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Abstract—This paper presents a 3-step system that estimates
the real-time energy expenditure of an individual in a non-
intrusive way. First, using the user’s smart-phone’s sensors, we
build a Decision Tree model to recognize his physical activity
(running, standing, ...). Then, we use the detected physical activity,
the time and the user’s speed to infer his daily activity (watching
TV, going to the bathroom, ...) through the use of a reinforcement
learning environment, the Partially Observable Markov Decision
Process framework. Once the daily activities are recognized,
we translate this information into energy expenditure using the
compendium of physical activities. By successfully detecting 8
physical activities at 90%, we reached an overall accuracy of
80% in recognizing 17 different daily activities. This result leads
us to estimate the energy expenditure of the user with a mean
error of 26% of the expected estimation.

Keywords—Smart-phone; Metabolic Equivalents; Internet of
Things; Decision Tree; Partially Observable Markov Decision
Process

I. Introduction
Physical inactivity has become a major global public health

problem and has been deemed responsible of 3.2 million
of deaths in the world in 2004 [1]. Being able to monitor
the energy expenditure of individuals through their physical
activities could help fighting modern diseases such as obesity
and diabetes, which are increasingly direct consequences of
physical inactivity [2].

The strong recent growth of the Internet of Things (IoT),
with 28.1 billion of objects in 2020 [3], opens up new ways
to approach this issue.

In 2012, Altini et al. proposed a way to estimate the energy
expenditure of an individual wearing an accelerometer and a
heart rate monitor on the chest [4]. First, they use regression
based models to recognize clusters of physical activities.
Then, using a combination of the compendium of physical
activities (built by Ainsworth et al. [5]) and a pulmonary
gas exchange device, they translate the physical activities into
energy expenditure.

Physical activity recognition has been a dynamic field of
study in the past few years. First using IoT [6] [7], and then
using smart-phones [8] [9] [10]. Through machine learning
techniques applied to the smart-phone’s accelerometer, they

recognize the user’s physical activities such as running, walk-
ing or standing. Besides, using physical activity recognition,
Weiss et al. worked on a smart-phone application whose aim
is to improve health and well-being [11]. Recognizing those
activities in real-time and for a lot of different users, they were
able to give the user insights on his health (burnt calories, total
time spent walking, ...).

We can highlight several limitations in those works. First,
using several sensors (an accelerometer and a heart rate
monitor as Altini et al did, for instance) to estimate the user’s
energy expenditure is intrusive. Second, while Weiss et al.
addressed this intrusivenes issue using a smart-phone, they did
not measure the energy expenditure of the user. Ainsworth
et al. showed that we need to know precisely the activity
of the user (watching the TV, sitting, instead of just sitting)
to estimate his energy expenditure [5]. Thus, recognizing his
physical activity (running, standing, ...) is not a sufficient
information to compute his energy expenditure.

This paper aims at addressing those issues by presenting a
non-intrusive way to estimate the energy expenditure of an in-
dividual in real time. First, using the smart-phone’s embedded
sensors we identify the physical activity of the user (walking,
sitting, ...) in real-time. Then, based on this information, we
recognize the daily activities of the user (going to work, eating
breakfast, ...). Finally, with the recognized daily activity and
the compendium of physical activities built by Ainsworth et
al. that assigns for every activity a metabolic equivalent, we
compute the energy expenditure of the user in real-time.

II. Methods & Implementation
In this section, we describe the whole methodology that

makes us estimate the energy expenditure of the user in real-
time. Figure 1 represents the data flow of the system and its
3-step process.

To estimate the energy expenditure of an individual, we
need to know precisely what he is doing. The compendium
of physical activities built by Ainsworth et al. shows that
knowing his physical activity (running, standing, ...) is not
a sufficient information. We need to know the context of the
physical activity, which we will call the daily activity. For
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Figure 1: System Flow Diagram

instance, solely knowing the physical activity, we could not
differentiate those two following activities: sitting, eating and
sitting, playing the drums. Both activities would be detected
as sitting activities, but yield very different energy expenditure
values [5].

To recognize those daily activities, we chose to follow a
2-step process [16]: first we recognize the physical activity of
the user (running, standing, ...), then we use this information
to infer his daily activity (watching TV, going to the bathroom,
...).

Because of its computational power, its wide acceptance and
since it has been shown to work well in recognizing physical
activities [8] [11], the smart-phone has been chosen as the
primary input of data in this study. Besides, this system could
have also worked with other IoT configurations such as with
a smart-watch (alone or added to the smart-phone).

A. Physical Activity Recognition

The recognition of the physical activities of the user using
his smart-phone is based on the works of Anguita et al.
[9], San-Segundo et al. [8] and Weiss et al. [11]. In those
works, the following physical activities are usually recognized:
lying down, climbing stairs (up or down), sitting, standing,
running, walking. To do so, time-frequency features from the
accelerometer (and sometimes from the gyroscope as well) are
extracted. Those features are then used to build a classification
model using Machine Learning algorithms (Support Vector
Machine [9], Hidden Markov Model [8], Random Forest [11]).

In order to have our whole system working in real-life
environments, we decided to include another activity in the
recognition model: the missing activity. This activity represents
the times when the smart-phone is not with the user but left
behind somewhere. Recognizing this activity makes us address
the non-intrusivity of the system: we do not force the user to
have his smart-phone inside his trousers’ pocket.

1) Data Collection

We chose to use the three common sensors of a smart-phone
to infer the physical activity : the accelerometer, the gyroscope
and the magnetometer. We developed an Android application
to collect the data the following way: first, the user chooses a
physical activity he wants to record (which eases the labelling
of the data), then he puts his smart-phone inside his trousers’
pocket and starts the recording session (lasting 2 minutes and
30 seconds) and carries out the activity. During the recording,
the data of the three axes of the sensors are sampled at a 50
Hz frequency. Once done, the recorded data are saved into a
local SQLite database.

2) Pre-processing

In order to exclude the gravitational force and to select
the body movements in the signal, we filtered it between
0.3 and 20 Hz [13]. Then we regrouped the raw data in
sliding windows of 2.56 seconds with a 50% overlap [8] [9].
Following a methodology detailed by San-Segundo et al., we
finally extracted the time-frequency features from the signals
[14]. This is the list of the features we extracted :

1) Time domain features: mean, standard deviation, sig-
nal magnitude area, auto-regression coefficients, energy,
total energy, signals correlation.

2) Frequency domain features: frequency skewness, en-
tropy, energy, total energy.

3) Model Building

Once the features have been extracted, we can build the
physical activity recognition model. We chose to use a Deci-
sion Tree model built on the features and the time-frequency
values. We prefered this model over others (k-Nearest Neigh-
bours, Random Forest, Support Vector Machine) because it
yields the best results for little training and computing time
[6].

B. Daily Activity Recognition

As previously explained, in order to be able to estimate
the energy expenditure of the user, we need to be able to
understand the nature of the physical activities he is doing
during the day, which we call the daily activities. To do so,
we built an intelligence using the Partially Observable Markov
Decision Process (POMDP) framework.

1) The POMDP Theory

The POMDP framework is a reinforcement learning frame-
work where the agent, the intelligence, navigates in an envi-
ronment from which it gets a partial and noisy representation.
In this environment, the agent will take actions that may (or
may not) affect the environment. Depending on the current
state of the environment and on the action it takes, the agent
receives some rewards. From trials and errors, the agent will
build a predictive model.

Traditionnaly, the POMDP framework is used in robotic
tasks [15]. Processing its sensors’ signals, the robot builds
a representation of the environment from which it can take
actions.

In our work, we propose to adapt this framework to daily
activities recognition. The agent tries to infer the state of the
environment (the daily activities) while being given partial
information of it, which we call the observation in the POMDP
framework. The pieces of observation are the following: the
time, the physical activity (detected by the physical activity
recognition module described earlier) and the speed of the
user (computed from the GPS signals of the smart-phone).
The Table I represents an example of a sequence of activities
describing the user’s day.



Table I: Daily Activities’ Sequence Example

Activity
Length
(min)

Physical
Activity

Speed
(km/h)

Corresponding
Activity Code1

Eat breakfast 10 Sitting 0 13030

Wash self 30 Standing 0 13040

Get ready 10 Standing 0 9070

Go to the bus 9 Walking 4.5 17190

Take the bus 8 Sitting 40.0 16016

Walk to work 2 Walking 3.0 17190

Go upstairs 1 Climbing stairs 1.0 17133

Go to the toilets 3 Walking 2.5 17151

Work 120 Sitting 0 11580

This scenario, starting at 8 a.m. and ending at 11:13 a.m., only
represents a fraction of a day. Whole days are usually used to
train and to test the model.
1 See Table II and see Subsection II-C for more explanation.

More formally, a POMDP is a tuple (S , A,T,R,Ω,O) where
[17] :

S : a finite set of states of the world, described here by all
the possible daily activities of the user.

A: a finite set of actions, described here by all the user’s
daily activities’ predictions.

T : S × A → Π(S ), the state-transition function. T (s, a, s′)
expresses the probability of getting to state s′ while
being in state s and doing action a.

R: S × A → �, the reward function. We call R(s, a) the
expected immediate reward the agent is given for taking
action a in state s.

Ω: a finite set of observations the agent can experience from
its environment. Every observation is described here by
a tuple (time, physical activity, speed).

O: S × A → Π(Ω), the observation function. O(s′, a, o)
represents the probability of making the observation o
when taking action a and landing in state s′.

Since the agent is unable to observe the current state of the
environment, it needs to compute what we call the belief state,
which is a probability distribution over the state space. Starting
from an arbitrary initial belief state, it updates its belief of the
state of the environment after taking an action a and receiving
an observation o, following (1).

b′(s′) = Pr(s′ | o, a, b) =

O(s′, a, o)
∑
s∈S

T (s, a, s′)b(s)

Pr(o | a, b)
(1)

Where Pr(o | a, b) is a normalization factor.

The goal of the agent is to maximize the immediate expected
reward expressed by the Bellman equation, which we can
simplify as (2) since the agent’s actions do not impact the
environment (it only guesses the current state).

V(b) = max
a

∑
s∈S

R(s, a)b(s)

 (2)

It means that the agent will always predict the activity
for which its associated rewards times its probability is the
highest.

2) Implementation

All the complexity of the model revolves around the com-
puting of the state-transition function and the observation
function. We can derive those probabilities from experience.
While this is not a problem for the transition probabilities, it is
a more delicate one for the observation probabilities because
of the sparsity of the data.

As a reminder, the observation function depicts the proba-
bility of having such an observation (time, physical activity,
speed) given a daily activity. The issue occurs for activities
that do not last long in our daily life but occur a lot (going to
the bathroom for instance). Those activities are hard to detect
since they can occur at any time of the day and, most of
the times, there is no observation record to support such an
observation for this daily activity.

To address the sparsity of our data, we chose to apply a
technique often used in language modelling when the data is
sparse [18], called Laplace smoothing or additive smoothing.
The idea is quite simple: we add a fixed number of fake
occurrences in the space we want to be smoothed and we
recompute the probabilities.

However, this cannot be directly applied in our environment
since the observation space is too big and the data too sparse.
We then chose to tweak the Laplace smoothing technique the
following way. First, for every occurrence of an observation for
a given activity, we add fake occurrences to all its temporal
observation neighbours. This will restrict the impact of the
smoothing around the initial observation occurrences in the
time axis. Second, instead of adding a fixed numbers to the
neighbours of the initial occurrences, we chose to take the
value on a Gaussian centred on the initial occurrence. The
higher the variance of the Gaussian is, the farer from the initial
observation fake occurrences are added.

C. Energy Expenditure Estimation

Based on the daily activity recognition module, we are now
going to estimate the energy expenditure of the user.

A Metabolic Equivalent (MET) is a value that expresses the
intensity of an activity. It is defined as the ratio of the work
metabolic rate to a standard resting metabolic rate [19]. A
MET equals to 1 kcal.kg-1.h-1 (equivalent to the energy cost
of sitting quietly). A MET can also be defined as the oxygen
uptake in ml.kg-1.min-1, where 3.5 ml.kg-1.min-1 is the oxygen
uptake of an individual sitting quietly.

Over the years, Ainsworth et al. have built a vast com-



Table II: Sample of the Compendium of Physical Activities1

Activity
Code

Description
Metabolic

Equivalent2

5035
kitchen activity, general, (e.g. cooking,

washing dishes,cleaning up), moderate effort
3.3

7025
sitting, listening to music (not talking or
reading) or watching a movie in a theater

1.5

7030 sleeping 1.0

7040 standing quietly, standing in a line 1.3

9045
sitting, playing traditional video game,

computer game
1.0

9055
sitting, talking in person, on the phone,
computer, or text messaging, light effort

1.5

9070 standing, reading 1.8

10074 playing musical instruments, general 2.0

11580
sitting tasks, light effort (e.g., office work,

chemistry lab work, computer work, ...)
1.5

13030 eating, sitting 1.5

13040
grooming, washing hands, shaving, brushing
teeth, putting on make-up, sitting or standing

2.0

16016 riding in a bus or train 1.3

17070 descending stairs 3.5

17133 stair climbing, slow pace 4.0

17151
walking, less than 3.2 km/h, level,

strolling, very slow
2.0

17152 walking, 3.2 km/h, level, slow pace, firm surface 2.0

17190
walking, 4.5 to 5.1 km/h, level,

moderate pace, firm surface
3.5

1 original table is 821 entries long.
2 in MET or kcal.h-1.kg-1.

pendium of physical activities where for every activity they
associate one code and one MET value. We will use the
last update of the compendium [5] to first translate the daily
activities we detected in the last part (see the last column of
Table I), and then to estimate, in MET, the energy expenditure
over time of the user using the corresponding MET value
(Table II). For instance, if the user, weighing 60 kg, walks
during 9 minutes to catch the bus with a walking speed of 4.5
km/h and then rides the bus during 8 minutes while sitting,
we can compute the whole energy expenditure (EE) this way:
EE = 60 ∗ (9/60 ∗ 4.5 + 8/60 ∗ 1.3) = 51 kcal.

III. Experimental Results & Discussion
This sections presents and discusses our experimental re-

sults following the 3-step methodology presented earlier: first
the physical activity recognition module, then the daily ac-
tivity recognition module, and finally the energy expenditure
estimation.

A. Physical Activity Recognition

The results of the physical activities recognition module
have been obtained using a ten-fold cross validation, often
used in activity recognition as it is a compromise between
performance and computing time [6].

Table III: Physical Activity Recognition Probabilities

Predicted Activity
lie missing sit stairsdown stairsup stand run walk

E
xp

ec
te

d
A

ct
iv

ity

lie 0.75 0.06 0.09 0 0 0.1 0 0
missing 0.1 0.83 0.07 0 0 0 0 0
sit 0.09 0 0.78 0 0 0.13 0 0
stairsdown 0 0 0 0.96 0.04 0 0 0
stairsup 0 0 0 0.01 0.99 0 0 0
stand 0.03 0.04 0.02 0 0 0.91 0 0
run 0 0 0 0 0 0 1 0
walk 0 0 0 0.01 0 0 0 0.99

Overall, across all the physical activities we achieve a
performance of 90%, ranging from 75% (lying down) to 100%
(running). Moreover, our results, summarized in Table III,
show that it is easier to classify dynamic activities (running,
walking, climbing stairs) than static activities (sitting, laying,
standing, smart-phone "missing"). While dynamic activities
recognition has a performance of 98.5%, static activities are
successfully recognized with an accuracy of 82%. Because of
less intense signals’ variations involved in static activities, it
is harder for the model to tell one activity from another.

Our results are comparable to those obtained in other
studies. For instance, Anguita et al. achieved an overall
performance of 89% in the recognition of six different phys-
ical activities (walking, climbing stairs up/down, standing,
sitting, lying) [9]. As for Weiss et al., they obtained a global
performance of 95% in detecting five different activities:
jogging, stairs, walking, standing and sitting/lyings down. The
difference in the prediction success rate is explained by the
grouping of the lying and the sitting activities together (9% of
confusion between those two activities, see Table III) and that
they do not recognize the missing activity.

B. Daily Activity Recognition

To understand the nature of the physical activities we just
recognized, we trained an intelligence in a POMDP environ-
ment using the user’s daily sequences of activities. The results,
depicted in Table IV are obtained using a ten-fold cross-
validation: nine days of activities are used for training, and
the remaining day is used for testing. The performance of the
system has been evaluated in two different ways: the mean per-
formance of the activities’ recognition, and the weighed mean
performance of the activities’ recognition, with the weight
depending on the length of the activities (the longer, the higher
the weight). Three kinds of experiment have been tested:
the base POMDP model, the base POMDP model where
we smoothed the observation probability function, and the
base POMDP model with smoothed observation probability
function and tweaked rewards.

While the performance over the day (weighed mean) is
quite the same for the three experiments, we can notice a
big variation in the mean performance and in the minimum
prediction success rate.

First, without the smoothing of the probabilities presented



Table IV: Daily Activity Recognition Results

Experiment Type Mean Weighed Mean Min Max

Base 0.45 0.76 0 0.98

With smoothing 0.79 0.75 0.002 0.98

With smoothing &
tweaked rewards

0.80 0.78 0.29 0.99

earlier, the mean performance is 45%. Long activities (such
as sleeping) are easily detected increasing the weighed per-
formance. In the other hand, a lot of short activities (such
as going to the toilets) have a recognition success rate of 0%.
Smoothing the observation function increases this performance
above 79% : 80% of the activities have a recognition rate of
at least 80%.

Because some activities have still a low recognition ac-
curacy (playing video games on the computer with 0.2%,
watching a movie on the computer with 37%, ...), we tried to
increase the rewards associated with those activities’ predic-
tions, which is represented by the with smoothing & tweaked
rewards exeriment type in Table III. With a higher reward, we
encourage the agent to choose this activity as the prediction
even if the odds are not very good. This improved our
results, by slightly increasing the mean and weighed mean
performance, but most of all, by increasing the minimum
recognition success from 0.2% to 29%.

Since the protocols in daily activity recognition vary heavily
between studies, we cannot compare our results to others.
However, there are still things to be noted about our results.
The activities that have the lowest performance happen during
the evening. During this time, the user is at home and does
not have his smart-phone in his pocket. The physical activity
detected by our physical activity recognition module is then
the missing activity. When the physical activity detected by
the smart-phone is not missing, the success in the prediction
is about 98% against 61% when it is. The Figure 2 represents
this shift of performance. The red area corresponds to working
activities around 4:00 pm. Then the user goes back home,
which corresponds to the activities in the green area. Until
he is home, which is represented by the point t=587, the
daily activity recognition is close to 100% success. Afterwards,
the user performs home activities such as eating, playing
the guitar, playing on the computer, leaving his smart-phone
behind. This shows the importance for the intelligence to know
the physical activity of the user. Without it, it cannot tell one
daily activity from another.

C. Energy Expenditure Estimation

The final step of this system is the translation of the daily
activities recognized in real-time (every minute) into energy
expenditure. To do so, every activity has been associated an
activity code in the compendium of physical activities built
by Ainsworth et al. [5]. For every activity code corresponds
one metabolic equivalent value (in MET), see Table II. The
results, displayed in Table V have been obtained choosing the
with smoothing & tweaked rewards experiment type for the

Table V: Energy Expenditure Estimation Results

Mean Absolute1 Mean At the
End of the Day1 Min1 Max1

26% +20% -70%2 +230%2

1 The values are expressed in percentage of the difference with the expected
values.
2 Both values are obtained when the intelligence confuses the washing dishes
(moderate effort) activity with the playing video games (light effort), and vice
versa.

recognition of daily activities.

The Figure 3 represents the expected (in blue) and the
predicted (in orange) cumulative energy expenditure over time.
As for the daily activity recognition module, until the time of
the day t=587, where the user comes back home and leaves
his smart-phone behind, the energy expenditure prediction is
close to the expected value. However, the energy expenditure
is wrong afterwards since the daily activity recognition is not
as accurate.
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Figure 3: Cumulative Energy Expenditure Over Time

IV. Conclusion & FutureWorks
In this study, we built a non-intrusive system using a smart-

phone that estimates the energy expenditure of its user in real-
time. The system uses a two-step activity recognition module.
First it detects the physical activity of the user (running,
sitting, ...) from the smart-phone sensors. Then, with this
information, the system infers the daily activities of the user
(watching TV, going to the bathroom, ...), which is then used
to compute his real-time energy expenditure.

As also shown in previous works in this field, with 90%
accuracy, physical activity recognition works well using the
smart-phone’s sensors. It is not as easy to understand the
nature of the detected physical activities, though. We showed
that with appropriate methods (probabilities smoothing) to
overcome the sparsity of the data we are able to recognize
the daily activities in real time with an overall performance
of 80% over the activities. By successfully recognizing the
user’s activities in real-time, we propose a way to estimate
his energy expenditure in real-time using the compendium of
physical activities built by Ainsworth et al.. We achieve a mean



Figure 2: Daily Activity Recognition, Predicted VS Expected over Time

error of 26% of the expected energy expenditure estimation.

However this successfulness depends heavily on the activ-
ities’ recognition success. We showed that, due to the user’s
habits, the smart-phone may not be able to detect his physical
activity. When it happens, the performance drops from 98% to
61% which directly impacts the energy expenditure estimation.
To overcome this issue, we plan on using a smart-watch
instead of a smart-phone in future studies. Weiss et al. have
shown that using a smart-watch in physical activity recogni-
tion is more efficient than a smart-phone [20], especially in
detecting hands activities (drinking, eating, ...). Besides, if the
user has a day that is very different from the days the model
has been trained on (e.g. the user has taken a day off while the
model has been trained on working days), the model will have
a very hard time correctly estimating the energy expenditure.
If such situations are detected, we could work on modifying
the estimation of the energy expenditure accordingly.

Finally, since we use a generic model to estimate the
energy expenditure (the compendium of physical activities),
in the future, we could try to evaluate the relevance of the
model using a pulmonary gas exchange device during the
experiments.
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