
Title How to see through the Fog? Using Peer to Peer (P2P) for the
Internet of Things

Authors Tracey, David;Sreenan, Cormac J.

Publication date 2019-04

Original Citation Tracey, D. and Sreenan, C. (2019) 'How to see through the Fog?
Using Peer to Peer (P2P) for the Internet of Things', 2019 IEEE 5th
World Forum on Internet of Things (WF-IoT), Limerick, Ireland,
15-18 April, pp. 47-52. doi: 10.1109/WF-IoT.2019.8767275

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/document/8767275 - 10.1109/WF-
IoT.2019.8767275

Rights © 2019 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-05-02 00:55:03

Item downloaded
from

https://hdl.handle.net/10468/9655

https://hdl.handle.net/10468/9655

How to see through the Fog? Using Peer to Peer (P2P) for the Internet of Things

David Tracey1
Dept. Of Computer Science,

University College Cork, Ireland

Cormac Sreenan
Dept. Of Computer Science,

University College Cork, Ireland

Abstract—The Internet of Things (IoT) faces the challenge of
scaling to handle tens of billions of connected devices. This
challenge is made more difficult by the range of constituent IoT
parts from Cloud-based applications to constrained nodes in
Wireless Sensor Networks (WSNs). Achieving the desired scale
and interoperability requires an architecture for IoT that is
scalable and allows seamless operation across networks and
devices. This paper considers the requirements for IoT and
considers a number of existing architectural approaches and the
emergence of Fog computing. It proposes that Fog computing
architectures must cater for the flow of data from constrained
sensor nodes to powerful applications. It considers the
suitability of a Peer to Peer (P2P) approach for Fog computing.
Using a prototype implementation, it demonstrates how a
Holistic Peer to Peer (HPP) architecture and application layer
protocol meet the requirements set for IoT.

Keywords–Internet of Things(IoT), RESTFul Style, Fog
Computing, Wireless Sensor Network (WSN), Peer to Peer (P2P).

I. INTRODUCTION
Wireless Sensor Networks (WSNs) interact with the

physical world allowing nodes to be deployed close to sensed
phenomena. The “Internet of Things” (IoT) is a distributed
system of devices and applications for sensing, actuation and
computation. The estimated tens of billions of connected IoT
devices [1] will need solutions to program and manage them,
with services to gather, store and analyze vast amounts of data.
Cloud services and Big Data approaches allow the scalable
storage and analysis of this data, while Fog and Edge
computing offer rich functionality at the edge of the Internet.
Protocols, such as the Constrained Application Protocol
(CoAP) [2] and data models, e.g. IPSO (Smart Objects) [3],
have emerged to support better application interoperability.

The potential of IoT is, however, limited by the difficulties
imposed by the constrained processing, memory and energy
consumption of WSN nodes and their heterogeneous nature,
limited development environments and diverse software and
protocols. A key challenge with such diversity is to enable the
growth of IoT in terms of scalability and also of developing
services and node software. The scalability challenge requires
being able to scale up to billions of devices, but also to scale
down to resource-constrained devices in relatively small
WSNs [4]. This requires seamless interoperability and a
consistent set of abstractions and APIs/protocols, particularly
at the application layer to realise Mark Weiser’s vision of tiny
networked computers woven into everyday life [5]. [6]
highlights the importance of interoperability: “Of the total

potential economic value the IoT enables, interoperability is
required for 40 percent on average and for nearly 60 percent
in some settings”. Approaches demonstrating scalability and
interoperability at Internet-scale and the value of an
architectural approach include the RESTFul architectural
style [7] and BitTorrent [8]. The RESTFul style is based on
specified constraints and components. Its success can be seen
in the development of HTTP1.1 and the wide adoption of
REST APIs. BitTorrent has also shown that Peer-to-Peer
(P2P) can provide a low barrier to entry, greater autonomy,
scale and robustness.

This paper considers which architectural approaches may
be suitable for IoT and how they relate to Fog computing. As
such, we present a set of requirements for IoT and consider
lessons from the RESTFul style and BitTorrent to meet those
requirements. This paper proposes that meeting the challenges
presented by IoT requires an architecture and a set of
consistent abstractions for all components in the entire flow as
data is sent (and aggregated/stored/acted on) from constrained
devices to edge gateways to Cloud services. As such, this
paper proposes that Fog computing [9] architectures must
consider constrained devices as part of that flow and that a
P2P overlay network can be used to achieve scalability and
high availability, especially at the edges of the Internet as in
Fog computing. In this context, we present a Holistic Peer-to-
Peer (HPP) application layer protocol that has been extended
to use a Distributed Hash Table (DHT) based on Kademlia
[10] as part of our previously presented architecture [11].
Implementations of the architecture have demonstrated
interoperability by allowing a constrained node to provide
IPSO data using HPP and CoAP and shown a straightforward
service to integrate with HBase.

The remainder of this paper is organized as follows.
Section II presents requirements for IoT, section III reviews a
number of architectural approaches and section IV gives an
overview of our Holistic Peer to Peer (HPP) architecture and
the addition of a DHT. The paper concludes in section V.

II. IOT ARCHITECTURAL REQUIREMENTS
The requirements for an IoT architecture in [11] have been

refined and it should:
• define the roles of nodes running services. Nodes

must meet a minimum level of functionality, e.g.
respond to a request for its capabilities (Req-1).

• provide abstractions to support the basic operations
required of a sensor node and the services using it.

These must map easily to a range of heterogeneous
devices and higher level services (Req-2).

• be independent of particular node hardware and
handle a range of node capabilities (Req-3).

• provide simple, consistent APIs for developers of
device and application software (Req-4).

• provide a consistent means to exchange information
independent of the underlying technology and support
the modelling of (sensor) data to allow its use by
higher level services (Req-5).

• support a (sensor) node informing other nodes and
services of its capabilities (Req-6).

• be dynamic to handle small, static networks and adapt
as the network changes and support applications
discovering and collaborating without a centralized
coordination facility (Req-7). It must also be robust
to support challenging wireless environments [12].

• use protocols that are sufficiently simple for low
capability devices to participate (Req-8).

These requirements for nodes and services would enable
an “Opportunistic IoT Service”, which is defined to provide
an “interface that allows an IoT entity to be engaged, under
specific constraints and pre/post-conditions, in a temporary,
contextualized and localized usage relationship” [13].

III. ARCHITECTURAL APPROACHES

A. RESTFul Architectural Style
The RESTFul architectural style uses a resource as a key

abstraction of information that can be represented in a number
of representations using the Internet media types. It is based
on the following five interface constraints in [7]:

• All important resources are identified by one
resource identifier. This is generally a Universal
Resource Identifier (URI). This constraint leads to
the interface being simple, visible, and reusable.

• Access methods have the same semantics for all
resources. For HTTP, this results in a limited set of
verbs, such as HEAD, GET, POST, PUT, DELETE
with easily understood semantics. This leads to the
interface being visible, scalable, and available.

• Resources are manipulated through the exchange of
representations. This constraint leads to the interface
being simple, visible, reusable, cacheable and
evolvable using information hiding.

• Representations are exchanged via self-descriptive
messages. This leads to the interface being visible,
scalable, available and evolvable.

• Hypertext as the engine of application state. This
leads to the interface being simple, visible, reusable,
and cacheable through data-oriented integration,
evolvable via loose coupling, and adaptable though
late binding of application transitions.

The RESTFul architectural style also includes processing
elements that are determined by their roles, i.e. origin server,

2 "RFC8323, Constrained Application Protocol) over TCP, TLS, and
WebSockets," 2018. https://datatracker.ietf.org/doc/rfc8323

gateway proxy, user agent. A recent paper reflecting on the
RESTFul architectural style [14], including the original
authors, considers that there have been different
interpretations of the term REST, but reiterates that “REST is
not an architecture, but rather an architectural style. It is a
set of constraints that, when adhered to, will induce a set of
properties; most of those properties are believed to be
beneficial for decentralized, network-based applications,
while others are the negative trade-offs that can result from
any design choice”. Importantly it also states that “REST does
not directly constrain the Web’s architecture. Rather, an
application developer may choose to constrain an
architecture in accordance with the REST style”. The
RESTFul style has been shown to facilitate application
development and scalability as a result of its decoupled nature.

CoAP [2] is a specialized protocol for constrained nodes
and constrained (e.g. low-power, lossy) networks. It was
originally a binary format on top of UDP, but has been
extended to also support TCP and TLS in RFC83232. It uses
RESTFul concepts such as URIs, with its own schema coap://,
and media formats. It is designed to be easy to proxy to/from
HTTP. CoAP provides resource discovery via the Resource
Directory (RD) and specific message types to provide
reliability. The use of an “observe” flag in the GET Request
provides observe/notify on a given resource. RESTful
approaches with CoAP are increasing [15], e.g. an end-to-end
IP based architecture for greenhouse monitoring integrating
CoAP over a 6LowPAN WSN using Contiki [16].

B. Middleware Approaches
Middleware is software that acts as an intermediary

between IoT devices and applications. [17] considers three
types of IoT middleware: service-based, cloud-based and
actor-based. Service-based is a service-oriented architecture
(SOA) where IoT devices may be represented as services.
Cloud-based services allow users to upload their sensor data
to the Cloud for storage, querying and analysis using Cloud
databases, NoSQL stores and Machine Learning toolsets.
These offerings use a proxy/gateway and APIs to provide the
integration with a Cloud service, usually limited to a given
Cloud provider and perhaps to a given device environment.
The actor-based architecture exposes IoT devices as reusable,
distributed actors. It is designed to be lightweight and flexible
enough to run in all components according to their capability,
e.g. a constrained node might not include a storage service.

The service-based and cloud-based middleware generally
provide separate components and abstractions as the systems
become more capable. For example, Figure 1 shows the three
Eclipse software stacks3. The first stack is for constrained
devices, showing OS, Hardware Abstraction and
Communication layers, with remote management across
layers. The second stack is for Gateways, which aggregate
data and coordinate the connectivity of these devices to each
other and to an external network with layers to support IoT
protocols, network management and data
management/messaging. It runs on an OS with more

3 "Eclipse IoT". https://iot.eclipse.org

functionality and may provide container or specific
application environments, e.g. for Java. The third stack is for
IoT Cloud platforms which is expected to scale horizontally
to support a large number of devices and vertically to support
a variety of IoT scenarios and devices. It has layers for device
management, data management and storage, event
management and analytics.

Figure 1 Eclipse IoT Stacks

Other middleware approaches such as Sensation [18] treat
the sensor network as an information source similar to a
database. It acts as an integration layer between applications
and networks, with a high-level set of APIs for applications
supported by a proxy for particular WSNs to hide device and
network heterogeneity. Agent based middleware composes
sensing tasks from sets of services, where the service code
moves across nodes autonomously, but requires particular
node computational capability and may reduce node lifetime
due to the additional associated network traffic [19].

C. Fog Computing
Cloud computing is an important part of IoT as it can store

and process large amounts of data, providing benefits in
scalability, flexibility and cost. There are, however, several
issues with simply handling data directly from WSNs:

• Response Time: certain applications may require
more rapid response time than the latency introduced
by sending data to the Cloud, e.g. connected vehicles.

• Intermittent Connectivity: the Cloud may not meet
application requirements for timely data processing or
data may be lost if device storage is exceeded.

• Bandwidth: the amount of data from large numbers of
devices on a link may exceed the bandwidth available.

• Device Connection: devices may have to be
connected directly to each other, e.g. wearable health
monitoring devices, connected vehicles.

• Data Security and Privacy: regulation may limit
where data can reside, e.g. health data may require
specific physical security guarantees.

One approach to address these issues is to move some
applications or some of the processing/storage to the edge of
the network. Fog computing is “a highly virtualized platform
that provides compute, storage, and networking services
between end devices and traditional Cloud Computing Data
Centers, typically, but not exclusively located at the edge of

network” [9]. Such devices may consume from and send to
the Cloud, as well as load balancing that traffic. In such a
federated system, a service may execute using components
running in different networks/providers. This requires that
Fog/Edge components be interoperable at the level of
providers and architecture models and interfaces. The
OpenFog Consortium [20] have published an OpenFog
Reference Architecture as a basis to develop and test an open
fog-enabled architecture.

Distinctions between Fog and Edge computing vary, but
tend to use the closeness of the processing to the source of
data. Edge computing performs computing on an edge device
like a programmable controller and Fog computing performs
it at the local network level, e.g. by a gateway or specialized
node. There are a number of challenges:

• Scalability: each edge system will manage the data
of a set of nodes which will have to scale as nodes
are added. The overall system must also scale to
manage, deploy and run large numbers of
applications as more edge networks are added.

• Heterogeneity: an edge system should handle the
storage, computational and operational requirements
of heterogenous nodes and services, e.g. the different
data formats used by devices.

• Management: discovery and monitoring will be
required for fog nodes by the Cloud service and vice
versa. A key question is whether this will be
orchestrated in the Cloud and to what degree the fog
nodes/systems will be autonomic and decentralised.

• Data Security: edge nodes will have different
capabilities, which should be considered in deciding
where data is stored or processed.

The platforms, applications or services for Fog computing
must contribute to the seamless interoperability desired in IoT
and not create islands of data and services. An expansive view
of Fog and Edge computing is proposed as Osmotic
computing [21]. This is based “on the need for a holistic
distributed system abstraction enabling the deployment of
lightweight microservices on resource-constrained IoT
platforms at the network edge, coupled with more complex
microservices running on large-scale datacenters”. It proposes
Edge Micro Data Centres in a federated environment of
public/private cloud, edge cloud and devices. It uses
microservices in containers on IoT and Edge devices and
includes an interoperability layer for remote orchestration of
heterogeneous Edge devices.

A recent example of an Edge architecture for healthcare
incorporates smart devices for healthcare applications and an
edge gateway [22]. The gateway provides layers for access
network control, device management, application control,
edge management (data processing), middleware to manage
data and an API layer for remote interfaces and other edge
devices. This architecture provides considerable flexibility in
the edge gateway to handle multiple radio interfaces,
application layers and device management, including
discovery. It considers the flow of data from the device
(sensor or smart device) through an edge gateway to Cloud
services with defined roles, but it does not provide a high level
set of consistent abstractions.

The Mobile Edge Computing (MEC) approach uses
increased edge processing power to handle data streams at the
mobile edge [23]. It connects each Base Station to a fog node.
This fog node provides local computing resources and a proxy
Virtual Machine (VM), which collects, classifies and analyses
raw data streams from devices, converts them into metadata
and transmits the metadata to the corresponding application
VMs (owned by IoT service providers). A Software Defined
Networking (SDN) based cellular core is used to forward
packets among fog nodes.

D. OpenFog Reference Architecture
The OpenFog Reference Architecture describes a set of

high-level attributes of Fog computing termed “pillars”. These
are security, scalability, openness, autonomy, agility,
reliability, hierarchical organization and programmability,
and it describes desirable characteristics for each. It considers
several scenarios including traffic control, security
surveillance and air transportation, which illustrate the range
of actors, interactions and the types of device and services
involved. Figure 2 from the OpenFog consortium shows their
view of an N-tier environment, where the volume of data is
reduced as the intelligence from data is increased at each level.

Figure 2 Intelligence from Data

The Architecture considers the four layers of Devices
(sensors, actuators, cameras), Monitoring and Control
(control logic using the sensor telemetry, e.g. to generate alerts
and events), Operational Support (operational analytics) and
Business Support (such as large-scale historic analysis). The
three upper layers may be deployed only on fog nodes or only
on cloud nodes, e.g. where the physical infrastructure may not
support fog nodes. The OpenFog Consortium also considers
the cross-layer perspectives by using three views of the
architecture - the “Software” view in the top three layers, the
“System” view in the middle layers and the “Node” view in
the lower layers.

In terms of WSN constrained nodes, the OpenFog
architecture considers “Sensors, Actuators, and Control” as
hardware or software-based devices, where several hundred of
these could be associated with a single fog node. Some of
these nodes may have significant processing capability and be
able to implement some basic fog functions. The protocol
abstraction layer exists to bring these devices under the
supervision of a fog node so that their data can be provided to

higher layers. The OpenFog Reference Architecture states that
future versions will describe “Minimum Viable Interfaces”,
with more detail about the protocols and abstraction layers. It
currently identifies protocols such as CoAP and MQTT for
node-cloud and node-node communications.

E. Autonomic and Cognitive Architectures
Autonomic architectures are another way to realize

complex, loosely-coupled, decentralized, dynamic systems.
They are characterized by self-configuration, self-healing,
self-optimization and self-protection. Cognitive approaches
use information based on experience to improve overall
performance [24]. These frameworks are generally concerned
with higher layer functions such as translating vendor specific
data into a vendor-neutral form or semantics around state
transitions, reasoning engines and automatic management
functions, perhaps using virtualisation.

IV. HPP ARCHITECTURE

A. Architectural Lessons
A key lesson that can be seen in the RESTFul style is that

an interoperable architecture for IoT must provide consistent
abstractions to simplify the development and deployment of
nodes and applications. While valuable in presenting the range
of actors and scenarios, the layered Eclipse and OpenFog
architectures distinguish at the level of abstraction between
the different entities without providing a consistent set of
constraints (as in REST) or abstractions or considering entities
as having a Peer relationship as in BitTorrent. This leads to
the need for edge proxies with different architectures and
abstractions, reducing the ability to achieve large scale [25].

The RESTFul Architectural Style is based on constraints
and defined components as above and has proven its
scalability and flexibility. Given scale, flexibility and
interoperability are desired in IoT, we consider that a similar
architecturally driven approach is necessary. Furthermore, the
scale and autonomy possible with P2P, as demonstrated by
BitTorrent, suggest the use of P2P in IoT is appropriate.

B. The Holistic Peer to Peer (HPP) Architecture
Using the above analysis, a key design constraint for our

holistic architecture is the ability to run the same code and
consistent abstractions on a constrained node and Cloud
services. It also uses a simple P2P protocol with defined roles,
including Source, Sink, Forwarder, Bootstrap and Aggregator.
It uses concepts from tuple-spaces to share and cache data
easily. The architectural analysis also resulted in the addition
of a Distributed Hash Table (DHT) since the protocol was
presented in [11]. This DHT uses Kademlia k-buckets to
provide a P2P Overlay network to identify nodes and groups.
This provides the basis for nodes and services to operate in a
self-organising manner and allows nodes to act as peers at an
application layer throughout the flow of data, regardless of
whether they are in a WSN or a Cloud service.

Figure 3 HPP Layers and the Interaction of Node Services

The HPP architecture consists of four layers. The Data
Model Service layer provides a high-level abstraction for node
data and services (on a node or in a Cloud service). It uses
defined roles and abstractions to decouple the application
developer from the network and node specifics. It is
independent of a particular data model with a simple data store
API. The Object Space layer is inspired by tuple-spaces and is
a data store with leases and a simple API with a limited set of
operations. It holds the node’s data or data it has cached from
remote nodes with a cache algorithm that uses leases in its
cache replacement policy. The Local Instrumentation layer
maps the data from hardware on a node to the Object Space
and the Device Instrumentation layer is a device specific
interface to a node’s OS or hardware.

Figure 3 shows the HPP architecture layers on nodes,
based on their capabilities, i.e. a node running only a
forwarder service does not have a Local Instrumentation layer
and the Cloud Service only has a Data Model Service layer
above a datastore. The HPP protocol is sufficiently simple for
low capability devices. It provides a consistent means to
exchange information between nodes and services,
independent of the underlying network, using a small set of
simple commands (Hello, Bye, Get, Add, Take, Notify).
Every Peer must support Hello and respond with its identifier
(if known) and its capabilities. All peers should handle at least
a Get for its Peer Instance. Peers may support any of the other
HPP messages, as per the capabilities in its Hello reply. A new
peer joins a HPP network by sending a Hello message to a
known peer address in the desired network.

C. Evaluation of HPPArchitecture
HPP meets our requirements for IoT as follows: Req-1 and

Req2 are provided by the Data Model Service layer. Req-3 is
provided by the Local Instrumentation layer. Req-4 is
provided by the Object Space layer. Req-5 and Req-6 are
provided by the HPP protocol . Req-7 is provided by the P2P
Overlay network using HPP. Req-8 is met by all layers.

The RESTFul use of a well-known URI for discovery is
replaced by the use of a Hello message with one node’s
address to join a peer network. HPP’s limited set of message
types in the protocol and object space API aligns with the

RESTFul use of methods with the same semantics for all
resources. The use of HPP to manipulate objects aligns with
the RESTFul use of self-descriptive messages to exchange
resource representations.

In terms of the OpenFog Reference Architecture, the Local
Instrumentation layer and the Object Space layer align with
the Node view of the Sensor and Actuator layer and the
Protocol Abstraction layer, but they provide a richer set of
abstractions and detail. HPP provides a means to exchange
information between fog nodes and Cloud services. The
defined Data Model Service layer and its service roles fit the
storage functionality and its abstractions could be useful for
the layers to manage nodes and for the Application Layers. As
such, HPP allows Fog components to be interoperable at the
level of providers and architecture models and interfaces. The
addition of a DHT to identify and find nodes and data in an
application overlay using HPP further extends its capabilities
for OpenFog scenarios across a range of nodes and services.

Figure 4 HPP with IPSO and LWM2M

The flexibility of HPP to address the scenarios in Fog
computing was shown previously. [11] demonstrated how
simple it was to integrate HPP messages and a Data Model
(DM) Sink service with HBase as an example of a Cloud
NoSQL database. [26] showed that the HPP Data Model layer
integrates easily with other models by storing objects from
IPSO Smart Objects and Open Mobile Alliance Lightweight
specification (OMA LWM2M) and providing them over
CoAP. Figure 4 shows recent work where the IPSO objects
are stored once in the DM layer and available over the HPP
protocol as well as CoAP. The prototype implementation on a
constrained Wismote node running the Contiki OS also
includes the HPP DHT implementation for the P2P Overlay.

V. CONCLUSION
Based on their successful use at scale, the constraints of

the RESTFul architectural style and the scalability and
autonomy of P2P BitTorrent peers provide lessons on how to
achieve the required scalability and seamless interoperability
for IoT. This paper has shown that approaches such as
OpenFog focus on the higher layers of the stack(s) for IoT. As
also seen in a number of middleware solutions, this results in
an architecture which assumes that constrained nodes and

WSNs are so limited that they require proxies or virtualisation
to allow them to be handled by higher layers and to make
integration and development easier. Furthermore, the goal of
seamless interoperability is made even more difficult by the
wide diversity of protocols and middleware approaches, each
using different architectures and programming abstractions
(sometimes even for components in the same architecture).

In contrast, our approach was architecturally driven to
meet a set of requirements and constraints for an interoperable
and scalable IoT, which includes constrained devices. It was
demonstrated that our architecture could be scaled down to
run on constrained devices and scaled up to Cloud services in
an overlay P2P network, using a DHT that allowed peers in
WSNs and external networks to exchange information using
the same application layer protocol, without requiring proxies
or additional middleware.

This shows that P2P approaches should be considered
further in Fog computing. Future work will test the scalability
of this P2P architecture and further investigate its alignment
with the OpenFog Reference architecture.

REFERENCES

[1] D. Reed, J. R. Larus and D. Gannon, "Imagining the Future:

Thoughts on Computing," Computer, vol. 45, no. 1, 2012.
[2] Z. Shelby, "RFC 7252, The Constrained Application

Protocol (CoAP)," 2014. [Online]. Available:
https://datatracker.ietf.org/doc/rfc7252/.

[3] IPSO, "IP for Smart Objects (IPSO) Alliance," 2014.
[Online]. Available: http://www.ipso-alliance.org.

[4] M. Kovatsch, "Scalable Web Technology for the Internet of
Things (PhD Thesis)," ETH Zurich, 2015.

[5] M. Weiser, "The computer for the twenty-first century,"
Scientific American, September 1991 (reprinted in IEEE
Pervasive Computing, Jan-Mar 2002), 1991.

[6] McKinsey, "The Internet of Things: Mapping the Value
Beyond the Hype," 2015. [Online]. Available:
https://www.mckinsey.com/business-functions/digital-
mckinsey/our-insights/the-internet-of-things-the-value-of-
digitizing-the-physical-world.

[7] R. Fielding, "Architectural Styles and the Design of
Network-based Software Architectures," Doctoral
dissertation, 2000.

[8] B. Cohen, "The BitTorrent Protocol Specification," 2008.
[Online]. Available:
http://www.bittorrent.org/beps/bep_0003.html.

[9] F. Bonomi, R. Milito, J. Zhu and S. Addepalli , "Fog
Computing and Its Role in the Internet of Things," in MCC
Workshop on Mobile Cloud Computing, 2013.

[10] P. Maymounkov and D. MaziШeres, "Kademlia: A Peer-to-
peer Information System Based on the XOR Metric," in
First International Workshop on Peer-to-Peer Systems
(IPTPS), 2002.

[11] D. Tracey and C. Sreenan, "A Holistic Architecture for the
Internet of Things, Sensing Services and Big Data," in 13th

IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, 2013.

[12] S. Nawaz, X. Xu, D. Rodenas-Herraiz, P. Fidler, K. Soga
and C. Mascolo, "Monitoring a Large Construction Site
Using Wireless Sensor Networks," in RealWSN, 2015.

[13] G. Fortino, C. Savaglio and M. Zhou, "Toward
Opportunistic Services for the Industrial Internet of Things,"
in 13th IEEE Conference on Automation Science and
Engineering (CASE), 2017.

[14] R. Fielding, R. N. Taylor, J. R. Erenkrantz, M. M. Gorlick, J.
Whitehead, R. Khare and P. Oreiz, "Reflections on the
REST Architectural Style and “Principled Design of the
Modern Web Architecture”," in 11th Meeting of the
European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’17), 2017.

[15] M. Kovatsch, "A Low Power CoAP for Contiki," in IEEE
8th International Conference on Mobile Adhoc and Sensor
Systems (MASS), 2011.

[16] W. Colitti, "Integrating Wireless Sensor Networks with the
Web," in Workshop on Extending the Internet to Low power
and Lossy Networks (IP+SN), 2011.

[17] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal and . Q. Z.
Sheng, "IoT Middleware: A Survey on Issues and Enabling
Technologies," IEEE Internet of Things Journal, no. 1, 2017.

[18] T. Hasiotis, "Sensation: A Middleware Integration Platform
for Pervasive Applications in Wireless Sensor Networks," in
2nd European Workshop on Wireless Sensor Networks,
2005.

[19] A. Boulis, "A Framework for Efficient and Programmable
Sensor Networks," in OPENARCH, 2002.

[20] "Openfog Consortium," [Online]. Available:
https://www.openfogconsortium.org.

[21] M. Villari, S. Dustdar, O. Rana and R. Ranjan, "Osmotic
Computing: A New Paradigm for Edge/Cloud Integration,"
IEEE Cloud Computing, vol. 3, no. 6, pp. 76-83, 2016.

[22] P. Pace, G. Aloi, . G. Raffaele, G. Caliciuri, G. Fortino and
A. Liotta, "An Edge-Based Architecture to Support Efficient
Applications for Healthcare Industry 4.0," IEEE Trans.
Industrial Informatics, vol. 15(1), pp. 481-489, 2019.

[23] X. Sun, "EdgeIoT: Mobile Edge Computing for the Internet
of Things," IEEE Communications Magazine, no. 12, 2016.

[24] C. Savaglio and G. Fortino, "Autonomic and cognitive
architectures for the Internet of Things," in International
Conference on Internet and Distributed Computing Systems,
2015.

[25] D. Clark, "Making the world (of communications) a
different place.ACM SIGCOMM CCR, 35(3):91–96, 2005.,"
ACM SIGCOMM, vol. 35, no. 3, pp. 91-96, 2005.

[26] D. Tracey and C. Sreenan, "OMA LWM2M in a Holistic
Architecture for the Internet of Things," in ”, IEEE 14th
International Conference on Networking, Sensing and
Control (ICNSC-2017), 2017.

