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Abstract—The Internet of Things (IoT) faces the challenge of 
scaling to handle tens of billions of connected devices. This 
challenge is made more difficult by the range of constituent IoT 
parts from Cloud-based applications to constrained nodes in 
Wireless Sensor Networks (WSNs). Achieving the desired scale 
and interoperability requires an architecture for IoT that is 
scalable and allows seamless operation across networks and 
devices. This paper considers the requirements for IoT and 
considers a number of existing architectural approaches and the 
emergence of Fog computing. It proposes that Fog computing 
architectures must cater for the flow of data from constrained 
sensor nodes to powerful applications. It considers the 
suitability of a Peer to Peer (P2P) approach for Fog computing. 
Using a prototype implementation, it demonstrates how a 
Holistic Peer to Peer (HPP) architecture and application layer 
protocol meet the requirements set for IoT. 

Keywords–Internet of Things(IoT), RESTFul Style, Fog 
Computing, Wireless Sensor Network (WSN), Peer to Peer (P2P). 

I.  INTRODUCTION 
Wireless Sensor Networks (WSNs) interact with the 

physical world allowing nodes to be deployed close to sensed 
phenomena. The “Internet of Things” (IoT) is a distributed 
system of devices and applications for sensing, actuation and 
computation. The estimated tens of billions of connected IoT 
devices [1] will need solutions to program and manage them, 
with services to gather, store and analyze vast amounts of data. 
Cloud services and Big Data approaches allow the scalable 
storage and analysis of this data, while Fog and Edge 
computing offer rich functionality at the edge of the Internet. 
Protocols, such as the Constrained Application Protocol 
(CoAP) [2] and data models, e.g. IPSO (Smart Objects) [3], 
have emerged to support better application interoperability. 

The potential of IoT is, however, limited by the difficulties 
imposed by the constrained processing, memory and energy 
consumption of WSN nodes and their heterogeneous nature, 
limited development environments and diverse software and 
protocols. A key challenge with such diversity is to enable the 
growth of IoT in terms of scalability and also of developing 
services and node software. The scalability challenge requires 
being able to scale up to billions of devices, but also to scale 
down to resource-constrained devices in relatively small 
WSNs [4]. This requires seamless interoperability and a 
consistent set of abstractions and APIs/protocols, particularly 
at the application layer to realise Mark Weiser’s vision of tiny 
networked computers woven into everyday life [5]. [6] 
highlights the importance of interoperability: “Of the total 

 
 

potential economic value the IoT enables, interoperability is 
required for 40 percent on average and for nearly 60 percent 
in some settings”. Approaches demonstrating scalability and 
interoperability at Internet-scale and the value of an 
architectural approach include the RESTFul architectural 
style [7] and BitTorrent [8]. The RESTFul style is based on 
specified constraints and components. Its success can be seen 
in the development of HTTP1.1 and the wide adoption of 
REST APIs. BitTorrent has also shown that Peer-to-Peer 
(P2P) can provide a low barrier to entry, greater autonomy, 
scale and robustness. 

This paper considers which architectural approaches may 
be suitable for IoT and how they relate to Fog computing. As 
such, we present a set of requirements for IoT and consider 
lessons from the RESTFul style and BitTorrent to meet those 
requirements. This paper proposes that meeting the challenges 
presented by IoT requires an architecture and a set of 
consistent abstractions for all components in the entire flow as 
data is sent (and aggregated/stored/acted on) from constrained 
devices to edge gateways to Cloud services. As such, this 
paper proposes that Fog computing [9] architectures must 
consider constrained devices as part of that flow and that a 
P2P overlay network can be used to achieve scalability and 
high availability, especially at the edges of the Internet as in 
Fog computing. In this context, we present a Holistic Peer-to-
Peer (HPP) application layer protocol that has been extended 
to use a Distributed Hash Table (DHT) based on Kademlia 
[10] as part of our previously presented architecture [11]. 
Implementations of the architecture have demonstrated 
interoperability by allowing a constrained node to provide 
IPSO data using HPP and CoAP and shown a straightforward 
service to integrate with HBase. 

The remainder of this paper is organized as follows. 
Section II presents requirements for IoT, section III reviews a 
number of architectural approaches and section IV gives an 
overview of our Holistic Peer to Peer (HPP) architecture and 
the addition of a DHT. The paper concludes in section V. 

II. IOT ARCHITECTURAL REQUIREMENTS 
The requirements for an IoT architecture in [11] have been 

refined and it should: 
• define the roles of nodes running services. Nodes 

must meet a minimum level of functionality, e.g. 
respond to a request for its capabilities (Req-1). 

• provide abstractions to support the basic operations 
required of a sensor node and the services using it. 



These must map easily to a range of heterogeneous 
devices and higher level services (Req-2). 

• be independent of particular node hardware and 
handle a range of node capabilities (Req-3). 

• provide simple, consistent APIs for developers of 
device and application software (Req-4). 

• provide a consistent means to exchange information 
independent of the underlying technology and support 
the modelling of (sensor) data to allow its use by 
higher level services (Req-5). 

• support a (sensor) node informing other nodes and 
services of its capabilities (Req-6).  

• be dynamic to handle small, static networks and adapt 
as the network changes and support applications 
discovering and collaborating without a centralized 
coordination facility (Req-7). It must also be robust 
to support challenging wireless environments [12]. 

• use protocols that are sufficiently simple for low 
capability devices to participate (Req-8). 

These requirements for nodes and services would enable 
an “Opportunistic IoT Service”, which is defined to provide 
an “interface that allows an IoT entity to be engaged, under 
specific constraints and pre/post-conditions, in a temporary, 
contextualized and localized usage relationship” [13].   

III. ARCHITECTURAL APPROACHES 

A. RESTFul Architectural Style 
The RESTFul architectural style uses a resource as a key 

abstraction of information that can be represented in a number 
of representations using the Internet media types. It is based 
on the following five interface constraints in [7]:  

• All important resources are identified by one 
resource identifier. This is generally a Universal 
Resource Identifier (URI). This constraint leads to 
the interface being simple, visible, and reusable. 

• Access methods have the same semantics for all 
resources. For HTTP, this results in a limited set of 
verbs, such as HEAD, GET, POST, PUT, DELETE 
with easily understood semantics. This leads to the 
interface being visible, scalable, and available. 

• Resources are manipulated through the exchange of 
representations. This constraint leads to the interface 
being simple, visible, reusable, cacheable and 
evolvable using information hiding. 

• Representations are exchanged via self-descriptive 
messages. This leads to the interface being visible, 
scalable, available and evolvable. 

• Hypertext as the engine of application state. This 
leads to the interface being simple, visible, reusable, 
and cacheable through data-oriented integration, 
evolvable via loose coupling, and adaptable though 
late binding of application transitions.  

The RESTFul architectural style also includes processing 
elements that are determined by their roles, i.e. origin server, 

 
2 "RFC8323, Constrained Application Protocol) over TCP, TLS, and 
WebSockets," 2018. https://datatracker.ietf.org/doc/rfc8323 

gateway proxy, user agent. A recent paper reflecting on the 
RESTFul architectural style [14], including the original 
authors, considers that there have been different 
interpretations of the term REST, but reiterates that “REST is 
not an architecture, but rather an architectural style. It is a 
set of constraints that, when adhered to, will induce a set of 
properties; most of those properties are believed to be 
beneficial for decentralized, network-based applications, 
while others are the negative trade-offs that can result from 
any design choice”. Importantly it also states that “REST does 
not directly constrain the Web’s architecture. Rather, an 
application developer may choose to constrain an 
architecture in accordance with the REST style”. The 
RESTFul style has been shown to facilitate application 
development and scalability as a result of its decoupled nature. 

CoAP [2] is a specialized protocol for constrained nodes 
and constrained (e.g. low-power, lossy) networks. It was 
originally a binary format on top of UDP, but has been 
extended to also support TCP and TLS in RFC83232. It uses 
RESTFul concepts such as URIs, with its own schema coap://, 
and media formats. It is designed to be easy to proxy to/from 
HTTP. CoAP provides resource discovery via the Resource 
Directory (RD) and specific message types to provide 
reliability. The use of an “observe” flag in the GET Request 
provides observe/notify on a given resource. RESTful 
approaches with CoAP are increasing [15], e.g. an end-to-end 
IP based architecture for greenhouse monitoring integrating 
CoAP over a 6LowPAN WSN using Contiki [16].  

B. Middleware Approaches  
Middleware is software that acts as an intermediary 

between IoT devices and applications. [17] considers three 
types of IoT middleware: service-based, cloud-based and 
actor-based. Service-based is a service-oriented architecture 
(SOA) where IoT devices may be represented as services. 
Cloud-based services allow users to upload their sensor data 
to the Cloud for storage, querying and analysis using Cloud 
databases, NoSQL stores and Machine Learning toolsets. 
These offerings use a proxy/gateway and APIs to provide the 
integration with a Cloud service, usually limited to a given 
Cloud provider and perhaps to a given device environment. 
The actor-based architecture exposes IoT devices as reusable, 
distributed actors. It is designed to be lightweight and flexible 
enough to run in all components according to their capability, 
e.g. a constrained node might not include a storage service. 

The service-based and cloud-based middleware generally 
provide separate components and abstractions as the systems 
become more capable. For example, Figure 1 shows the three 
Eclipse software stacks3. The first stack is for constrained 
devices, showing OS, Hardware Abstraction and 
Communication layers, with remote management across 
layers. The second stack is for Gateways, which aggregate 
data and coordinate the connectivity of these devices to each 
other and to an external network with layers to support IoT 
protocols, network management and data 
management/messaging. It runs on an OS with more 

3 "Eclipse IoT". https://iot.eclipse.org 



functionality and may provide container or specific 
application environments, e.g. for Java. The third stack is for 
IoT Cloud platforms which is expected to scale horizontally 
to support a large number of devices and vertically to support 
a variety of IoT scenarios and devices. It has layers for device 
management, data management and storage, event 
management and analytics. 

 
Figure 1 Eclipse IoT Stacks 

Other middleware approaches such as Sensation [18] treat 
the sensor network as an information source similar to a 
database. It acts as an integration layer between applications 
and networks, with a high-level set of APIs for applications 
supported by a proxy for particular WSNs to hide device and 
network heterogeneity. Agent based middleware composes 
sensing tasks from sets of services, where the service code 
moves across nodes autonomously, but requires particular 
node computational capability and may reduce node lifetime 
due to the additional associated network traffic [19]. 

C. Fog Computing 
Cloud computing is an important part of IoT as it can store 

and process large amounts of data, providing benefits in 
scalability, flexibility and cost. There are, however, several 
issues with simply handling data directly from WSNs: 

• Response Time: certain applications may require 
more rapid response time than the latency introduced 
by sending data to the Cloud, e.g. connected vehicles. 

• Intermittent Connectivity: the Cloud may not meet 
application requirements for timely data processing or 
data may be lost if device storage is exceeded. 

• Bandwidth: the amount of data from large numbers of 
devices on a link may exceed the bandwidth available. 

• Device Connection: devices may have to be 
connected directly to each other, e.g. wearable health 
monitoring devices, connected vehicles. 

• Data Security and Privacy: regulation may limit 
where data can reside, e.g. health data may require 
specific physical security guarantees. 

One approach to address these issues is to move some 
applications or some of the processing/storage to the edge of 
the network. Fog computing is “a highly virtualized platform 
that provides compute, storage, and networking services 
between end devices and traditional Cloud Computing Data 
Centers, typically, but not exclusively located at the edge of 

network” [9]. Such devices may consume from and send to 
the Cloud, as well as load balancing that traffic. In such a 
federated system, a service may execute using components 
running in different networks/providers. This requires that 
Fog/Edge components be interoperable at the level of 
providers and architecture models and interfaces. The 
OpenFog Consortium [20] have published an OpenFog 
Reference Architecture as a basis to develop and test an open 
fog-enabled architecture.  

Distinctions between Fog and Edge computing vary, but 
tend to use the closeness of the processing to the source of 
data. Edge computing performs computing on an edge device 
like a programmable controller and Fog computing performs 
it at the local network level, e.g. by a gateway or specialized 
node. There are a number of challenges: 

• Scalability: each edge system will manage the data 
of a set of nodes which will have to scale as nodes 
are added. The overall system must also scale to 
manage, deploy and run large numbers of 
applications as more edge networks are added. 

• Heterogeneity: an edge system should handle the 
storage, computational and operational requirements 
of heterogenous nodes and services, e.g. the different 
data formats used by devices. 

• Management: discovery and monitoring will be 
required for fog nodes by the Cloud service and vice 
versa. A key question is whether this will be 
orchestrated in the Cloud and to what degree the fog 
nodes/systems will be autonomic and decentralised.  

• Data Security: edge nodes will have different 
capabilities, which should be considered in deciding 
where data is stored or processed. 

The platforms, applications or services for Fog computing 
must contribute to the seamless interoperability desired in IoT 
and not create islands of data and services. An expansive view 
of Fog and Edge computing is proposed as Osmotic 
computing [21]. This is based “on the need for a holistic 
distributed system abstraction enabling the deployment of 
lightweight microservices on resource-constrained IoT 
platforms at the network edge, coupled with more complex 
microservices running on large-scale datacenters”. It proposes 
Edge Micro Data Centres in a federated environment of 
public/private cloud, edge cloud and devices. It uses 
microservices in containers on IoT and Edge devices and 
includes an interoperability layer for remote orchestration of 
heterogeneous Edge devices. 

A recent example of an Edge architecture for healthcare 
incorporates smart devices for healthcare applications and an 
edge gateway [22]. The gateway provides layers for access 
network control, device management, application control, 
edge management (data processing), middleware to manage 
data and an API layer for remote interfaces and other edge 
devices. This architecture provides considerable flexibility in 
the edge gateway to handle multiple radio interfaces, 
application layers and device management, including 
discovery. It considers the flow of data from the device 
(sensor or smart device) through an edge gateway to Cloud 
services with defined roles, but it does not provide a high level 
set of consistent abstractions. 



The Mobile Edge Computing (MEC) approach uses 
increased edge processing power to handle data streams at the 
mobile edge [23]. It connects each Base Station to a fog node. 
This fog node provides local computing resources and a proxy 
Virtual Machine (VM), which collects, classifies and analyses 
raw data streams from devices, converts them into metadata 
and transmits the metadata to the corresponding application 
VMs (owned by IoT service providers). A Software Defined 
Networking (SDN) based cellular core is used to forward 
packets among fog nodes. 

D. OpenFog Reference Architecture 
The OpenFog Reference Architecture describes a set of 

high-level attributes of Fog computing termed “pillars”. These 
are security, scalability, openness, autonomy, agility, 
reliability, hierarchical organization and programmability, 
and it describes desirable characteristics for each. It considers 
several scenarios including traffic control, security 
surveillance and air transportation, which illustrate the range 
of actors, interactions and the types of device and services 
involved. Figure 2 from the OpenFog consortium shows their 
view of an N-tier environment, where the volume of data is 
reduced as the intelligence from data is increased at each level. 

 
Figure 2 Intelligence from Data 

The Architecture considers the four layers of Devices 
(sensors, actuators, cameras), Monitoring and Control 
(control logic using the sensor telemetry, e.g. to generate alerts 
and events), Operational Support (operational analytics) and 
Business Support (such as large-scale historic analysis). The 
three upper layers may be deployed only on fog nodes or only 
on cloud nodes, e.g. where the physical infrastructure may not 
support fog nodes. The OpenFog Consortium also considers 
the cross-layer perspectives by using three views of the 
architecture - the “Software” view in the top three layers, the 
“System” view in the middle layers and the “Node” view in 
the lower layers. 

In terms of WSN constrained nodes, the OpenFog 
architecture considers “Sensors, Actuators, and Control” as 
hardware or software-based devices, where several hundred of 
these could be associated with a single fog node. Some of 
these nodes may have significant processing capability and be 
able to implement some basic fog functions. The protocol 
abstraction layer exists to bring these devices under the 
supervision of a fog node so that their data can be provided to 

higher layers. The OpenFog Reference Architecture states that 
future versions will describe “Minimum Viable Interfaces”, 
with more detail about the protocols and abstraction layers. It 
currently identifies protocols such as CoAP and MQTT for 
node-cloud and node-node communications. 

E. Autonomic and Cognitive Architectures 
Autonomic architectures are another way to realize 

complex, loosely-coupled, decentralized, dynamic systems. 
They are characterized by self-configuration, self-healing, 
self-optimization and self-protection. Cognitive approaches 
use information based on experience to improve overall 
performance [24]. These frameworks are generally concerned 
with higher layer functions such as translating vendor specific 
data into a vendor-neutral form or semantics around state 
transitions, reasoning engines and automatic management 
functions, perhaps using virtualisation. 

IV. HPP ARCHITECTURE 

A. Architectural Lessons 
A key lesson that can be seen in the RESTFul style is that 

an interoperable architecture for IoT must provide consistent 
abstractions to simplify the development and deployment of 
nodes and applications. While valuable in presenting the range 
of actors and scenarios, the layered Eclipse and OpenFog 
architectures distinguish at the level of abstraction between 
the different entities without providing a consistent set of 
constraints (as in REST) or abstractions or considering entities 
as having a Peer relationship as in BitTorrent. This leads to 
the need for edge proxies with different architectures and 
abstractions, reducing the ability to achieve large scale [25]. 

The RESTFul Architectural Style is based on constraints 
and defined components as above and has proven its 
scalability and flexibility. Given scale, flexibility and 
interoperability are desired in IoT, we consider that a similar 
architecturally driven approach is necessary. Furthermore, the 
scale and autonomy possible with P2P, as demonstrated by 
BitTorrent, suggest the use of P2P in IoT is appropriate. 

B. The Holistic Peer to Peer (HPP) Architecture 
Using the above analysis, a key design constraint for our 

holistic architecture is the ability to run the same code and 
consistent abstractions on a constrained node and Cloud 
services. It also uses a simple P2P protocol with defined roles, 
including Source, Sink, Forwarder, Bootstrap and Aggregator. 
It uses concepts from tuple-spaces to share and cache data 
easily. The architectural analysis also resulted in the addition 
of a Distributed Hash Table (DHT) since the protocol was 
presented in [11]. This DHT uses Kademlia k-buckets to 
provide a P2P Overlay network to identify nodes and groups. 
This provides the basis for nodes and services to operate in a 
self-organising manner and allows nodes to act as peers at an 
application layer throughout the flow of data, regardless of 
whether they are in a WSN or a Cloud service. 



 
Figure 3 HPP Layers and the Interaction of Node Services 

The HPP architecture consists of four layers. The Data 
Model Service layer provides a high-level abstraction for node 
data and services (on a node or in a Cloud service). It uses 
defined roles and abstractions to decouple the application 
developer from the network and node specifics. It is 
independent of a particular data model with a simple data store 
API. The Object Space layer is inspired by tuple-spaces and is 
a data store with leases and a simple API with a limited set of 
operations. It holds the node’s data or data it has cached from 
remote nodes with a cache algorithm that uses leases in its 
cache replacement policy. The Local Instrumentation layer 
maps the data from hardware on a node to the Object Space 
and the Device Instrumentation layer is a device specific 
interface to a node’s OS or hardware.  

Figure 3 shows the HPP architecture layers on nodes, 
based on their capabilities, i.e. a node running only a 
forwarder service does not have a Local Instrumentation layer 
and the Cloud Service only has a Data Model Service layer 
above a datastore. The HPP protocol is sufficiently simple for 
low capability devices. It provides a consistent means to 
exchange information between nodes and services, 
independent of the underlying network, using a small set of 
simple commands (Hello, Bye, Get, Add, Take, Notify). 
Every Peer must support Hello and respond with its identifier 
(if known) and its capabilities. All peers should handle at least 
a Get for its Peer Instance. Peers may support any of the other 
HPP messages, as per the capabilities in its Hello reply. A new 
peer joins a HPP network by sending a Hello message to a 
known peer address in the desired network.  

C. Evaluation of HPPArchitecture  
HPP meets our requirements for IoT as follows: Req-1 and 

Req2 are provided by the Data Model Service layer. Req-3 is 
provided by the Local Instrumentation layer. Req-4 is 
provided by the Object Space layer. Req-5 and Req-6 are 
provided by the HPP protocol . Req-7 is provided by the P2P 
Overlay network using HPP. Req-8 is met by all layers. 

The RESTFul use of a well-known URI for discovery is 
replaced by the use of a Hello message with one node’s 
address to join a peer network. HPP’s limited set of message 
types in the protocol and object space API aligns with the 

RESTFul use of methods with the same semantics for all 
resources. The use of HPP to manipulate objects aligns with 
the RESTFul use of self-descriptive messages to exchange 
resource representations. 

In terms of the OpenFog Reference Architecture, the Local 
Instrumentation layer and the Object Space layer align with 
the Node view of the Sensor and Actuator layer and the 
Protocol Abstraction layer, but they provide a richer set of 
abstractions and detail. HPP provides a means to exchange 
information between fog nodes and Cloud services. The 
defined Data Model Service layer and its service roles fit the 
storage functionality and its abstractions could be useful for 
the layers to manage nodes and for the Application Layers. As 
such, HPP allows Fog components to be interoperable at the 
level of providers and architecture models and interfaces. The 
addition of a DHT to identify and find nodes and data in an 
application overlay using HPP further extends its capabilities 
for OpenFog scenarios across a range of nodes and services. 

 
Figure 4 HPP with IPSO and LWM2M 

The flexibility of HPP to address the scenarios in Fog 
computing was shown previously. [11] demonstrated how 
simple it was to integrate HPP messages and a Data Model 
(DM) Sink service with HBase as an example of a Cloud 
NoSQL database. [26] showed that the HPP Data Model layer 
integrates easily with other models by storing objects from 
IPSO Smart Objects and Open Mobile Alliance Lightweight 
specification (OMA LWM2M) and providing them over 
CoAP. Figure 4 shows recent work where the IPSO objects 
are stored once in the DM layer and available over the HPP 
protocol as well as CoAP. The prototype implementation on a 
constrained Wismote node running the Contiki OS also 
includes the HPP DHT implementation for the P2P Overlay. 

V. CONCLUSION 
Based on their successful use at scale, the constraints of 

the RESTFul architectural style and the scalability and 
autonomy of P2P BitTorrent peers provide lessons on how to 
achieve the required scalability and seamless interoperability 
for IoT. This paper has shown that approaches such as 
OpenFog focus on the higher layers of the stack(s) for IoT. As 
also seen in a number of middleware solutions, this results in 
an architecture which assumes that constrained nodes and 



WSNs are so limited that they require proxies or virtualisation 
to allow them to be handled by higher layers and to make 
integration and development easier. Furthermore, the goal of 
seamless interoperability is made even more difficult by the 
wide diversity of protocols and middleware approaches, each 
using different architectures and programming abstractions 
(sometimes even for components in the same architecture). 

In contrast, our approach was architecturally driven to 
meet a set of requirements and constraints for an interoperable 
and scalable IoT, which includes constrained devices. It was 
demonstrated that our architecture could be scaled down to 
run on constrained devices and scaled up to Cloud services in 
an overlay P2P network, using a DHT that allowed peers in 
WSNs and external networks to exchange information using 
the same application layer protocol, without requiring proxies 
or additional middleware.  

This shows that P2P approaches should be considered 
further in Fog computing. Future work will test the scalability 
of this P2P architecture and further investigate its alignment 
with the OpenFog Reference architecture. 
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