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ABSTRACT

Running automatic speech recognition (ASR) on edge devices
is non-trivial due to resource constraints, especially in scenar-
ios that require supporting multiple languages. We propose
a new approach to enable multilingual speech recognition on
edge devices. This approach uses both language identification
and accent identification to select one of multiple monolingual
ASR models on-the-fly, each fine-tuned for a particular accent.
Initial results for both recognition performance and resource
usage are promising with our approach using less than 1/12th
of the memory consumed by other solutions.

Index Terms— language identification, accent identifica-
tion, speech recognition, multilingual methods

1. INTRODUCTION

Speech-driven interfaces have become increasingly common,
and COVID-19 has accelerated interest in speech as one of the
primary modes of interaction with a variety of systems [1]. In
the case of kiosks used for ticketing, banking or informational
purposes, developers of speech interfaces need to minimize
latency and resource consumption while maintaining a high
level of performance in speech-related tasks, like automatic
speech recognition (ASR). At the same time, kiosks placed in
transportation or business hubs (e.g., airports or international
hotels) need to be able to support multiple languages.

Running any speech or language model on an edge sys-
tem is non-trivial due to the size of parameter sets in modern
speech and language models and the accelerated hardware
needed to run many of these neural network based models. If
multiple models are needed for multiple languages, resource
consumption [2] and increased inference times could very
easily prevent developers from deploying applications in any
environment, much less at the edge. In fact, common en-
terprise ASR systems require developers to deploy separate,
dissimilar instances of model servers for each supported lan-
guage, which complicates infrastructure and could result in
reliability or maintenance issues.

Beyond language, accent and other demographic factors
have been shown to dramatically impact ASR performance [3,
4]. Those demographic factors need to be addressed via larger,

more computationally expensive speech models or via models
fine-tuned for particular demographic groups.

In this paper, we implement and test an approach that al-
lows for dynamic usage of monolingual, accent-specific speech
recognition models in a multilingual context. This dynamic
usage of monolingual models reduces the need for higher end
compute and memory, preserves the recognition performance
of monolingual ASR models, and ultimately enables multi-
lingual contactless interactions on edge devices. In terms of
user experience, the proposed methodology also removes the
necessity for an awkward, touch-driven user selection of a
language within an application.

2. RELATED WORK

Many speech-driven systems at the edge detect a wake word
and transfer audio to the cloud or another remote endpoint for
processing. Such a system may not be desirable in cases where
latency and privacy are a concern. For example, per Google
Cloud Speech-to-Text best practice recommendations [5], 16-
bit, 16kHz mono PCM audio data needs to be sent to API
endpoints with a frame size of 100ms. Thus, round trip latency
would be around 4s for an upload of around 3.2KB/second,
which is beyond acceptable levels for many applications.

In terms of language support, developers often leverage
slot-filling. For example, developers might require a user to
select a preferred language via a touchscreen or speak the name
of their preferred language. Both of these interactions could
be awkward as they represent interactions that do not naturally
occur in conversation. Moreover, the former implementation
prevents truly contactless interactions, and the latter presents
challenges in dealing with alternate language names, accents,
and demographic factors.

Researchers have tried to extend ASR systems that rely
on phonetically inspired acoustic models to support multiple
languages. Certain of these extensions pool phonemes from
all languages into a single set and others manage separate sets
(see [6] and references therein). Either approach requires the
management of expertly crafted linguistic information, and the
burden of curating that information grows with the number of
languages.
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There have also been an increasing number of attempts to
create end-to-end (E2E) models that recognize speech in multi-
ple languages. For example, [7] utilizes a single model which
is trained while sharing parameters across 51 languages, and
the model ends up containing over a billion parameters. The
scale of this type of model would make it a challenge to utilize
on edge devices because of resource consumption and/or the
need for specialized hardware accelerators. Other attempts at
E2E multilingual ASR exhibit similar characteristics [8].

In [9], the authors use an E2E architecture called RNN
Transducer (RNN-T) that shows promise in edge applications.
A larger, adapted version of RNN-T takes as input a vector
representing a particular one of 9 supported languages. The
authors assume that the language is either specified manually
by a user of the model or determined automatically from a
language identification system, but they do not integrate any
specific spoken language identification system.

In still another vein of research [10, 11, 12, 13, 14, 15],
researchers have tried to integrate spoken language iden-
tification directly into a joint speech recognition and lan-
guage ID model. Generally, this work adds the prediction
of one or more language identifications into the prediction
of other outputs, such as decoded characters. While these
models can reduce the overall number of models needed to
support multilingual ASR, they can exhibit degradation in
performance for some or all of the supported languages in
comparison to the performance of corresponding monolin-
guhttps://www.overleaf.com/project/6020b5d855cbeaf4a4bfea22al
ASR models. Moreover, the authors are not aware of any
of these studies that integrates identifications of accent into-
https://www.overleaf.com/project/6020b5d855cbeaf4a4bfea22f
speech recognition models.

While the present study is related to recent work in spoken
language identification [] and E2E ASR, it capitalizes on a new,
simultaneous combination of spoken language identification,
spoken accent identification, and fine-tuned E2E ASR, which
was not considered in these earlier studies. In particular, we
investigate the efficacy of utilizing such a combination on edge
devices for high quality multilingual ASR.

3. APPROACH

An overview of the proposed Dynamic ASR (or Dyn-ASR,
which we pronounce ”dinosaur”) to processing multilingual
speech is presented in Fig. 1. In the approach, we assume
WAV file inputs which are first pre-processed to normalize,
trim silence from, and format the audio. In the case of audio
fed to speech recognition models, the audio is formatted to 16-
bits and 16kHz. In case of audio fed to language identification
and accent identification models, the audio is formatted to
16-bits and 8kHz, and we artificially repeat the input audio to
fill at least 10 seconds.

After pre-processing, language and accent identification
is performed. For both language and accent identification we

Fig. 1. The proposed processing steps and flow for recognizing
multiple languages.

utilize a model with two LSTM layers, each having 200 units
and each followed by batch normalization. One such model is
used to classify the input audio into a language class. Then, we
utilize a separate accent identification model (corresponding
to the identified language) to further classify the input audio
into an accent class.

An ASR model is trained for each language and accent
pair that is to be supported by the system. We fine-tune these
language and accent specific ASR models from general (i.e.,
not accent specific) ASR models. Because we are targeting
edge applications, we experimented with several different pho-
netically inspired and E2E model architectures that were op-
timized for edge devices using OpenVINO [17] and/or com-
pact by nature. These models included Deep Neural Network
(DNN) acoustic models and RNN-T, Conformer [18], Deep-
Speech [19], and QuartzNet [20] E2E models. In the end, we
found that the Conformer and/or QuartzNet E2E models ful-
filled our constraints in terms of ASR performance and system
resource consumption.

Depending on the size of the models and system con-
straints, each of the ASR models can be loaded into memory
when an application implementing the Fig. 1 process starts, or
each ASR model could be loaded into memory on-the-fly. In
any event, the model corresponding to the identified language
and accent pair is dynamically chosen or loaded into memory
after the language and accent is identified. In this way, multi-
ple compact monolingual models can be utilized dynamically
to recognize speech in multiple languages without significantly
sacrificing the performance of speech recognition or exceeding
edge device memory or processor constraints.



4. EXPERIMENTS

To test the Fig. 1 process for multilingual speech recognition
on edge devices, we evaluated (i) the performance of our
language and accent identification models; (ii) the performance
of our language and accent specific ASR models; and (iii) the
performance of an implementation of the full Fig. 1 process
with respect to resource consumption.

4.1. Data

In the following, we trained and tested our models/methods on
English, Tamil, and Mandarin speech data. The English data
was segmented into 8 accents (Scotland, Australia, England,
India, USA, China, Malaysia, other) and the Mandarin data
was segmented into 3 accents (Mainland, Taiwan, Hong Kong).

For transcribed speech data with corresponding language
and accent labels, we relied on Mozilla’s Common Voice data,
the Speech Accent Archive from George Mason University
(SAA), and the Singapore National Speech Corpus (NSC). For
additional Tamil speech data, we used Microsoft’s Indian Lan-
guage Speech Corpus. We used the SoX utility to normalize
the speech files to 16kHz, 16-bit WAV files for training and
testing ASR tasks and 8kHz, 16-bit WAV files for training and
testing language and accent identification tasks.

4.2. LID and accent identification

As mentioned in Section 3, we utilize one LSTM-based model
for language identification and one LSTM-based model per
language for accent identification. For our combination of
English, Tamil, and Mandarin, that means that we have 1
spoken language identification model and 2 spoken accent
identification models (one for English and one for Mandarin).
We sampled 38,400 samples per language to train the models.
To train the accent identification models we utilized rejection
sampling due to the unbalanced nature of the accent data.

Our language identification model gives 84.99 % accuracy
on the 3 language classes. On English accents, we achieve
74.41 % accuracy across the 8 accents, and we achieve 79.83 %
accuracy across the 3 Mandarin accents. The more crucial step
in the Fig. 1 approach is language identification, because lan-
guage identification determines if the ASR model used will
correspond to the spoken language or another language entirely.
Correct accent identification will further improve recognition
accuracy, but to a lesser degree. Our results here show that
executing a spoken language identification model prior to se-
lection of ASR model could result in choosing a proper model
for at least 8-9 out of 10 inferences. Additionally, we found
that using a single model for LID and accent identification
would not achieve comparable accuracy on a similarly-sized
model. Using a larger model for combined LID and accent
identification would also slow down the time-to-ASR for the
combined system.

4.3. Fine-tuned ASR

Assuming a proper language identification, we also wanted
to validate the idea that switching between monolingual ASR
models (each fine-tuned for a particular accent) could both: (i)
outperform individual models trained on data corresponding to
multiple accents; and (ii) allow us to avoid more complicated
and/or larger multi-accent data and models. We created a test
set of Indian, Chinese, and Malaysian accented English by
selecting these accents out of the SAA. We then evaluated
ASR models fine-tuned on each of these accents alongside
publicly available pre-trained models. For this evaluation,
we chose English because of the availability of multiple pre-
trained models for comparison and because it is one of the
languages considered in our other experiments.

The ASR models we fine-tuned were based on the
QuartzNet architecture and fine-tuned on Indian, Chinese, and
Malaysian accented English data from the Singapore National
Speech Corpus. When evaluating these models (collectively
referred to below as the models of the Dynamic ASR system,
or Dyn-ASR), we loaded and utilized each of the models
for the corresponding annotated accent. This simulates the
best case scenario when loading language and accent specific
models in the process illustrated in Fig. 1. Of course in any
implementation of the Fig. 1, the performance of the Dyn-ASR
models will depend on the performance of the language and
accent identification models, but this evaluation gives us a
baseline for evaluating the set of ASR models themselves.

The pre-trained models that we used as a reference are
DeepSpeech trained on US English (DS), QuartzNet trained
on LibriSpeech (QN-LS), and QuartzNet trained on multi-
ple accents (QN-Multi). The results of this comparison are
presented in Table 1.

Table 1. Accent Specific ASR Results. All results are word
error rates (WERs) per accent and per model or set of models.

Model(s): DS QN-LS QN-Multi Dyn-ASR

India 45.93 32.15 16.02 15.89
China 57.10 44.01 27.45 26.05
Malaysia 42.75 19.75 13.59 11.59

4.4. Resource consumption

To evaluate resource consumption, we created an implemen-
tation of the Fig. 1 approach for English and Mandarin. We
compare the resource consumption of this implementation
(Dyn-ASR below) with the Vosk speech recognition toolkit
server [21] (both an English instance, VS-EN, and a Man-
darin instance, VS-CMN), Mozilla’s DeepSpeech implementa-
tion trained on US English (MDS-EN) [19], and PaddlePad-
dle’s DeepSpeech implementation trained on Mandarin (PDS-
CMN). Note, the authors had difficulty in finding any practi-



(a) CPU Usage

(b) Memory Usage

(c) Inference Time

Fig. 2. Resource usage results for Dyn-ASR, VOSK-Server
(VS-EN, VS-CMN) and Deepspech (MDS-EN, PDS-CMN).
The Dyn-ASR solution uses minimal memory and has lowest
inference time

cal, publicly available system natively supporting multilingual
ASR models or integrating spoken language identification. As
such, multiple instances and versions of these systems had to
be deployed, which demonstrates the operational barriers to
practically deploying a multilingual ASR system.

While there are portable versions of the Vosk servers for
each language, we picked the server version that would give
the best quality speech recognition results. We utilized two

languages (English and Mandarin), each with two accents (US
and Chinese accented English and Mainland and Taiwanese ac-
cented Mandarin) respectively for the input audio data. Table 2
includes the system resource consumption for each solution.

Table 2. Storage and Memory in MB used by each solution.
Dyn-ASR utilizes only 10 % and 25 % of highest storage and
memory consumed by the other solutions. DeepSpeech models
are not loaded in memory at installation.

System Dyn-ASR VS-EN VS-CMN
MDS-

EN
PDS-
CMN

Storage 317 3200 426 1000 2800
Memory 775 3049 469 NA 3130

To ensure that we could provide each solution with what-
ever resources it could consume, we ran all of the ASR solu-
tions on a Core i9 System (i9-7920X CPU) which has 12 cores
and 24 threads with 64GB of system memory and 500GB of
storage. All the audio file inputs were of type 16kHz, 16-bit
PCM mono. Results were captured in terms of the number of
CPU cores utilized, memory usage and total inference time
and are included in Fig. 2

As shown in Fig. 2 part a, the Dyn-ASR container has not
been pinned to a CPU core, and thus it ends up using as many
cores as needed to complete inference at a constant time of
less than 1 second (see Fig. 2 part c). It also uses minimal
incremental memory as shown in Fig. 2 part b (around 10MB).
A combination of the VS-EN + VS-CMN systems or the MDS-
EN + PDS-CMN systems would need to be assembled to
match the multilingual ASR capabilities of Dyn-ASR, yet any
of these combinations would exceed the memory usage of the
the example Dyn-ASR system and increase the complexity of
deployed infrastructure. Further, neither of these combinations
(VS-EN + VS-CMN or MDS-EN + PDS-CMN) would solve
the problem of selecting the correct ASR model corresponding
to the input language, which functionality is natively rolled
into the Dyn-ASR system. These characteristics together make
the Dyn-ASR approach appealing for edge deployments.

5. CONCLUSIONS AND FUTURE WORK

We introduced a new approach to multilingual speech recogni-
tion that selectively uses monolingual ASR models fine-tuned
for particular accents. The particular recognition models used
for each inference is determined on-the-fly using a language
identification model and an accent identification model. An
implementation of this approach for English and Mandarin
behaved favorably in terms of resource consumption as com-
pared to other publicly available ASR solutions and also shows
promise in terms of recognition performance. This work ex-
plored certain model architectures, but we are exploring still
other architectures along with further optimization using Intel’s



OpenVINO toolkit. The authors would also like to integrate
a step in the processing that uses a text-based model and/or
probabilities from the language/ accent identification to deal
with misidentified languages.
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