

VITASENIOR-MT: A distributed and scalable

cloud-based telehealth solution

Diogo Mendes

VITA.IPT Lab

Polytechnic Institute of Tomar

Tomar, Portugal
diogo.santos.mendes@ipt.pt

Dário Jorge

VITA.IPT Lab

Polytechnic Institute of Tomar

Tomar, Portugal

jorge.dario@ipt.pt

Renato Panda

VITA.IPT Lab

Polytechnic Institute of Tomar

Tomar, Portugal
renato.panda@ipt.pt

Ricardo António

VITA.IPT Lab

Polytechnic Institute of Tomar

Tomar, Portugal

ricardma1996@gmail.com

Pedro Dias

VITA.IPT Lab

Polytechnic Institute of Tomar

Tomar, Portugal
diaspedro@ipt.pt

Luis Oliveira

VITA.IPT Lab

Polytechnic Institute of Tomar

Tomar, Portugal

loliveira@ipt.pt

Gabriel Pires

VITA.IPT Lab

Polytechnic Institute of Tomar

Tomar, Portugal

gppires@ipt.pt

Abstract— VITASENIOR-MT is a telehealth platform

that allows to remotely monitor biometric and

environmental data in a domestic environment, designed

specifically to the elderly population. This paper proposes a

highly scalable and efficient architecture to transport,

process, store and visualize the data collected by devices of

an Internet of Things (IoT) scenario. The cloud

infrastructure follows a microservices architecture to

provide computational scalability, better fault isolation, easy

integration and automatic deployment. This solution is

complemented with a pre-processing and validation of the

collected data at the edge of the Internet by using the Fog

Computing concept, allowing a better computing

distribution. The presented approach provides personal data

security and a simplified way to collect and present the data

to the different actors, allowing a dynamic and intuitive

management of patients and equipment to caregivers. The

presented load tests proved that this solution is more

efficient than a monolithic approach, promoting better

access and control in the data flowing from heterogeneous

equipment.

Keywords—Telehealth, Cloud Computing, Fog Computing,

IoT, Microservices.

I. INTRODUCTION

In the European Union (EU), demographic trends
point to a rise in aging population, with an estimated
growth of 74% in the population over 65 years of age until
2060, and a decline of 42 million in the working-age
population [1]. This fact, together with the high
desertification of the countryside caused by the rural
exodus, leads to an increased number of isolated elderly
people. Coupled with this reality is the high number of
age-related diseases, such as type 2 diabetes and cardio-
cerebrovascular diseases, or immobility conditions due to
fractures caused by falls. As an example, in 2015 there
were almost 49 million people diagnosed with
cardiovascular diseases in the EU [2]. Continuous
monitoring and follow-up of the elderly can help to
mitigate such situations.

Telehealth has become an important research and
development topic in the area of Cloud systems,
promoting the use of mobile devices in healthcare services
for more vulnerable populations [3]. To address the
abovementioned issues, we propose a telehealth platform,
VITASENIOR-MT, that allows to monitor the patients’
clinical parameters as well as the environment where they
live [4]. The elderly interact with the system through a
television, a device that is already familiar to them,
thereby avoiding the introduction of new technology
which could lead to constraints and rejection of the
system. A central device, that we call VITABOX,
supports the interaction between the user and the
television. It is also responsible to collect data from the
medical devices and environmental data from the wireless
sensor network, as well as to send all data to the Cloud
infrastructure (see details in [4]).

Cloud computing is a well-defined and consolidated
concept to get hosting for our telehealth system with
distributed processing power without the need to know the
hardware physical location. To better organize the
business logic and information storage, it is necessary to
model all data in a homogeneous way, abstracting all
devices dissimilarity and impose access restrictions and
personal data protection with different access layers. The
entire process starts in the VITABOX with the pre-
processing of the sensors’ collected data, followed by
transmission to the cloud, where it is stored and processed
to later notify the patient and their caregivers of possible
issues. Data information is also presented to the users,
namely, informal caregivers, doctors or the patients
themselves.

In this paper we describe the implementation of
VITASENIOR-MT telehealth solution, which aggregates
data from distinct equipment, based on different protocols.
In addition, it also provides a platform to remotely
monitor the environment and biometric state of the users
in a plug-and-play way, without requiring special
technological knowledge. With that aim, we resort to
concepts such as fog computing and microservices to
provide a secure, scalable and flexible system where each

Fig. 1. General architecture of the VITASENIOR-MT project.

module can be scaled as required to accommodate more
users, equipment or analytical processing needs,
independently.

II. STATE OF THE ART

Cloud Computing promotes the provision of new
business models for the providers, such as SaaS (Software
as a Service) and PaaS (Platform as a Service) [3]. Unlike
the use of the classic IaaS (Infrastructure as a Service)
model, in which the provider is only responsible to
provide the physical processing power, storage and
network resources, leaving to client the configuration and
maintenance responsibility. In SaaS it is possible for the
client to use an application in a Cloud environment
without requiring any development (e.g., e-mail and
calendar tools). In PaaS, the provider sets all the
ecosystem required for a given technology (operating
system, framework and deployment tools) and the client is
required only to develop over the provided structure [3].

The PaaS model give us the opportunity to set up the
initial system requirements, with the possibility of scaling
them as needed in the future. As a result, the user is billed
only on the resources needed, in a model known as pay-
as-you-go (PAYG). Moreover, all tasks related with
guaranteeing system stability, data backups, updates, load
balancing and the risks of hardware failures are delegated
to the Cloud provider. This model also allows for some
independence from the Cloud provider. After all, we are
the code owners and thus it is possible to quickly migrate
all the system to another provider without compromising
customer service [5]. Despite the advantages of Cloud
Computing, there are still some limitations of scope, such
as the Internet of Things technologies (IoT) and private
systems, often causing security holes in the access to the
private network. The major issue in the integration
between IoT and Cloud is the interoperability between the
sensors and the web services. Then, it is necessary to use a
service to translate the different vocabularies present in
the various communication protocols and technologies.
That process is referred to as data semantification,
formatting the data with specific properties or tags to get a
unified architecture [7]. There are some projects to
address this interoperability problem, but they present a
solution limited to a specific technology, such as the
Watson IoT Platform on the IBM Cloud [8] or the AWS
IoT Core from Amazon Web Services (AWS) [9], which
are limited to MQTT based devices.

To promote full communication between different
types of applications, a new concept has been introduced,

the Fog Computing [3]. In this architecture all the
aggregation logic to heterogeneous devices from the IoT
network is transferred to a layer usually located at the
edge of the Internet. Taking advantage of this processing
power, it is possible to model the data in an acceptable
format to the Cloud business logic, and to ensure the
filtering of the access requests by new devices to the IoT
network. With this, we can take full advantage of the IoT,
enjoying the proximity to users and the environment that
surrounds them, and of the Cloud, with the virtually
almost unlimited processing and storage capabilities.

Some projects similar to VITASENIOR-MT have
been proposed, implementing Cloud systems to remotely
monitor health parameters. For example, in [6] blood
pressure and electrocardiogram devices are connected to a
platform that associates users with healthcare
professionals (e.g., doctors and nurses) and let them check
the results in an Android application. However, it does not
collect home environmental data as in our telehealth
solution. The major limitation of their project is that the
Cloud architecture was not designed to evolve over time
in new functionalities like as devices and users’
management. This could be achieved by implementing a
microservices architecture and developing a Backoffice
where the administrators could manage equipment, being
able to add new device types or alter the threshold rules to
abnormal values, as we are proposing in VITASENIOR-
MT.

III. GENERAL ARCHITECTURE

The VITASENIOR-MT project is divided in 3 parts
(Fig. 1):

 Wireless Sensor Network (WSN) and Bluetooth
medical devices: provides the readings of the
home environment and biometric sensors;

 VITABOX: promotes patient interaction with the
TV, requests data from the sensors network,
performs pre-processing of the data and sends it
to the Cloud;

 Cloud: analyses the data, provides a web
interface to the users, such as caregivers,
healthcare professionals, patients and
administrators, and notifies them of any
irregularities.

The WSN is organized in a tree topology, promoted by
Routing over Low Power and Lossy Networks (RPL), and
the communication between the nodes is based on the
IEEE 802.15.4 standard. The root node is assigned as
Border Router (BR), which connects the WSN network
and the VITABOX through a tunslip6 bridge. It allows
access to new nodes, which were previously defined from
the Cloud interface, and enables the access to the
resources from the external network, through the
Constrained Application Protocol (CoAP). This way the
VITABOX is able to obtain temperature, humidity, carbon
monoxide and carbon dioxide readings, in JSON format,
from each node.

The VITABOX collects data from the biometric
sensors using Bluetooth Low Energy (BLE). These
sensors provide blood pressure, weight, oximetry or blood
glucose measurements at the patient's initiative. There is

Fig. 2. Object relationships in VITASENIOR-MT system.

Fig. 3. Cloud microservices architecture.
also a bracelet for measuring heart rate and steps, which
are collected automatically by the VITABOX, when it
senses the bracelet signal within its range. VITABOX also
centralizes user-TV interaction features, allowing the user
to initiate certain exams, view his/her historical data and
receive alerts in dangerous situations. All requested data,
either from WSN or medical devices, are stored in a local
database with a validity of 24 hours for environmental
records and 1 month for biometrics records. Finally, the
records are forwarded to the Cloud, where protocols and
conditions are applied. If abnormal values are detected,
the persons responsible for the elderly and the VITABOX
itself are notified.

The relationships between VITABOXes, sensors,
patients and the different roles of users, such as the
doctors and the caregivers, are also defined in the Cloud
(Fig. 2). Thereby, it is possible to set different permissions
to users to access data, edit profiles, schedule exams or
manage equipment. For example, only the doctors
associated with a specific patient can define his/her
clinical profile and schedule exams. To this end, the
caregiver needs to indicate the respective doctor and
associate the biometric device to the patient. These
features can be performed through a web interface
available for any device with a modern browser.

A set of sensors’ thresholds and clinical profiles are
defined in the Cloud to generate warnings or
recommendations, as well as to notify the caregivers when
some irregularity occurs. To promote a faster reaction
from house dwellers, these thresholds are sent to the WSN
nodes through the VITABOX. This way, patients may act
immediately, for example, opening a window if the CO is
too high. As this process is done locally, this ensures the
autonomous operation of the VITABOX even when no
connection can be established with the Cloud
infrastructure. The same is not applied to biometric values
because to be interpreted and validated, these data require
more computational power not offered by VITABOX
hardware and need also the involvement of more actors of
the overall system.

IV. IMPLEMENTATION

A. Fog Computing

One of the problems when designing an IoT/Cloud
architecture is the routing of sensor data to the Cloud,
namely the lack of interoperability between different
technologies used to gather data. Due to this reason, it was
necessary to implement an intermediate proxy that could

aggregate and connect all the equipment and process the
data, so that the data followed the same schema pattern
[10]. This task is carried out by the VITABOX, because it
is located at the edge of the local network, facilitating the
distribution of the system and the collection of data from
authorized devices. All records received in the VITABOX
are modeled into a standard JavaScript Object Notation
(JSON) and forwarded to the Cloud, thus abstracting the
Cloud from the devices heterogeneity and avoiding the
authentication of each equipment. Since the source of the
data is the VITABOX, that is already authenticated, it
only accepts the equipment that was previously registered
in the Cloud. Another particularity of our implementation
is that sensor data are collected by the initiative of the
VITABOX, unless a sensor detects a value out of the
predefined range. In this case, the sensor triggers an event
to the VITABOX. This way it is possible to configure the
periodicity of data requests to sensors.

B. Scalability

Cloud Computing is known by its almost unlimited
processing and storage capabilities, however that has an
associated cost and thus it is necessary to design the
services architecture to get the most out of the Cloud. The
model adopted was the PaaS provided by IBM Cloud [11]
allowing horizontal scaling of the system.

Five different processing nodes were developed (see
Fig. 3):

 API node: Web Application Programming
Interface (API) that promotes the data
accessibility, via Representational State Transfer
(REST), providing the create, read, update and
delete actions (CRUD) to manage all data
generated by the system;

 WS node: establishes the WebSocket (WS)
connections between VITABOXes and browser
clients to send messages in real-time. These are
sent by the server initiative, used in tasks such as
an update to the VITABOX or a warning to the
caregivers about some irregularity on the
biometric values of a patient;

 Worker node: executes intensive processing
actions such as applying filters to data, compare
sensors data to predefined thresholds and clinical
profiles, generating warnings from abnormal
values, and updating VITABOXes and sensors
timestamps;

 Schedule node: runs all the functions that execute
in loop, e.g., checking if scheduled exams were
performed;

 Peer node: registers the clients that intend to
connect through a Real Time Communication
over the Web (WebRTC).

The communication between the microservices is
performed by the RabbitMQ message queue system [12].
When the API node receives sensor records, they are
forwarded to the queue broker. The Worker node is
listening the broker, and applies the appropriate rules to
the received data, verifying whether the sensor values are
as expected. If a data abnormality occurs, an alert is
registered and sent to the clients through the WS node.

The adopted architecture allows the system to scale
according to access types. If, for example, the number of
VITABOXes increases dramatically, more sensor data
will be generated, which forces an increasingly large
number of Worker nodes to be instantiated in order to
analyze them. If, on the other hand, an increase of
accesses by the caregivers occurs, then more API nodes
can be allocated to not compromise the data access. If
even more users are associated to VITABOXes, then more
WS nodes are required to ensure real-time warnings.
Thereby, we are sure that the Schedule node will not need
the balancer because the loop time will dynamically
change as the number of scheduled actions grows.

Not only the message broker functions as a bridge
between the microservices, but it also provides the
publish/subscribe (Pub/Sub) used by the WebSockets.
This allows them to scale horizontally with the
WebSocket node, without restricting access to alerts by
the clients. That is, regardless of the WebSocket node type
to which the client connects, it will always receive the
messages addressed to itself. The message channels that
the clients subscribe are related to all VITABOXes to
which they have permission to access the data,
guaranteeing the privacy in the system.

C. Layered structure

One major concern in Cloud architecture is to
guarantee the best latency to requests. We planned and
implemented several mechanisms to comply with our
system performance requirements. The development
platform adopted was NodeJS [13]. Although JavaScript
(JS) is an interpreted language, NodeJS runs on Google's
V8 engine that compiles JS directly into machine code
and optimizes parts of the code in real time [14]. To
achieve the most out of the compiler, the code follows a
layered pattern [15] enabling the reuse of code, a better
organized structure and optimized functions instantiation
in hidden classes [14], maintaining them to a minimum.
This promotes better long-term optimization in the JIT
(just-in-time) of the most requested pieces of code (hot
functions). Four backend applications were developed for
different purposes (Fig. 3). The defined layers were:

 HTTP Server: represents the starting service to
listen clients’ requests;

 Middleware: first code executed on every request,
that defines accepted headers, validates the

authentication tokens and extracts the client
idiom;

 Router: interprets the requested route and version
and forwards the request to the respective
controller;

 Controller: filters the access according to the
user's permissions, collects the parameters sent,
and calls the functions of the business logic;

 Business: defines CRUD functions and data
analysis to business logic;

 Broker: establishes communication with a
message queue server, and performs the messages
sent and received;

 Model: defines the data models and establishes
the connection to the databases;

 WebSocket server: establishes the WebSockets
with the clients;

 Broker-WebSocket interface: establishes the
connection between the WebSockets and the
messages queues;

 Peer Server: supports the peer discovery by the
clients register.

D. Database

The Cloud infrastructure is continuously receiving
sensors’ data generated by the various VITABOXes.
Thus, a database service designed for high frequency
reads and writes of large volumes of data is required. For
this reason, it was decided to use a non-relational
database, since these have a linear search capability and
allow to scale horizontally. The non-relational database
adopted was the MongoDB [16], a document-oriented
database that allows to deal with the constant registration
of user logs, sensor values and warnings.

The drawbacks of this solution are the lack of data
organization, since NoSQL services are schemaless, not
requiring a structure for the saved data, and the lack of
maturity in ACID (Atomicity, Consistency, Isolation,
Durability) transactions. These characteristics may
represent a flaw to the users’ data safety. Thus, the
addiction of a relational database, such as MySQL [17], is
justified to guarantee the accounting process and
relationships of the VITABOXes with users, sensors and
patient profiles.

E. Access

For the user to access the system, the API Web service
provides the documentation files and the web application
interpreted by the browsers. The documentation is
generated through the apiDoc libraries [18], forming a
web page based on API source code annotations, defining
in each RESTful route the method to be used, the
parameters and headers to send and the possible
responses.

To free some processing power from the Cloud,
instead of rendering the pages on the server (server-side
view), the web application is being developed with Vue.js
[19], a progressive JavaScript framework for frontend

Fig. 4. Load test without separation of services.

Fig. 5. Load test with sensors data brokering approach.

development. This approach allows for a better project
structuring, making the development of the frontend
independent of the development of web services in the
Cloud. This way, all data processing for graphics
displaying and interfaces creation are transferred to the
client, feeding on JSON structures provided by the web
API. This increases Cloud performance by avoiding the
waste of computational resources in rendering web pages
and decreases network traffic, since JSON data packets
are smaller than transferring full HTML files. The choice
of Vue.js facilitates bidirectional communication between
components, as well as listening for events between
components without the need of direct dependence.

The frontend also supports WebRTC, allowing
videocalls between clients (patients from VITABOXes
and caregivers/doctors from the web application) over a
Peer-to-Peer (P2P) communication [20]. This solution
reduces the latency typically introduced by an
intermediary server, since the clients only need to register
in a Peer Server to coordinate the connection between
peers and to cope Network Address Translators (NAT)
and firewalls. Another positive feature of this architecture
is the ability to deploy internationalization libraries, local
storage and access to other web services without having to
overload the Cloud, since these functionalities are all
supported by the client.

F. Security

According to the General Data Protection Regulation
(GDPR), all data that directly or indirectly identify a user
must follow a set of technical and organizational measures
to guarantee access levels security [21]. Therefore, several
mechanisms were implemented, from communication to
storage, to avoid undue access to critical information. All
communication connections are established over secure
channels (https, wss, ampqs and authentication in the
MySQL and MongoDB drivers), ensured by the Cloud
provider.

In the proposed telehealth solution, several user roles
are implemented, such as administrator, home sponsor,
healthcare professional and the patient himself. The
administrator has access to all equipment, reviews the
equipment state and location, but cannot access data
obtained from sensors to safeguard the patient privacy.
The user responsible for a VITABOX has access to all
data of related devices and can grant access to other users.
The healthcare professional has access only to the data
related to the patients that were associated to him. The
VITABOX is seen by the Cloud as a client.

User role validation is obtained by the JSON Web
Token (JWT) authentication method, whether it is a
VITABOX or a web application user. JWT provides the
maximum potential of a stateless service that guarantees
user authenticity, in which the server does not save clients'
sessions. This token is also used to validate WebSocket
connections.

As the storage services are hosted in the Cloud, we
must assume "Honest but Curious" behaviour of the
respective provider [22]. Since the encryption process
implies an extra computational cost, it is necessary to
understand what data must really be encrypted, to avoid
unnecessary CPU expenses. Thereby, only users'

attributes as names, addresses, emails, contacts and photos
filenames were encrypted using a symmetric key based
mechanism, leaving unencrypted the data collected by the
sensors. In fact, the data collected by the sensors can also
be considered as personal data, but although unencrypted,
these data cannot be associated with its owner. So,
eventual attackers only know that the data exist, but they
cannot know their ownership. This approach results in a
significant resource saving, without compromising the
user’s privacy.

The databases are accessed by web services through an
Object-Relational Model (ORM) and an Object-Document
Model (ODM), facilitating the organization of the
business logic in the development process and avoiding
possible sources of attacks such as the case of SQL
injection.

V. RESULTS

During the system development, several approaches
were considered to make the services available. Initially
the Worker and API functionalities were integrated into
the same service, but during load tests, a significant delay
was noticeable in the endpoint of sensors data collection.
The test tool used was Vegeta [23], with which we were
able to realize that the response time was greater in
processing the data in a single service, than sending them
to a message broker and analyze them in a separate
service, not blocking the response. Sending 50 sensor
values per request with a frequency of 50 requests per
second resulted in a service outage, leading to a latency of
more than 30 seconds per request (Fig. 4), which harmed
not only the reception of data but also the access to other
endpoints. After testing the broker implementation, with
the same requests per second and the same amount of data
per request, the API node showed a significant
improvement, rarely exceeding the response time of 60 ms

Fig. 6. Example of an automated test output.

(Fig. 5). In this approach the API node just validates the
source of the data (VITABOX) and forwards them to the
broker.

The results of the tests were obtained from testing just
one API node and a Worker node, showing that the
microservices approach give us evident improvements. As
previously stated, this performance can even be improved
with the launching of new service instances (nodes) as
needed. In addition, automated functional tests were also
implemented, through the JavaScript testing framework
Mocha [24], to check if all the endpoints were performing
the desired tasks, validating the outputs for irregular
situations and estimating the execution time of each
endpoint (Fig. 6), allowing the programmer to reshape the
code to obtain better performance.

VI. CONCLUSION AND FUTURE WORK

A solution was created to remotely monitor biometric
and environmental data of patients at their homes. These
data are processed and analyzed in the Cloud, to issue
alerts and notifications, as well as to provide historical
data to family members and duly authorized health
professionals. As showed, the adoption of microservices
in the Cloud, following the concept of Fog Computing in
an IoT solution, provides a better performance and a
sustained growth of the system. In addition, this helps
avoiding drastic changes in the project architecture in the
future, when new functionalities are added, focusing only
in the development of the service that is intended to be
changed/introduced without penalizing the operation of
the remaining.

As this telehealth solution is still an ongoing research
project, there is still work to be done. The main change
that may be expected is the replacement of the module of
sensors’ data analysis in the Worker service, by an
artificial intelligence (AI) module, since currently the
Worker is just based on a set of rules, with adjustable
thresholds, that validate the collected data. Regarding the
AI module, our goal is to have a classifier based on
historical biometric and environmental data that may
predict abnormal events in newly collected data. We also
intend to add a microservice to support a real-time
communication system for remote configuration of the
VITABOXes by a technical team.

ACKNOWLEDGMENT

This work has been financially supported by the
IC&DT project VITASENIOR-MT CENTRO-01-0145-
FEDER-023659 with FEDER funding through programs
CENTRO2020 and FCT.

REFERENCES

[1] A. Chłoń-Domińczak, I. E. Kotowska, J. Kurkiewicz and A.

Abramowska-Kmon, "Population ageing in Europe. Facts,
implications and policies," European Commission, Directorate-

General for Research and Innovation, 2014.

[2] E. Wilkins et al., "European Cardiovascular Disease Statistics

2017," European Heart Network, Brussels, 2017.

[3] A. Botta, W. d. Donato, V. Persico and A. Pescapé, "Integration of
Cloud computing and Internet of Things: A survey," Future

Generation Computer Systems, pp. 684-700, 2016.

[4] G. Pires et al., "VITASENIOR-MT: a telehealth solution for the
elderly focused on the interaction with TV," in 20th IEEE Int. Conf.

on e-Health Networking, Application & Services, Ostrava, 2018.

[5] A. M.-H. Kuo, "Opportunities and Challenges of Cloud Computing
to Improve Health Care Services," J. of Med.Internet Res., 2011.

[6] S. Babu et al., "Smart telemetry kit for proactive health monitoring

in rural India: The journey so far and the road ahead," in 20th IEEE
Int. Conf. on e-Health Networking, Applications & Services,

Ostrava, 2018.

[7] I. Villanueva-Miranda, H. Nazeran and R. Martinek, "A Semantic
Interoperability Approach to Heterogeneous Internet of Medical

Things," in IEEE 20th Int. Conf. on e-Health Networking,

Applications and Services, Ostrava, 2018.

[8] IBM Corp., "MQTT connectivity for devices," 2018. [Online].

Available:

https://console.bluemix.net/docs/services/IoT/devices/mqtt.html.

[Accessed September 2018].

[9] Amazon Web Services, Inc., "How AWS IoT Works," 2018.

[Online]. Available:
https://docs.aws.amazon.com/iot/latest/developerguide/aws-iot-

how-it-works.html. [Accessed September 2018].

[10] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, "Fog Computing and
Its Role in the Internet of Things," MCC '12 Proc. of the first ed. of

the MCC workshop on Mobile cloud computing, pp. 13-16, 2012.

[11] IBM Corp., "IaaS, PaaS and SaaS – IBM Cloud service models,"
2018. [Online]. Available: https://www.ibm.com/cloud/learn/iaas-

paas-saas. [Accessed September 2018].

[12] Pivotal Software, Inc., "RabbitMQ is the most widely deployed
open source message broker.," 2007. [Online]. Available:

https://www.rabbitmq.com. [Accessed September].

[13] Node.js Foundation, "About Node.js," [Online]. Available:
https://nodejs.org/en/about/. [Accessed August 2018].

[14] T. Laurens, "How the V8 engine works?," 2013. [Online].
Available:

http://thibaultlaurens.github.io/javascript/2013/04/29/how-the-v8-

engine-works/.

[15] A. K. Barczynski, "Assessing the Impact of Using Design Patterns

of Enterprise Application Architecture" MSc thesis, Univ. of Oslo,

2014

[16] MongoDB, Inc, "Introduction to MongoDB," 2008. [Online].

Available: https://docs.mongodb.com/manual/introduction/.

[Accessed August 2018].

[17] Oracle Corporation, "What is MySQL?," 2018. [Online]. Available:

https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html.

[Accessed August 2018].

[18] P. Rottmann, "APIDOC Inline Documentation for RESTful web

APIs," 2015. [Online]. Available: http://apidocjs.com/. [Accessed

September 2018].

[19] Vue.js Team, "What is Vue.js?," 2018. [Online]. Available:

https://vuejs.org/v2/guide/. [Accessed September 2018].

[20] S. Dutton, "WebRTC in the real world: STUN, TURN and
signaling,". [Online]. Available:

https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/.

[Accessed November 2018].

[21] European Union, "General Data Protection Regulation," [Online].

Available: https://gdpr-info.eu/. [Accessed Sep 2018].

[22] S. Yu, C. Wang, K. Ren and W. Lou, "Achieving Secure, Scalable,
and Fine-grained Data Access Control in Cloud Computing," in

2010 Proc. IEEE INFOCOM, 2010.

[23] T. Senart, "Vegeta," 2018. [Online]. Available:
https://github.com/tsenart/vegeta. [Accessed October 2018].

[24] Mocha Backers, "Mocha simple, flexible, fun," 2018. [Online].

Available: https://mochajs.org/. [Accessed October 2018].

