, such as REST services, independently
and offers useful tools for running in production, database
initialization, environment specific configuration files and
collecting metrics. In our case, we implemented both interfaces
as RESTful web services. The API of the Machine Learning
Component offers methods for handling primary HTTP requests
(post, get, put and delete) that correspond to CRUD (create, read,
update, and delete) operations on the Annotation Jobs Database,
respectively. As a result, it allows experimenters to add and
manage annotation jobs programmatically from their
application. An annotation job can be either an anomaly
detection or a classification process. Since the inception of the
training process requires initial training data, additionalmethods

2 https://github.com/OrganicityEu/JAMAiCA

that allow training a Jubatus instance for an existing annotation
job are available. Lastly, a certain operation provides handling
subscription updates from Orion or users (in the direct case) and
starts the data validation against Jubatus. At the end of the
training process, results are stored to theAnnotation Component.

For the tag and annotation management in the Annotation
Component we use Neo4j [6], a graph database that leverages
data relationships and helps us build an intelligence around the
tag domains and tags stored in our system. By traversing the
relationships between the tags that comprise a tag domain, we
can easily create suggestions for the appropriate tags a new
annotation application may need to use. Also, the relationships
between annotations be can used to extract higher knowledge for
the cities or the experiments, especially when augmented with
location and time information in order to identify events or
situations that arise inside the cities. For example, an application
can query for streets of the city where high atmosphericpollution
and low vehicle speed is detected (indicating a possible traffic
jam) and advise drivers to use alternative routes or means of
transport when combined with information about the local
subway timetables. The code of our system, as well as examples
for its usage, is available on Github2.

Figure 3: Histogram of the data used to train the Jubatus instance

Results – Discussion
To verify the performance of our system, we setup an

anomaly detection job for analyzing atmospheric pollution in
London, based on data for the particulate matter concentration
(PM10). As training data for our test case, we used data of the
same area from the past 12 months (1000 nominal data points).
We then let the system operate for 20 days, analyzing more than
40000 sensor measurements (translated to an average of 6
measurements every 15 minutes). The distributions of the values
for the training data and the sensor data are presented in Fig. 3
and 4. A big part of the sensor measurements received is
negative, pointing out a malfunction in the sensor devices, while
another part of the measurements is greater than 50 μg/m3, the
level the European Union considers dangerous when exceeded
for more than 35 days in a year. Our system was able to detect



all values that were either negative or greater than the 50 μg/m3

limit and record the time and date these values were abnormal.
These 20 experimentation days helped us show that the data

generated by smart city installations are not always trustworthy.
A big number of the deployed sensor devices proved to be
malfunctioning during our experiment (negative values), while
a small number of measurements provided by the rest of the
devices differed from the expected levels. The systemperformed
without any problems for the whole duration of the experiment,
on a virtual machine with limited resources (8GB of hard disk,
2GB RAM and 2 CPU cores) proving the system’s scalability.

Figure 4: Histogram of sensor data received during the 20 experiment days.

CONCLUSIONS – FUTUREWORK

In this article, we presented a solution that validates and
enriches data produced by smart city infrastructures. We believe
that this kind of processing is critical for IoT sensor data to
become something more than simple datasets, i.e., a useful and
reliable data source to facilitate the development of future city
services. We presented a service capable of automatically
detecting erroneous or unexpected sensor data using machine
learning algorithms, classifying them and detecting real-world
events and situations (in the form of annotation tags) based on
provided training data sets. The initial tests we carried out
showed that the proposed solution could effectively identify
incidents with values from IoT devices in the London area
diverging from the expected and nominal values (indicating
either a malfunction or a dangerously high value).

To achieve the next level of smart city data analysis, we
believe that citizen participation is of critical importance. Thus,
in our next steps, we will focus on building interactive interfaces
that make it easy for users to augment or confirm the automated
annotations generated from our system, or provide their own
input on non-annotated data. Finally, in order to further increase
the participation rate and interest of the citizens, various methods
for incentives and gamifications need to be assessed either in the
context of rewards from the city to the citizens or benefits that
city services could provide to the citizens directly.
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