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Abstract—Multi-model event-triggering is a highly promising
technique for efficient monitoring of processes where instead of
continuous or even periodic triggering of events, communication
and control is only applied after some event interrupt. In this
work we investigate an adaptive multi-model monitoring tech-
nique whereby a local host that switches between the observed
models informs remote hosts of these events which in turn adapt
their predictions to reduce prediction error and minimize un-
necessary triggering events and future model switching, thereby
reducing energy consumption and communication bandwidth.

The adaptive technique is examined under a real public
transport bus service scenario, where local and remote hosts
use a set of mobility models to track travel times and update
their arrival schedules according to detected deviations, i.e., event
interrupts.

Index Terms—Event triggering, Energy Efficiency, Multi-
Model Event Triggering, IoT devices

I. INTRODUCTION

The use of interconnected devices is rapidly increasing
mainly due to their ability to execute useful functions with-
out human intervention. However, most of these devices are
battery operated and thus have limited operating times. As
one of the most power-hungry features in these devices is
communication, the literature examines and implements algo-
rithms to limit communication from/to these devices without
affecting their performance and functionality. Event-triggering
(ET) algorithms are able to achieve this objective by limiting
communication to specific event interrupts. In the meantime,
when no communication is required, the communication cir-
cuitry can go to sleep and the device limits its functionality
to local operations.

Under this setting, ET algorithms aim to first establish
models to characterize the system. A local host monitors
the system while remote hosts maintain an estimate of the
system state based on the active model. Both the local and
remote hosts possess one or multiple models of the system.
The remote host uses the active model to estimate the system
state when no communication between local and remote hosts
exists. The local host compares the true state to the active
operating model and decides whether to generate an event
interrupt for resynchronization with the remote host and for
switching to a more accurate model. By representing the
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system state with multiple models, the system dynamics are
more accurately captured, and at the same time the number of
resynchronization events is decreased.

In this work, we demonstrate how such a multi-model
architecture can be realized through a probabilistic data-driven
framework and investigate how switching between models can
be done in an adaptive way to minimize event triggering.
Specifically our contributions can be summarized as follows:

« A probabilistic framework is developed to estimate mo-
bility patterns and a multi-model technique is devised to
improve estimation accuracy.

o Three monitoring schemes are elaborated that use the
proposed multi-model architecture to monitor mobility
changes. The first scheme assumes no memory in the
sequence of models used by preceding vehicles, the
second scheme assumes that the most-probable model is
always used across segments of the route and the last
scheme assumes that subsequent vehicles use the latest
sequence of models observed by the preceding vehicle in
the particular route.

« An extensive performance evaluation of the three schemes
is conducted using real mobility traces collected from
buses operated by the public transport authority in
Nicosia, Cyprus.

The rest of the paper is organized as follows. Related work
is included in Section [l and our novelties and contributions
to the state-of-the-art are emphasized. The multi-model event
triggering framework is detailed in Section while the
two alternative schemes are elaborated in Sections and
respectively. Experimental results are presented in Section
and Section [VII] concludes this work.

II. RELATED WORK

The Internet of Things (IoT) is an emerging network that
is dominated by a large number of interconnected physical
devices, capable to operate without human intervention. Their
ability to automatically perform functions that augment and
aid the quality of life, make the IoT an attractive proposition.
Consequently, the number of IoT devices is predicted to in-
crease dramatically in the near future; according to CompTIA’s
research [[1]] 50 billion IoT devices would be connected to the
Internet by 2020, while Cisco estimates that this number will
increase to a staggering 11 trillion devices by 2025 [2].

Nevertheless, IoT devices currently face some physical
constraints that limit their use, including their limited energy
resources. This is especially true for mobile and embedded
devices where access to power for recharging is not readily



available [3]], [4]. A popular example is mobility trackers
(usually GPS devices) which are installed to monitor vehicle
movements in fleet management systems and in public trans-
port systems to inform of the arrival of trucks/buses to specific
stations. In the latter case, models of the recurrent mobility
behavior of buses serving particular routes can be derived
and used to predict future vehicle positions and allow for
estimates in the arrival times at bus stops. Accurate movement
predictions, in turn, will alleviate the need for continuous
communication to track a particular vehicle. Consequently, as
elaborated in [5]], several different model-based solutions were
examined in the literature in order to minimize communication
and hence the energy consumption of these devices (enhancing
their lifespan while at the same time preserving tracking
accuracy).

Trace compression is a popular approach which is exten-
sively examined in the literature [6[]- [7]. This approach aims
at reducing the size of the trajectory data resulting in improved
energy efficiency during communication, without sacrificing
the quality of information being transmitted.

Event triggering is an alternative technique that has been
developed to limit communication between devices while pre-
serving high tracking accuracy [5]], [8]], [9]. Several strategies
to handle ET signals are proposed, as is the case in [[10], while
many centralized, distributed and cooperative ET architectures
are examined in the literature [11]—[13].

In this paper, we elaborate on the multi-model event
triggering (MMET) technique, and two extensions are then
investigated, namely the baseline MMET (BMMET) and the
proactive MMET (PMMET). The BMMET technique aims to
utilize the various models generated to eliminate the commu-
nication due to synchronization events between the remote and
local hosts. On the other hand, the PMMET technique aims
to develop a dynamic update protocol of the behavior models
in order to enable their proactive change. For validation, the
performance of all three schemes is subsequently evaluated
and compared against each other.

III. MULTI-MODEL ET (MMET)

In this section, we elaborate on the proposed multi-model
ET technique. To do so, we first develop a probabilistic
framework to generate a set of behavior models, and then use
these models to estimate the evolution of the system. At each
time instance, both the local and remote hosts operate on a
single model, &, but switch between different behavior models
when deemed necessary in order to improve tracking accuracy
and minimize further triggering.

The practical scenario we consider is that of monitoring a
fleet of buses serving a particular route of the public transport
network as detailed in [[14f]. A predetermined model or set of
models of the bus mobility is generated and used to track the
movement of each bus along that route. As long as movement
of a bus matches its operating model, no communication
between the two hosts is required. However, when a deviation
between the model and the actual movement exceeds a thresh-
old, an event interrupt is triggered. The local host then simply
sends a resynchronization event to the remote monitoring host

and both entities switch to a new model (if needed). The
objective of this procedure is to track the movement of the
buses accurately with minimal communication between the
local and remote hosts.

A. Multi-model probabilistic framework

To build the relevant mobility models, a data-driven ap-
proach is pursued. Real data provided by the Transportation
Organization of Nicosia (OSEL) in Cyprus is used as our
benchmark. The data consists of locations (longitude, latitude)
and timestamps for 3 buses operating on a particular service
(in this case, Route 150 that consists of B = 42 bus stops). The
training and test sets consists of S*"%" = 426 and S***! = 107
bus trip traces, respectively.

Using these traces, probabilistic mobility models are derived
along a particular route. Let S; ; be the travel time samples
between bus stops {i,7} € B, where B is the set of prede-
termined bus stops. The travel time is the measured elapsed
time between the timestamped samples received at bus stops ¢
and j. Then, the first sample moment 6;;(N) after N sample
measurements is given as follows:

9=y R

while higher order moments (e, 6;;(N)* =
LS [tij(n)]* for the k™ moment) improve the
knowledge with regards to the actual distribution of the
random variable. Having this distribution with respect to
travel times allows for the computation of probabilistic
estimates on the future travel times, while bounds can be
set to detect unanticipated changes and trigger out-of-bound
events. Hence an event is defined as follows:

Definition 1: An event is triggered whenever the actual
travel times measures across a particular segment ¢ — j exceed
the set bounds of the mobility model being used.

In practice multiple models can be defined M =
{1,..., M}, to improve tracking accuracy. To define those
model the travel time distribution S;; along segment i —
j, {i,7} € B is split into M equal-sized parts as shown in fig.
for the case of M = 4. The blue dotted lines correspond to
the mean time of each model. For instance, 71 4 (2) corresponds
to the mean of the second model of the distribution S 4.

), V{i,j} € B (1)

B. Event Detection and Event Handling

As introduced above, event detection can be achieved by
setting a bound «, around the mean 7, ;(m),m € M of
the distribution .S; ;. Any measurement recorded outside that
bound would trigger an event interrupt. In the latter case, the
operating model will switch to model ¢ € M for which its
mean, 7; ;(£) is the closest to the observed measurement. The
local host will additionally inform remote hosts about the event
and switching decision. Mathematically this switching can be
computed simply by mingeaq |7;,(§) — t45]- The intuition of
switching to this new model ¢ is that any subsequent near-
future mobility patterns will be better captured using the
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Fig. 1. Generation of M = 4 models for the distribution S1 4. The blue
dotted lines correspond to the mean of each model, 7'174(m =M).

mobility predictions of £ and thus event triggering will be
minimized.

As theoretically proven in [14], the probability of a particu-
lar number of events, Pr(E, «), depends on the total number
of events, F/, and the violation bound, a. For completeness,
we summarize below how the total probability is computed.

To enumerate all combinations of events that can occur
along an arbitrary route, the binomial coefficients are com-
puted. Let matrix entry C.. determine the e* e = 1,... . F
deviation event that occurs in the ¢*® instantiation of events,
c =1,...,C, where C = (B,%!)!E! is the number of all
possible combinations that can occur. Then, the probability
of an event occurring at j € B, given that the previous event
occurred at segment i € 3, can be expressed as follows:

P(i,j) = P(i,i+1)x...x P(i,j —1) x (1 = P(i,5)) (2)

where the probability P(i,j) of no event triggered when
traversing segment i > j is P(i,j) = P(rij —a < S;; <
Tij + ).

Let S;; = {tin,! = (i — j),n = 1,...,N} include
all samples observed between stops ¢ +— j, {i,j} € B.
Then, border cases between event interrupts should also be
considered. The leftmost border deals with the probabilities
from the start of the route up to the 15* event. Similar to (2)),
these probabilities can be expressed as follows:

P(1,i) = P(1,2) x ... x P(1,i — 1) x (1 — P(1,4)) (3)

The rightmost border deals with the probability of no event
occurring from the last event to the end of the route. This
probability can be expressed as follows:

P(j,|B|) = P(j,j+1) x P(j,j +2) x ... x P(j,|B]) 4

Thus, the total probability would then be:

C E-1
Pr(E,a) = Z H [P(Cee, Ceeq1)]x P(1,Ce1) x P(Ceg, | BI)
c=1 e=1

&)
where P(C.., C..+1) is given by equation (2 and the last two
terms are given by equations (3) and (), respectively.

Intuitively, different values of parameter « result in different
numbers of out-of-bound events, E. For instance, a large value
of « will lead to a small number of out-of-bound events and

similarly, a small value of o will lead to a large number
of out-of-bound events. Our objective is to tune «, such
that the number of events generated is not larger than the
desired number of events, /. Note that K is within the range
of [0,(B — 1)]. These observations enable us to calculate
the Cumulative Distribution Function (CDF) of Pr(F,«) as
follows:

K
Pepr(K,a) = Z Pr(E,a), a€cR,a>0  (6)
E=0

Popr(K, ) is defined as the probability of generating no
more than K out-of-bound events, given a violation bound «.
The following algorithm is utilized to calculate Popp (K, a)
for a given K,«a, and set Syqq, using the multi-model

technique (Alg. [T)):

Algorithm 1 Computing Popr (K, a)
Input: Sirgin, o, K
Output: Popr(K, o)
1: Define models M = {1,..., M} using S,
2: Compute 7;;(m),Vm € M.
3: for E=0to K do
4:  Calculate Pr(FE,«) for a given «;
5. Switch to &, mingeaq |75,5(§) — ti;] with each event
6
7
8

: end for
: Calculate Popr (K, «) as in Equation @
: return Popr(K, a)

Initially, given a set St,qin, the predetermined set of models
M is formulated as in Section [I[-Al and the mean of each
model is computed. Thereafter, the probability of a particular
number of events Pr(FE, a), for E = [0, K], is calculated as
follows: each time an out-of-bound event occurs, operating
model ¢ is changed to the model with a mean travel time,
7;,5(m), closer to the triggered travel time violation. Finally,
Popr(K, ) is calculated as in Equation @

The objective of Algorithm|[I]is to establish the relationship
between Popr, and parameters K and «. Consequently, for
any given value of the violation bound, o, we can compute
the probability of achieving the desired number of events
K. Figure [2] illustrates this relationship as the probability
Peopr is calculated for various parameters K and « for a
3-model case. For instance, the probability to have no more
than K = 12 events using a violation bound o = 220 seconds
is Popr(12,220) = 0.92. Thus, for the case of a testing set
of 100 trips, 92 should produce no more than 12 events while
the rest should produce more than 12.

The established relationship between Popr(K,a) and the
parameters K and « allows the calculation of Popr for any
target number of events K € [0, B — 1] and any percentage of
the target K, defined as piarge € [0, 1], by tuning accordingly
the magnitude of bound, a. Consequently, we define the tuning
parameter « for the given K and pyq,get as the desired bound
aq(K, prarget). The parameter oy is the minimum value of
a that drives Popp(K, o) to become pigrger for a given K.
This can be mathematically formulated as follows:

(7

aq(K, Pepr) = min(a) | Popr (K, &) = prarget



18-model PYYET(K, a)

0- 0 0 0 [ 0 0 0 0 [ 0 0 0 0 0 0.010.02 0.02 0.03 0.04 0.05 0.06

4- 0 ] ] 0 0 0 0 0.04 0.080.120.17 0.23 0.29 0.4 0.49 0.59 0.69 0.83 0.93 0.99 1
-0 0 0 0 0 0 00601402203 0450580.78089095 1 '1 |1 [1 1 1
12-0 0 0 0 0 00801903 0410570.75092097 1 ‘1 1|1 (1 1 |1 |1
16- 0 0 0 0 0.050.190.34 0.51 0.69 0.85 0.950.99| 1 1 1 1 1 1 1 1 1
¥ 20- 0 0 0 0.030.18 0.350.57 0.73 0.87 0.96 1 1 1 1 1 1 1 1 1 1 1
24- 0 0 0.020.180.350.57 0.810.92 0.98 1 1 1 1 1 1 1 1 1 1 1 1 "
28- 0 0 0.16 0.35 0.6 0.87 0.94 0.99 ' 1 1 1 1 1 1 1 1 1 1 1 1 1
32- 0 008042076095099 1 |1 |1 ‘1 111 1 /1 1 1|1 1[1 1
30051098 11 11 1|2 2 1 1 1 1 1 1|1 1 1|1 1
4-006/1 111 1|1 2|22 1 1 1 1 1 1|11 1|1 1
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
a (sec)

Fig. 2. Popr (K, a) for various values of K and « for a 3-model MMET
scenario.

Numerical methods such as the bisection method can
be implemented to calculate the value of ay. Algorithm
demonstrates the application of the bisection method for the
calculation of «.

Algorithm 2 Calculating bounds for a desired K and piqrget

Inmput: oy, ay, €, K, prarget
Output: oy
1: while o, — a; > € do
2. Compute o = 214w

3. Compute Pcpr(K,a) using Algorithm
4: if (Pcpr (K, Oé) > pt(m’get) then

5: Qy =

6: else

7 o] =«

8: end if

9: end while
10: ag=min(c)
11: return oy

Initially, g is assumed to lie within the interval (o, ay,).
We compare Popr(K,a) of a = ‘XH'T““ with piarger and
update the interval accordingly. The process repeats until the
predetermined precision € is reached (o, — oy > €).

To demonstrate the applicability of the technique, Algo-
rithms E] and E] are applied to set Sy-qin to calculate ay for the
case of one or multiple models. Figure [3] shows the computed
bounds using the new algorithm for several values of K and
Ptarget = 0.8.

As shown in the figure, the greater the number of models,
the smaller the number of bound violations. Importantly, by
observing the difference of the single-model bounds with those
of the 18-model case, for K = 10, in the first case ag = 360
and in the second ay = 80; resulting to a 4 times reduction
in the magnitude of the bound. Clearly, smaller bounds are
preferable as a higher precision of the violation leads to
better tracking accuracy. As expected though, an increasing
number of models provides diminishing returns. For instance,
the bounds for the cases of 12, 15 and 18 models are very
similar.
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Fig. 3. Bounds for increasing K € [2, 38]

The performance of the calculated bounds, oy, are then
evaluated on the test set Si.s; for any given K, «, and M.
A suitable error measure is chosen based on the absolute
difference between p;qrge¢ and the achieved Popr (K, o) as
described by the loss function, Ly below:

40
B—-1

Ly = mean {’PCDF(Ka aq) — Ptarget‘} ®

K=0] .
Indicatively, the value of the loss function is found to be
12 x 1072 for the case of the particular route that consists of
B = 41 sections, and for pyg,ger = 0.98, indicating that the
proposed MMET technique can successfully relate the desired

number of events with tight out-of-bound interrupts.

IV. BASELINE MULTI-MODEL ET

The aim of the Baseline MMET (BMMET) is to utilize
the most likely behavior models of operation in an attempt
to reduce communication between the two entities. As before,
we consider an ET technique where multiple behavior models
are generated and, whenever deemed necessary, switching
between these models is performed. In this section, we will
explore a switching-free MMET technique to track vehicles
in order to minimize computational effort by the remote and
local hosts.

A. Model Behavior

The baseline approach considers no adaptive switching and
simply uses a predetermined model sequence for monitoring
by the remote hosts. The predetermined set = is defined as
E = {&;(m),V(i,j) € B,m € M} where the most-probable
models are used in recurrent service instantiations.

To aid understanding, Fig. [] shows the distribution of
models for a single road segment, S; 4, while Fig. [5] shows
boxplots of the model distributions across a particular route,
Route 150, assuming that 18 models have been generated for
each segment. Evidently, the distribution of models in each
segment is not uniform (as shown in |4) and that distribution
varies along the route segments substantially (as shown in



Fig. [5)). For our baseline approach, we assume that the most
frequent operating model for each segment along the route is
used to characterize the vehicle mobility.
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Fig. 5. Trajectory of model distributions for Route 150.

B. Event Detection and Event Handling

Since no switching between models is required, the event
detection and event handling sections are similar to the one
used for the single-model as described in [14]. The sole
difference appears on the violation bounds, «. In this case, they
are assigned around the mean of the predetermined operating
model, «(¢;;(m)), for each segment of the bus route.

V. PROACTIVE MULTI-MODEL ET

An extension of the MMET technique is considered here-
after where upon an event interrupt, the operating model
switches to the one closer to the triggered travel time violation.
The updated model sequence is then used by subsequent
vehicles that operate in that particular route. Doing so could
provide improvements in tracking performance and potentially
minimize incipient changes.

A. Model Behavior

Whenever an event interrupt occurs, the local host informs
of the event and both the local and remote hosts switch
to the model closer to the triggered travel time violation.
The updated operating model sequence for each segment of
the route is subsequently used by other vehicles in order to

better anticipate patterns and avoid unnecessary triggering of
resynchronization events.

Similar to the case of the baseline MMET approach, the
proactive MMET (PMMET) technique utilizes a mutual set
of operating models denoted as = = {;;(m),V(i,j) €
B, m € M}. Unlike the baseline approach, set Z is updated
online to maintain the most recent configuration of operating
models used by local and remote hosts for synchronization
and monitoring.

B. Event Detection and Event Handling

Each time a local host requests an update of the operating
model for a particular segment, &;;, set = is updated and
the updated set is used by all subsequent vehicles. In this
way, the next vehicle to traverse the particular segment of the
route will use the most recently updated model for monitoring
and so will the remote host, in an effort to further minimize
resynchronization events. Local hosts maintain an updated
set = by continuously adapting the modelling sequence for
subsequent instances. To summarize, the following procedure
is followed:

1) All hosts (both local and remote) operate on the models
defined by the mutual set =.

2) Whenever an event is generated by any local host, both
local and remote hosts update =.

3) Subsequent vehicles use the updated = to monitor the
mobility progress along the route.

VI. EXPERIMENTAL RESULTS

To investigate the performance of the proposed technique,
the different schemes described above are evaluated for differ-
ent K and M values. For all the results considered hereafter
all road segments are characterized by 18 models. The initial
MMET scheme assumes that whenever an event is triggered,
vehicles switch to the model with the closest mean but subse-
quent service instantiations ignore this switching. The baseline
scheme (BMMET) also assumes that for each consecutive
iteration, vehicles do not consider past experiences and, in
addition, no switching takes place upon an event interrupt.
Instead, vehicles always use the most frequent model extracted
from historical data obtained for monitoring purposes. On the
other hand, the PMMET scheme updates the model sequence
for all subsequent instantiations based of the latest observa-
tions made for the specific route.

A comparison of the three schemes for various values of K
and « are shown in Fig. [6] Clearly, the performance of the
switching-capable MMET scheme is significantly better than
BMMET, where the reduction in event interrupts from both the
local and remote hosts for the baseline approach leads to looser
bounds resulting in diminished tracking performance of the
system. On the other hand, PMMET manages to improve its
performance compared to the initial MMET scheme. As shown
in the figure, the memory of past instantiations in PMMET
manages to reduce the model bounds for smaller number of
targeted events K (K < 8).

To further investigate this improvement, Fig. [/| plots the
Poprp of the MMET and PMMET schemes for K < 8



350 T T T T
Algorithm
—e— MMET
300 —6—PMMET ||
BMMET
—~ 250
O
Q
a
= 200
3
2
5 150
[=]
o
100
50

5 10 15 20
Event Interrupts, K
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and a € [0,800] as well as the difference between the
two probabilities, APcpr(K,a) = PEMMET(K o) —
PMMPET (K o). We can observe that AP pr (K, «) is always
positive or zero, meaning that PMMET improves or matches
the performance of MMET. Furthermore, for smaller values
of K, both the magnitude of APcpr(K, ) as well as the
number of non-zero APgpr (K, «) values across the range
of « is larger. This leads to tighter bounds and supports the
observations from Fig. [
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VII. CONCLUSIONS

In this paper, the multi-model event triggering framework
and two extensions of it have been developed that aim to

improve the performance of tracking vehicles with recurrent
mobility patterns, while reducing triggering events and thus
minimizing energy consumption and communication band-
width. The BMMET scheme aims at eliminating communica-
tion between the on-board and off-board entities and utilizes
the multi-model behavior of the route to predict mobility and
better track the vehicles. However, it is shown that the tracking
performance of this scheme is sufficiently degraded compared
to the basic MMET approach. On the other hand, the PMMET
technique aims at improving the tracking performance of the
system by introducing a memory into the system to enable the
adaptive use of the correct operating model by the vehicles.
As demonstrated using real data from public transportation
services, PMMET significantly improves the tracking accuracy
using a very small number of triggering events.
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