
Predictive Maintenance for Edge-Based Sensor
Networks: A Deep Reinforcement Learning

Approach
Kevin Shen Hoong Ong*, Dusit Niyato*, Chau Yuen†

*School of Computer Science and Engineering, Nanyang Technological University Singapore
†Engineering Product Development, Singapore University of Technology and Design

Abstract—Failure of mission-critical equipment interrupts pro-
duction and results in monetary loss. The risk of unplanned
equipment downtime can be minimized through Predictive Main-
tenance of revenue generating assets to ensure optimal perfor-
mance and safe operation of equipment. However, the increased
sensorization of the equipment generates a data deluge, and
existing machine-learning based predictive model alone becomes
inadequate for timely equipment condition predictions. In this
paper, a model-free Deep Reinforcement Learning algorithm
is proposed for predictive equipment maintenance from an
equipment-based sensor network context. Within each equip-
ment, a sensor device aggregates raw sensor data, and the
equipment health status is analyzed for anomalous events. Unlike
traditional black-box regression models, the proposed algorithm
self-learns an optimal maintenance policy and provides actionable
recommendation for each equipment. Our experimental results
demonstrate the potential for broader range of equipment main-
tenance applications as an automatic learning framework.

I. INTRODUCTION

Equipment downtime is generally defined as the outage
time that accumulates whenever production process stops and
current world class standards for downtime is ≤10% [1].
Despite the rapid technological advances and increasing equip-
ment complexity, frequent occurrence of equipment downtime
remains and often results in monetary loss. Maintenance teams
are given limited maintenance budgets and face tremendous
cost pressure to ensure that the production line is always
operational. In an event of an unplanned equipment fault, the
corrective maintenance option is performed to bring the failed
equipment up to its operational status to meet the product de-
livery deadline. Forward looking companies employ preventive
maintenance to reduce the likelihood of unplanned equipment
downtime through scheduled upkeep of production equipment
condition. Although the long-term goal of reducing overall
maintenance costs has been touted, manufacturing productivity
is slightly improved at the expense of higher maintenance cost.
Predictive maintenance is overall considered more efficient (i.e
manpower and cost) and equipment downtime is minimized
because maintenance is only performed based on the real-time
condition of an equipment.

As industries worldwide journey towards the Industry 4.0 vi-
sion to boost manufacturing productivity, modern equipments
become increasingly complex and requires longer maintenance
time. Admist a manpower lean economy that is driven by

productivity, one of the key challenges resides in the latent
demand to simplify the complexity of machine sensor data
interpretation for predictive maintenance purposes. Traditional
black-box regression models are feature-engineered towards
domain-specific applications, and solution extensibility to sim-
ilar applications and feature updates request are costly short-
term endeavours. Deep Learning (DL) have recently been
proposed as an alternative for estimation of remaining useful
life of equipment [2]–[4] and ball bearings [5], [6]. Similar
work has also been reported in [7] to learn the health indicators
for the remaining useful life estimation of a turbofan engine
by using Temporal Difference (TD) learning. However, these
approaches are only concerned about accurate estimation of
the equipment’s remaining operational uptime and lack mean-
ingful insights to support the maintenance team’s decision-
making process. Common reasons can be attributed to the
fact that explicit models of real-world problems are largely
unknown or too complex to accurately model with traditional
model-based approaches. In this work, we propose a model-
free Deep Reinforcement Learning (DRL) algorithm approach
to self-learn optimal maintenance decision policies, from the
health state of an equipment, more importantly with actionable
recommendation.

Increased pressure on margins, higher customer expecta-
tions and the declining cost of cloud computing are enticing
factors for manufacturers to stay competitive. Conversely,
both manufacturing and equipment-maker companies remain
security averse to transmitting sensitive production sensor data
to the cloud, via unreliable internet connections, and any
adoption is generally reserved only for companies with deep
pockets [8]. An alternative approach is to utilize a locally
interconnected sensor network of equipment. In our proposed
system model, each equipment is equipped with sensor-based
edge computing devices [9], which can share data and commu-
nicate with other edge devices or equipment. Overall benefits
of adopting this approach includes time-efficient decision-
making process, a responsive yet data informed maintenance
support team and reduction in network traffic across the factory
shopfloor IT infrastructure.

In summary, the contributions of this paper are as follows:
1) Problem formulation of maximizing equipment run-

time as a function of multiple sensor data input. The
decision-policy is obtained by using the model-free DRL

ar
X

iv
:2

00
7.

03
31

3v
1

 [
cs

.L
G

]
 7

 J
ul

 2
02

0

approach.
2) The DRL algorithm offers recommendation support for

the replacement policy of an equipment with easy-to-
understand data-driven recommendations via an Equip-
ment Health Indicator status.

3) Despite random initial health states and an absent
ground truth, the proposed DRL algorithm tackles the
sparsely-dense reward maintenance problem with almost
consistent recommendations across similar datasets and
equipment.

II. SYSTEM MODEL

Consider the application of a sensor network for the purpose
of equipment health monitoring, either through retrofitting or
in-situ configuration. Our proposed system model resembles a
Star Topology network at the Equipment level, see Figure 1.
From the current configuration, the aggregated data can be
propagated to a larger Sensor Network, such as tree or
mesh topology configurations, for more complex data analysis.
Typical network components include Sensor Nodes (SN) and a
Sensor Gateway (SG), also known as Base Station. Please note
that the terms Base Station and SG are used interchangeably.

Fig. 1: System Model of Sensor Network at Equipment Level

SN devices are model representations of physical sensors
transmitting data such as temperature, accelerometer, gyro-
scope and acoustic, depicted in Figure 1. Concurrent streaming
of raw sensor data is known to consume high network band-
width and degrades overall network performance. To mitigate
network congestion scenario, SG-based data aggregation and
processing at the SG node is proposed. The SG node is
assumed to be always powered with adequate computation
and storage capabilities. Next, sensor data analysis will be
performed using batch processing (i.e time-frame comprising
of fixed time-step duration) of sensor data for memory and
computation efficiency purposes. Without loss of generality
and for ease of presentation, a pair of SG and SN is assumed.

Data analysis is performed on window size with K time-
steps and the output of the prediction are three maintenance
action: Repair, Replace and Hold. Hold is the default action
where SG predicts a low probability of imminent failure to oc-
cur. In the event that an anomalous sensor reading is observed
with high certainty, the SG node has to decide which of the two
recommendations, Replace or Repair, should be provided to
the maintenance team - mirroring real-life decision-making. In
practice, the Repair action is almost certainly executed given
the busy schedule and maintenance budget constraints.

III. PROBLEM FORMULATION

In our system model, the challenge is to maximize the
total run-time of the equipment with maintenance budget con-
straints. The objective function is described in (1) as Maximum
Equipment UpTime (ρ) and is cast into a Markov Decision
Process (MDP) framework with fully observable states. MDP
is formally described as a 5-tuple consisting of state (S), action
(A), probabilistic distribution of state transitions (P), reward
function (R) and discount factor (γ). Mathematically, the tuple
can be compactly denoted as (S, A, P , R, γ).

ρ =

N∑
Node=1

RunTime (1)

Given a sensor network, the generated sensor data is denoted
as xit, where i ∈ {0, 1, . . . , Z} at every time-step (t). From (1),
N represents the number of SN devices within the considered
sensor network, and N = 1 is assumed. The sensor data is
then discretized and simplified in (2). Then, we generalize the
state space of each sensor node in (3).

qx ← Discretize(xit) (2)

Si = {qx} (3)

For every equipment or sensor manufactured, the manufac-
turers specify the Mean-Time-Between-Failure (MTBF) and
operating temperature information in the technical datasheet.
Due to the elasticity of environmental temperature, the equip-
ment’s degradation rate and state change is inadvertently non-
sequential. In this work, we consider the sensor state changes
to be initially sequential with decreasing trend over finite time-
steps. For example, assume the probability of state change
increases as operating temperature increases. Eventually, an
obvious temperature mode change occurs, and the rate of
sensor degradation decays exponentially with respect to time,
described in (4). Within the current operating temperature
mode, the sensor’s state change would skip multiple states to
reflect corresponding temperature changes. The observed state
change behavior is known to mirror a concave exponential
decay trend with respect to equipment run-time. When the
transition probability of the state-action pair is considered, a
pseudo health indicator is derived and shown to vary according
to increasing failure probability, see Figure 3. Notably, the
health degradation trend clearly illustrates inverse correlation
to the increasing sensor state values and is aligned with the
proposed system model.

F(t) = e−λt (4)

To model the environmental state (Sτ), we consider and
simplify the operating temperature conditions (τ) into a binary
form with conditional constraints, see (5). To be clear, units
of τ is in degree Celsius while Low and High operating
temperatures are binarily represented.

Sτ =

{
0, if τ ∈ [25, 60]
1, if τ > 60

(5)

The resultant state space for our system model is summa-
rized as the Cartesian product:

S = Si × Sτ (6)

Next, the model’s action space is encoded as a vector of
scalar actions: Replace(ε), Repair(η) and Hold(κ). Let us
assume that a maintenance account (β) is credited to the
maintenance agent. κ represents the agent’s default action and
the associated maintenance cost is zero. As the equipment
state (i.e. sensor health values) starts degrading, the frequency
and cost of repairs will gradually increase with time before
increasing exponentially. Hence, the agent is tasked to decide
the appropriate sequence of actions to perform at each state
as described in (7). To mimic maintenance decision-making
process, the imposed cost constraints (C) ensures that the agent
derives a sensible maintenance policy where β is not violated
within the given time frame.

A =


(ε, η, κ) |
N∑
n=1
Cε ≥ 2

N∑
n=1
Cη and β −

N∑
n=1
Cε ≥ 0,

N∑
n=1
Cε ≤

N∑
n=1

(Cη/2) and β −
N∑
n=1
Cη ≥ 0

(7)

For model simplification purposes, consider a single equip-
ment with N = 1 sensor attached. Given observable state
changes and transitions, the agent can select random actions
to perform. ε resets the sensor’s operational state to an almost
new condition while η seemingly reverts the sensor’s opera-
tional state by yRepair states, to a previously observed sensor
state. In addition, we consider that not all repairs are identical
and the sensor state change φ(S), will vary according to the
RepairType(ψ), where ψ ∈ {0, 1, ...,M}. From Figure 2, η is
invoked at St = y− 1 and the selected type of repair invokes
a state transition from St = y to S ′t = y−|φ(S)|. A compact
representation of the behaviour is described in (8).

yRepair ∈ {φ(S)|S ∈ ψ} (8)

Fig. 2: Example State Space and Transition with Replace and
Repair Action

Fig. 3: Health Degradation wrt Equipment Failure Probability

The Reward function is formally described as
R(st, at, st+1). From the previous derivations, R can
be re-interpreted as the cumulative sum of the sensor runtime
with respect to state S and action A. An immediate reward
function Rt ∈ R is proposed in Equation 9 to guide the
agent’s actions:

Rt =



RRpl, if Sit > 0, β > 0

RRpa, if Sit > 0, β > 0

RExp, if Sit > 0

RFrug, if Sit > 0, β > 0

RPen, otherwise

(9)

For example, executing either yReplace or yRepair action,
within the β constraints, will offer the agent an arbitrary
high health points for performing Replace (RRpl) and Repair
(RRpa) actions respectively. Conversely, the agent is heavily
penalized if either κ is performed throughout the episode or
when the sensor state is zero (RPen). Real-world applications
have sparse rewards and motivating the agent to explore is very
challenging. In this paper, RExp value is arbitrarily defined to
intrinsically motivate the agent to explore the environment. To
increase the probability of sparse state visitation, where poten-
tially high rewards are found, a proposed ranking mechanism
is proposed and described in Section IV-B.RFrug reward is also
defined to encourage the agent to execute the corresponding
action optimally, mimicking human decision-making.

Next, the state-value function (V π(s)) is expressed as:

V π(s) = Eπ[
∞∑
t=0

γRt+1|St = s] (10)

Then, we utilize the standard RL framework to obtain the
optimal policy (π∗). The Markov property is applied on (10)
and the value function is simplified and re-expressed as:

V π
∗
(s) =

∑
a

π(s, a)
∑
s′∈S
Pπ(s)(s, s′) [R(s, a) + γV π(s′)]

(11)
The associated policy function obtains the maximum action

that is possible from Equation 11. Hence, the Q-function
Q∗(s, a) can be updated using the Bellman equation and
expressed as:

New Q value︷ ︸︸ ︷
Q∗(s, a) = (1− α)

Current Q value︷ ︸︸ ︷
Q(s, a) +α[

Reward received︷ ︸︸ ︷
R(s, a)

+ γ max
a′∈A

Q′(s′, a′)︸ ︷︷ ︸
Max(Expected future reward)

]

where α denotes the learning rate of the agent; γ ∈ [0, 1] is
the discount factor where the agent performs tradeoff between
the observed immediate and potential future reward. The
max operator selects the highest-valued state-action pair that
consequently assists in the derivation of the optimal policy.

Many real-world problems have very large state space,
which makes it infeasible to compute and learn all exact state-
action transition values. Instead, an approximated estimate
of the state-action value pair can be learned using Temporal
Difference (TD) learning. As TD learning process resembles
a stochastic gradient descent, the updated Q-value is denoted
as Q

(
Sit , At;θt

)
towards a target value of yQt in (12).

yQt ≡ Rt+1 + γmax
A
Q
(
Sit+1,A;θt

)
(12)

In coupling a multi-layered neural network, a Deep Q-
Network (DQN), with experience replay and target network

(yDQNt), performance of the algorithm is vastly improved
and achieved fairly good generalization performance [10].
The target network is a copy of the original Q-network and
parameter synchronization occurs every τ steps, such that
θ−
t = θt, and is represented in (13).

yDQNt ≡ Rt+1 + γmax
A
Q
(
Sit+1,A;θ

−
t

)
(13)

IV. SOLUTION OF DEEP Q LEARNING

A. Double Deep Q Learning

DQN’s inherent tendency for value overestimation and
biased estimates are caused by random environment noise
and argmax operator respectively. Double Deep Q-Learning
(DDQN) was then proposed [11] to stabilize vanilla DQN
algorithm by decoupling the choice and evaluation of best
action on two separate networks. In this work, the DDQN
inputs contain a tuple of sensor data (xit) at every time-step
and random action is performed by the DDQN agent. The
DDQN’s target network generates an output of Q-values and
is denoted as:

yDoubleDQNt ≡ Rt+1 + γQ
(
st+1, a

∗;θ−
t

)
(14)

where a∗ = argmaxQ (st+1,A;θt). The discounted Q-value
(yDoubleDQNt) is taken from the target network with weights
θ−
t and the target network weights (θ−

t) are periodically
copied from the Q-value network. In particular, the agent’s
performed actions are extracted from the primary Q-value
network and the future reward evaluation step is taken from
the Q-target network.

B. Prioritized Experience Replay

The DRL agent is expected to infer an optimal point from
the system model or dataset from the reward constraints. With
reference to Figure 3, the equipment replacement point is
likely to occur further into the equipment operational cycle
as failure probability increases exponentially. Likewise within
the DRL context, the sparsely-dense-like reward configuration
and the likelihood of performing eitherRRpl orRRpa, is higher
towards the end of the equipment’s operational cycle. The
gained intuition suggests a normalized equipment health state
value of 0.2 to be the target optimal value.

Although the traditional combination of ε-greedy algorithm
with Experience Replay (ER) Buffer technique is well-known,
the ER Buffer has a bias to repeatedly sample the same highly-
rewarding experiences and is ill-posed for a sparse-reward
problem, typical of real-world applications. Moreover, the de-
cay rate of ε value over the training set is a hyperparameter and
an inefficient approach given varying Time-to-Failure cycles
for each equipment. For the mentioned problems, Prioritized
Experience Replay (PER) [12] is the proposed component to
compliment DDQN.

PER is considered to be an enhancement over ER, and
it prioritizes the experiences which offers large differences
between prediction and the Temporal Difference (TD) target
value. Implicitly, the DRL agent can use the TD error mag-
nitude as an indicator to better focus its attention on the least
visited states which could yield potentially larger rewards.

The magnitude of the TD error (|δi|) can be incorporated
into the ER buffer sample as a tuple (st, at, rt, st+1, |δi|). To
minimize over-fitting problem in the ER method, stochastic
prioritization [12] is introduced to generate a probability
P (i), of a selected state-action pair, from the replay buffer,
see (15). pi denotes the priority value of the i-th sample in
the buffer and α is a hyperparameter that is used to induce
randomness within the experience selection for the replay
buffer. Pure uniform randomness is denoted by α = 0 while
α = 1 emphasizes experiences with the highest priorities;∑
k denotes the normalization of all priority values within

the Replay Buffer.

P (i) =
pi
α∑
k p

α
k

(15)(
1

N
· 1

P (i)

)b
(16)

During training of the neural network, the experiences
sampled must match the underlying distribution with priority
sampling, resulting in a bias towards high-priority samples.
The weights of frequently seen samples, within the replay
buffer, are then adjusted using Importance Sampling Weights
(IS) with the effect of reducing bias. From (16), N denotes
the Replay Buffer size; P (i) denotes the sampling probability
from (15); b is considered a weighting factor to control the
degree in which IS affects the learning process and is annealed
up to 1 over the duration of training phase. Readers may refer
to [12] for additional details on PER.

C. Parameter Noise

Exploration inefficiency of Reinforcement Learning (RL) is
a well-known problem and becomes more challenging when
applied on a sparse reward problem. Existing RL approach
influences the action space policy at each time-step with
no influence on the RL agent’s decision policy (i.e neural
network). Evolution strategies seek to manipulate the decision
policy parameters during each rollout and no influence is
exerted on the action space policy. Parameter Noise (PN) [13]
is a technique which strikes an in-between balance of the
aforementioned approaches with encouraging results for both
on-policy and off-policy algorithms. To explain, PN randomly
alters the parameters of the RL agent’s decisions which
introduces a more consistent exploration behaviour and a less
confused RL agent. In this work, PN is introduced to improve
exploration efficiency for the RL agents for the sparsely-dense
reward problem at hand and the pseudocode for the proposed
algorithm, Prioritized DDQN-PN Parameter Noise (PDDQN-
PN) algorithm is described in Algorithm 1.

V. EXPERIMENT STUDY

A. Dataset

The NASA Commercial Modular Aero-Propulsion Sys-
tem Simulation dataset (C-MAPSS) [14] is widely used in
literature and is selected to test our model. The data set
is generated from Turbofan Engine Degradation Simulator
and contains measurements which mimics the degradation
behaviour of multiple turbofan engines under various operating

Algorithm 1 Prioritized Double Deep Q-Learning with Pa-
rameter Noise (PDDQN-PN)

1: Input: Action space A, mini-batch size Lb, target network
replacement frequency L−

2: Output: Optimal policy π∗

3: Initialize: Prioritized Experience Replay Memory
Dpriority to capacity N , Primary network Qθ, target
network Qθ′ , action-value function Q with random
weights, target action-value function Q̂ with weights
θ−=θ

4: for Episode=1 to E do
5: for timestep=1 to T do
6: Observe state st and select at ∼ π (a, s)
7: With probability ε, perform random action
8: Otherwise, choose at = argmaxaQ(st, a) from
Q(s, a; θ);

9: Execute at and receive reward rt
10: Observe next state s′

11: Store tuple (st, at, rt, s
′) in D with max priority

12: Sample random mini-batch transitions, size (Lb),
from Dpriority, according to transition priority

13: yDDQNt =

{
r, if episode terminates at timestep+1
r + γmaxa′Q̂(φj+1, a

′, θ−), else
14: Perform Gradient Descent on (yDQNt −Q(st, at))2

and update priority of each transition
15: Reset θ−=θ every L− steps
16: Update st ← s′

17: Increment timestep by 1
repeat until timestep is > T, terminate

repeat until Episode is > E, terminate

conditions. The corresponding fault conditions and complex
relations with multiple sensor measurements are listed within
four similar smaller datasets (FD001~FD004). For simplicity,
engine datasets FD001 and FD003 were selected and brief
dataset information is shown in Table I. Within each dataset,
26 columns of data are present. Columns 1 and 2 refers to
engine unit and particular engine cycle; Columns 3 to 5 are
operating conditions, such as temperature; Columns 6 to 26
contains 21 raw sensor readings.

Dataset FD001 FD003
Training Trajectories 100 100
Testing Trajectories 100 100

Operating Conditions 1 1
Fault Conditions 1 2

TABLE I: C-MAPSS DataSet [14] under test

B. Data Preparation

Individual sensor values have been normalized for each
sensor type (i.e sensor data column):

x̂ =
(xi − µi)

σ
(17)

where µi and σ denotes the mean value and standard deviation
for the sensor types respectively. xi denotes the i-th sensor
value within the corresponding sensor type dataset.

Remaining Useful Life (RUL) calculation is then appended
to the normalized data and linear regression is performed.

Once the sensor parameters are identified, an RUL distribution
graph is plotted and a Gaussian distribution was observed for
all data. Sensor data is then dimensionally reduced using prin-
cipal component analysis and the equipment health indicator is
obtained. In the absence of ground truth for equipment health
values, [14] suggested that the degradation behaviour should
resemble an exponential decay function like model:

H(t) = 1− d− e{at
b} (18)

where d denotes the non-zero initial degradation, and a and b
are weighted coefficients. Similar degradation behaviour was
observed for turbofan equipment health indicator dataset, see
Figure 5. Note that in the absence of a ground truth for both
repair and replacement action, only the replacement action is
tested and a medium-criticality equipment is assumed.

C. Results

PDDQN-PN was implemented using Tensorflow based deep
learning library [15] and Adam optimizer was selected. 5000
time-steps of warm-up was performed to fill the agent’s
memory, using random policy, before commencing actual
training. To balance between exploration and exploitation, the
exploration fraction was set to 80% of the number of training
simulation time-steps.

Fig. 4: Learning Performance Benchmark between proposed
components and Random policy

In order to demonstrate the benefits of the proposed algo-
rithm, separate tests were conducted on engine #76 sensor
data from FD001. As a result, the learning performance con-
tribution factor of each sub-component is clearly illustrated.
PER component significantly contributed to the DRL agent’s
ability to learn an optimal policy within 1.2× 104 time-steps
and a mean cumulative reward score of 95. Once stacked
with parameter action noise, a notable 50% improvement in
learning efficiency is clearly observed with a performance
loss of 10%. From Figure 4, it is likely that the mean score
for both DDQN-PER and PDDQN-PN will converge given
longer simulation time-steps and reduction in exploration time.
DDQN-Vanilla performed marginally worse than a random
policy given the sparse-reward problem and the results are
illustrated in Figure 4. For improved readability, Exponential
Mean Average (EMA) smoothing factor of 0.18 was performed
on the reported results.

The model prediction method is used to quantify and
analyze the DRL agent’s learnt decision policy. The prediction
results in Table II noted identical median for DDQN based

algorithms with PDDQN-PN reporting the largest standard
deviation of 1.27×10−2. The higher deviation is attributed to
the action parameter noise technique. The random policy agent
clearly demonstrated its inability to learn a suitable policy
and DDQN-Vanilla offers conversely comparable prediction
performance to the DDQN-PER variant.

Algorithm Median Standard Deviation
DDQN - PER + ParamNoise 0.170 0.013

DDQN - PER 0.170 0.011
DDQN - Vanilla 0.170 0.011

Random 0.897 0.0

TABLE II: Average Model Prediction Results for Engine #50

Part of the validation process involves random selection
of Engine Health Indicators from both the training and test
dataset with results presented in Figure 5. The DRL agent
is able to propose a suitable replacement policy, even when
the starting point indicates steep downward trend approaching
imminent equipment failure, see Figure 5c. This is due to
the failure-to-failure penalty constraint RPen in (9). Like-
wise, the DRL agent demonstrated encouragingly consistent
recommended actions, on different engine and dataset. The
proposed replacement points are highlighted in Figure 5. For
comparison, cross-validation on FD001 reported a median of
0.175±0.02; FD003 reported median of 0.174±0.02.

(a) Engine76 - (Training) (b) Engine69 - (Training)

(c) Engine82 - (Validation) (d) Engine71 - (Validation)

Fig. 5: Example of DRL Agent Proposed Replacement points

VI. CONCLUSION

As industries worldwide journey towards the Industry 4.0 vi-
sion to boost manufacturing productivity, modern equipments
become increasingly complex to perform maintenance on. The
result is an increased customer demand for accurate, inter-
pretable and actionable insights from predictive maintenance
tools. In this paper, we have introduced an approach to provide
actionable recommendation, based on an equipment’s health
state. We have formulated the maximization of equipment
uptime as a function of multiple input sensor data and model
the derived equipment health states with state-action pair. The
optimal states are observed in a sparsely-dense configuration
and is challenging to solve with existing approaches. Then,
we have proposed a model-free-based Deep Reinforcement

Learning algorithm which can rapidly learn an optimal main-
tenance decision policy, for example within 2000 time-steps.
The experimental results have shown consistent maintenance
recommendations across similar equipment, despite different
initial health state. Future work could include extending cur-
rent work to other equipment failure dataset and benchmark
against an actual equipment maintenance policy schedule.

ACKNOWLEDGEMENT

The work was supported in part by Singapore NRF Na-
tional Satellite of Excellence, Design Science and Technology
for Secure Critical Infrastructure NSoE DeST-SCI2019-0007,
A*STAR-NTU-SUTD Joint Research Grant Call on Artificial
Intelligence for the Future of Manufacturing RGANS1906,
WASP/NTU M4082187 (4080), Singapore MOE Tier 1 2017-
T1-002-007 RG122/17, MOE Tier 2 MOE2014-T2-2-015
ARC4/15, Singapore NRF2015-NRF-ISF001-2277, and Sin-
gapore EMA Energy Resilience NRF2017EWT-EP003-041.

REFERENCES

[1] C. Idhammar, “What constitutes world-class maintenance and reliabil-
ity,” https://www.reliableplant.com/Read/212/world-class-maintenance,
accessed: 2019-08-01.

[2] G. S. Babu, P. Zhao, and X.-L. Li, “Deep convolutional neural network
based regression approach for estimation of remaining useful life,” in
International conference on database systems for advanced applications.
Springer, 2016, pp. 214–228.

[3] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, “Long short-
term memory network for remaining useful life estimation,” in 2017
IEEE International Conference on Prognostics and Health Management
(ICPHM). IEEE, 2017, pp. 88–95.

[4] L. Jayasinghe, T. Samarasinghe, C. Yuen, J. C. N. Low, and S. S. Ge,
“Temporal convolutional memory networks for remaining useful life
estimation of industrial machinery,” arXiv preprint arXiv:1810.05644,
2018.

[5] E. Sutrisno, H. Oh, A. S. S. Vasan, and M. Pecht, “Estimation of
remaining useful life of ball bearings using data driven methodologies,”
in 2012 IEEE Conference on Prognostics and Health Management.
IEEE, 2012, pp. 1–7.

[6] L. Guo, N. Li, F. Jia, Y. Lei, and J. Lin, “A recurrent neural network
based health indicator for remaining useful life prediction of bearings,”
Neurocomputing, vol. 240, pp. 98–109, 2017.

[7] C. Zhang, C. Gupta, A. Farahat, K. Ristovski, and D. Ghosh, “Equipment
health indicator learning using deep reinforcement learning,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2018, pp. 488–504.

[8] Y. Liu and X. Xu, “Industry 4.0 and cloud manufacturing: A comparative
analysis,” Journal of Manufacturing Science and Engineering, vol. 139,
no. 3, p. 034701, 2017.

[9] S. Ong, K. M. Goh, H.-L. Chan, T.-Y. Lim, and K. V. Ling, “Towards
machine diagnostics on chip,” in 2010 11th International Conference on
Control Automation Robotics & Vision. IEEE, 2010, pp. 1353–1358.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[11] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Thirtieth AAAI conference on artificial
intelligence, 2016.

[12] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[13] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen,
T. Asfour, P. Abbeel, and M. Andrychowicz, “Parameter space noise for
exploration,” arXiv preprint arXiv:1706.01905, 2017.

[14] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation
modeling for aircraft engine run-to-failure simulation,” in 2008 interna-
tional conference on prognostics and health management. IEEE, 2008,
pp. 1–9.

[15] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.com/
hill-a/stable-baselines, 2018.

https://www.reliableplant.com/Read/212/world-class-maintenance
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

	I Introduction
	II System Model
	III Problem Formulation
	IV Solution of Deep Q Learning
	IV-A Double Deep Q Learning
	IV-B Prioritized Experience Replay
	IV-C Parameter Noise

	V Experiment Study
	V-A Dataset
	V-B Data Preparation
	V-C Results

	VI Conclusion
	References

