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Abstract—Social distancing is a critical tool for mitigating dis-
ease transmission, particularly in crowded indoor spaces. In this
paper, we contribute by assessing the feasibility of re-purposing
existing infrastructure of occupancy monitoring sensors and
environmental sensors for the dual purpose of monitoring social
distancing and supporting disease transmission risk estimation.
We consider 410 continuous days of measurements from CO2
and PIR (passive infrared) motion detectors collected from a
collaborative smart space, prior to the start of the pandemic
in 2017-2018. We demonstrate how these sensors can be used
to estimate occupancy levels, as well as analyze occupancy
patterns within the space. We also consider the use of overall air
quality within the space for estimating insights about potential
transmission risks. Based on our analysis, we derive insights
into how infrastructure-based sensors can be used to detect
problematic areas in the space and offer guidelines on how to
modify these areas to be more social distancing aware.

Index Terms—Internet of Things, Social Distancing, COVID-
19, Occupancy, Air Quality, Indoor Environments, Smart Spaces.

I. INTRODUCTION

Social distancing, the use of non-pharmaceutical measures
to reduce risk of disease transmission, is a critical tool for
mitigating transmission of airborne diseases, such as COVID-
19. Crowded indoor areas are particularly problematic for
disease transmission as viral particles can remain suspended
in the air and avoiding contact with other people can be
difficult. To assist risk assessment and infection monitoring,
wide range of sensing modalities have been proposed as a
potential way to understand dynamics of interactions and how
they relate to risks of disease transmission [1]. Unfortunately
most of the techniques either rely on people carrying the
relevant technology (e.g., smartphone-based contact tracing)
or on specialized sensing modalities (e.g., magnetic field or
thermal imaging) that rarely is easily accessible [2]. Having
a widespread and easy-to-understand solution for monitoring
social distancing and supporting risk assessment would be
essential for safeguarding people residing in indoor spaces and
decreasing the risks of disease transmission.

Many smart buildings and spaces incorporate motion and
environmental sensors to minimize energy usage. The main
purpose for using these solutions is to reduce redundant energy
consumption by detecting human presence within the space

Fig. 1. Tellus smart space.

and to adapt lighting, HVAC, and other energy consuming
devices according to human presence, while at the same time
ensuring a productive and a healthy environment [3]. As these
solutions are already widely deployed, they are an excellent
candidate for capturing other types of indoor behaviours.

In this paper, we assess the feasibility of re-purposing the
existing infrastructure solutions, specifically sensors for occu-
pancy and indoor air quality monitoring, for the dual purpose
of monitoring social distancing and supporting estimation of
potential risk factors related to disease transmission. Social
interactions are strongly linked with body and other motions,
and are good indicators of physical proximity. Environmental
sensors, in turn, can potentially support deriving insights about
potential risks as current research knowledge suggests that air
quality is linked with the transmission of airborne diseases [4],
including COVID-19 [5].

We conduct our assessment considering 410 continuous
days of measurements from CO2 and PIR (passive infrared)
motion detectors collected prior to the start of the pandemic
in 2017-2018. The measurements come from the Tellus In-
novation Arena1 (See Figure 1) at the University of Oulu,
Linnanmaa campus [6], which is a collaborative smart learning

1https://www.oulu.fi/tellusarena/



space. We use the measurements to demonstrate how these
sensors can be used to estimate occupancy levels, as well as
analyze occupancy patterns within the space. We also consider
coarse-grained disease transmission risk estimation using the
overall air quality within the space as a proxy for transmission
risk. Based on our analysis, we derive insights into how
infrastructure-based sensors can be used to detect problematic
areas in the space and offer guidelines into how to modify
these areas to be more social distancing aware. Tellus is used
for teaching and events, has a cafeteria, and open studying
spaces, and as such is a representative example of a space
that would benefit from crowd avoidance measures, such as
those proposed in this paper.

Summary of Contributions:
1) We demonstrate the potential of repurposing infrastructure-

based motion and environmental sensors for occupancy
estimation by cross-correlating the motion and CO2 mea-
surements of 352 multisensor devices in a collaborative
indoor smart space.

2) We propose a methodology to monitor people density over
time, and detect areas that are likely to have less people
in the space, and therefore be safer with respect to social
distancing.

II. RELATED WORK

Internet of Things is gaining significant momentum in
supporting healthcare. The COVID-19 pandemic has fueled
research on technological means for social distancing to avoid
virus infections. Singh et al. [7] conduct a brief review to
highlight the significance of IoT applications and propose a
roadmap to tackle the pandemic. The study concludes that
implementing IoT solutions would reduce healthcare costs as
well as improve the treatment of infected patients.

Nasajpour et al. [8] review the role of IoT-based technolo-
gies, the architectures, platforms, applications, and industrial
IoT-based solutions for combating COVID-19 in three main
phases: early diagnosis, quarantine time, and after recovery.
This study compares IoT-enabled technologies for the three
phases, including wearables, drones, robots, IoT buttons, and
smartphone applications for combating COVID-19.

To help with social distancing, Alrashidi et al. [9] aim to
find the optimal placement for a set of people equipped with
IoT devices to control their locations and movements within
an indoor space. This paper uses ant colony optimization and
particle swarm optimization for IoT indoor positioning.

Polenta et al. [10] present a system called BubbleBox that
combines IoT and software technologies to detect and restrict
further outbreaks of the COVID-19 infection through contact
tracing. To perform the contact tracing, BubbleBox relies on a
dedicated IoT device, a wristband and a web-app that allows
users to pair devices with their identities to quickly reach
people who might need to be alerted or tested and monitor
the spread of the disease. As result, this methodology is seen
as an effective approach for monitoring contacts of people who
do not own a smartphone such as children or older adults.

Ksentini et al. [11] proposes combining IoT and multi-
access edge computing technologies to build a service that
checks and warns people in near real time to help them main-
tain social distancing. The proposed approach uses a client
application that is installed on the user’s smartphone, which
periodically transmits GPS coordinates to remote servers at the
edge of the network. Then, the servers use a social distancing
algorithm to warn people who fail to keep sufficient distance.

Hou et al. [12] use deep learning for detecting social
distancing by evaluating the distance between people in video
frames to limit the transmission of COVID-19. The approach
uses pre-trained YOLOv3 object detection model on video
frames. Experiments show the proposed method to be effective
in monitoring social distancing.

Rusli et al. [13] propose a smart social distancing moni-
toring system called MySD which stand for ”My Safe Dis-
tance”. MySD leverages smartphone hardware features using
Bluetooth transceiver, GPS, Google Maps API and COVID-19
Zone indicator for defining safe distance between people.

In contrast to existing works, we propose monitoring social
distancing in smart spaces by re-purposing already deployed
infrastructure-based sensors.

III. DATA COLLECTION

A. Tellus Smart Space

We consider measurements from Tellus smart space at the
University of Oulu. The layout of the area is depicted in
Figure 1. Tellus includes different smaller spaces such as for
meetings rooms, open stage, study, and rest areas. Each Tellus
space has its own specific functionality. The Tellus smart
space is allocated on the first floor with area size equal to
approx 66,856.00 m x 36,446.00 m. The closed spaces that
are used for meetings include Galaxy and Horizon which is
shown by 1; and rooms Dynamic, Chill, Brisk, and Aspire
are shown with numbers 7, 8, and 9, respectively. The other
spaces in the map are used for larger events up to 80 people per
space. The Business Kitchen (shown with 2) and Stage space
(shown with 5) are used for larger meetings and students’
collaborative work. Cafe Tellus (shown with 4) provides coffee
and tea facilities; the Nest space (shown by 3) is designed for
relaxation and thinking. Square which is shown with number
6 is also an open space for students to study individually or
within groups. In addition, the yellow cubes indicated with
small squares in Figure 1) are tiny closed spaces for up to
four people to be used for group meetings [6].

B. Sensors

The Tellus space uses Low Power Wide Area Network
(LPWAN) technology to implement IoT communication. Al-
together, 352 LoRa Wide Area Network (LoRaWAN) sensor
nodes (Elsys ERS sensors [14]) are deployed into Tellus
premises, measuring temperature, humidity, CO2, motion, and
light (See Figures 2 and 1). In order to use sensors in field
and on the infrastructure, they need to be validated [15]. In
our case, the sensors are validated and factory calibrated by
the manufacturer prior to deployment.



Each Elsys ERS sensor node is geo-positioned, providing
capabilities for spatial analysis. Each node is powered by two
3.6 V AA lithium batteries and attached to the ceiling frames
of the Tellus premises. These sensor nodes are placed in a grid
with approximately two-meter spacing between each other, as
can be seen from Figure 1. The deployment is described in
detail in the original paper [16].

The deployed sensor nodes send data packets every 15
minutes to a remote server utilizing a LoRaWAN radio access
network technology. Transmitting on the 868 MHz ISM band,
a LoRA gateway manufactured by Multitech is used to collect
data from all of the nodes. The gateway is connected to an
external biconical D100–1000 antenna from Aerial Oy, and it
has an antenna gain of 2dBi. The collected sensor data from
this gateway are then transferred using MQTT protocol to the
ThingWorx commercial cloud platform, which is then queried
by Python scripts to store the data on local servers.

Fig. 2. The multi-sensor device [14].

C. Dataset

The data collected from the measurements contains a total of
9,917,848.00 lines of readings from 352 sensors from 26 June
2017 to 20 November 2018. Each line contains a reading for
CO2, humidity, light, temperature and movement (number of
movement events within 15 minutes window) for one sensor,
identified by an id tag, and a timestamp for when the reading
was reported. We also have a mapping that connects 331 of
the sensors with their location. The remaining 21 sensors we
filter out. Table I summarizes the key statistics of the dataset.
The mean and median values of the variables show that the
area is often populated (CO2 mean, median above 400, and
PIR mean above zero), that it is heated, and that the lights are
usually on.

TABLE I
KEY STATISTICS OF THE DATASET.

Measurement Mean Median Min Max STDEV

CO2 891.13 500.0 0.0 65,535.00 4,652.73
Humidity 30.95 31.0 0.0 100.0 11.74

Light 93.53 35.0 0.0 2,394.00 159.37
Temperature 21.57 21.4 0.0 6,508.60 7.63

PIR 2.42 0.0 0.0 144.0 4.91

D. Measurements Reliability

To illustrate the measurement accuracy of sensors deployed
in the Tellus space, we selected a random sensor and plotted
the measurements of PIR and the CO2. These results are shown
in Figure 3. Figure 3(a) presents PIR readings over time of the
entire measurement period for the aggregated data to one hour
slots. This figure shows that the amount of readings in June
- August is lower than other months in 2017 and 2018. On
the other hand, the amount of readings in these months 2018
is similar to the amount of readings in the same period in
2017. This reflects the reduced number of students and other
occupants of the space during the summer time. In addition,
Figure 3(b) shows the readings of the sensor on a randomly
selected day. This result explains that with the increasing
number of movements under that specific sensor, the amount
of CO2 is increasing. In conclusion, these two results state
that the multi-device sensor which is capable of detecting the
motions and measuring CO2 has been functioning accurately
and properly over the measurement period, approving the
reliability of the deployed sensors in the space.

IV. DATA ANALYSIS

A. Correlation of CO2 and Motion Events

We have shown in previous work [17] that CO2 levels
correlate with human activity in an indoor space. We first
verify that this holds in the Tellus space.

By using the sensor location maps, we computed at a daily
granularity the sum of motion sensor event counts and the
mean CO2 level over all sensors. In the dataset, the sensor
location mapping file has the MAC address and a running
serial number for each sensor. We performed the sensor
mapping for the Tellus smart space according to the map in
Figure 1. We explored and analyzed the dataset to understand
whether the CO2 levels reported by the sensors correlate with
the amount of movement in the Tellus space.

We also examined the correlation between activity and CO2
across weekdays. On weekends, the number of visitors is
lower, and as a result, both movement events and the mean of
CO2 is lower. Figure 4 shows bar plots of detected movement
events (subfigure 4(a)) and CO2 concentration (subfigure 4(b))
categorized by day of week. Figure 4(a) shows that there are
very few movements detected during the weekend in compari-
son to the weekdays. This indicates clearly that there are very
few people present in the Tellus office on the weekend. The
result is in line with the level of CO2 concentration shown
in the Figure 4(b). It can be seen that in both weekend days
the level of CO2 concentration in the Tellus office are always
lower than the weekdays. Computing the sum of motion events
for each day in the dataset and grouping the result by weekdays
showed that Tuesday is on average the most active day of the
week. The day to day variation in the mean CO2 level is less
visible, but a clear distinction can be made between weekdays
and weekends.

Figure 5 shows scatter plots indicating the relationship
between the number of movement (x-axis, sum of all sensors’
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(a) An hour of aggregated PIR (number of movements) measurements over
time of the entire measurement period.

(b) Measurements of a sensor on a day. PIR (number of movements) and
CO2 (ppb) measurements are shown with blue and red colors, respectively.

Fig. 3. Sample readings from measurements of a random sensor selected
from the space.

movement measurements in a single day) and CO2 concen-
tration (y-axis, mean of all sensors) for weekdays (subfigure
5(a)) and weekends (subfigure 5(b)). We computed the Pearson
correlation (R) between these two variables for weekdays
and for weekends and holidays. It can be seen that CO2

concentration is strongly associated with the number of people
during the weekends (R=0.75) as well as during the weekdays
(R=0.57). The correlation differences are explained by external
factors, such as ventilation systems. During working days, the
ventilation systems is continually active and circulates fresh
air into the Tellus smart space.

B. Occupancy Estimation

While motion events and CO2 are correlated, CO2 changes
slowly. In this section we estimate the occupancy of the space
based on motion events as reported by the sensors in the space.

The mean of motion events of a sensor represents how often
that area of the space was occupied in the dataset. Figure 6
shows the overall mean PIR heatmap depicting the locations of
the sensors in Tellus smart space. The color denotes the mean

(a) Detected movement events per weekday. Each data point indicates
total number of PIR events during the day.

(b) Mean CO2 (ppb) levels per weekday.

Fig. 4. Bar plots of detected movement events and CO2 (ppb) concentration.

motion event count value over all the data points for that sensor
in the dataset. The lighter the color, the more movement has
been registered overall. The Figure shows a connected line
from the cafeteria (shown with 4 in Figure 1) to the open
study area (Square, shown with number 6). Sensors near the
cafeteria often show occupancy. Otherwise usage is lower and
more spread out.

V. SOCIAL DISTANCING METHODOLOGY

We propose a methodology to monitor people density over
time, and detect positions that are likely to have less people
in the space, and therefore be safer with respect to social
distancing. Based on the results, the space usage can be
planned so that different spaces can be used equally. Different
spaces can be reserved early. Using the real-time stream of
sensor information from each single sensor in the Tellus, the
places (even the seats) can be selected with the least number
of recorded movements. For example, Figure 6 shows Stage
(the area to the top right) is frequently empty, and using it
as a study area when no events are planned would reduce the
density of people in the study area (bottom left). The area
could have portable tables when no events are present.

Since each sensor represents a 2m × 2m square in the
space, social distancing rules would be easy to follow by
staying at the next sensor position or further from each other
person in the space. This could be planned by smart placement
of work spaces, taking into account small groups of students



(a) Correlation between motion and CO2 (ppb) during weekdays.

(b) Correlation between motion and CO2 (ppb) during weekends
and holidays.

Fig. 5. Scatter plots showing the relationship between the number of
movement and CO2 (ppb) concentration.

working together while spacing them further apart from other
such workspaces. Sensors could detect the aggregate motion
and CO2 over time in such workspaces and estimate the
number of users to further keep the number of users below
acceptable limits. Upon entering the space, a heatmap of the
last hour similar to Figure 6 could be shown to visitors, with
directions to the nearest empty space with capacity for a
chosen group size.

Once COVID-19 restrictions are eased, the Tellus space will
be available for small-scale, fine-grained measurement studies.
As less users of the space are allowed inside, it will become
possible to obtain reliable ground truth on how the motion
and CO2 measurements react to a single person or a small
group moving through the space. This will allow us to further
validate and fine-tune the methodology.

VI. DISCUSSION

Applying new approaches for social distancing can not only
help prevent virus infections in the spaces, but it may also offer

a number of benefits. Followings we present some of possible
benefits that may be offered by our methodology for social
distancing.

Proxy for social distancing: Since we showed CO2 and
motion events are correlated, our methodology can also be
applied in spaces with only CO2 sensors. In the other word, the
CO2 sensors can be used as proxies for motion detectors [17].
In addition, meeting rooms with CO2 sensors can warn visitors
and automatically redirect people to nearby alternatives when
the air quality is too low. CO2 readings typically have delayed
response which suggests that this could also be used to provide
coarse estimates of stay duration.

Virtual sensors: All of smart spaces may not have various air
quality sensors for measuring different pollutants. Having one
type of sensors measuring CO2 and meteorological variables
enables estimating the levels of another key pollutants, such
as PM2.5 as described in [18]. The advantage of this approach
is on reducing the device, deployment and maintenance costs.

Healthier and comfortable spaces: Social distancing and
safe seating areas or working locations can be combined with
building automation, e.g., ventilation system can be adjusted
to the dedicated spaces and a healthier and comfortable work
spaces can be guaranteed [19]. Besides offering healthier
environment, this has the added benefit of fostering improved
productivity of the space users [20].

Energy and cost savings: By proposing specific seating
locations for users, the light levels can be controlled and
while ensuring required level of light for the dedicated space,
unnecessary lights can be dimmed to lower levels or turned off,
hence energy consumption can be reduced [21]. Furthermore,
the use of sensors network optimization algorithm enables
identifying pollutant hot-spots and finding the optimal num-
bers of sensors and their locations to be installed. Therefore,
the number of sensors to be deployed can be optimized as well
as the energy and costs as whole can be reduced significantly.

Improving the space functionality: In long term, the mea-
surements/our methodology shows which places are mostly
used and which places are not efficiently used. This enables
space and internal designers to plan the better usage of the
space and improve the space functionality [22].

Mathematical models: Epidemiological models are important
forecasting and preventing virus spreading. Indeed through
users density and occupancy detection mathematical models
can be defined for social distancing. The space usage can
be learnt by the highest number of recorded movements and
mostly occupied spaces. Indeed, access to better data and
obtaining efficient models enable making proper decisions
about the space [23].

Resolution and alternative technologies: The space where
our experiments were conducted has dense deployment of PIR
sensors while other smart spaces may not have as high resolu-
tion. The density of PIR deployments determines the resolution
at which social distancing can be monitored. Deployments that
are sparser can be used to provide insights about distances even



Fig. 6. Overall amount of movement per sensor. The lighter the color, the higher the number of movements.

if they have lower resolution. Alternatively, other technologies
can be used to supplement or replace these technologies. For
example, low-resolution thermal array sensors are an inexpen-
sive solution for detecting humans, and infrastructure-based
WiFi sensing or cameras can equally be used to supplement
PIR sensors in monitoring social distancing.

VII. CONCLUSION

Monitoring and supporting social distancing has become
critical for reducing the risks of disease transmission within
crowded indoor spaces. In this paper, we used measurements
from a collaborative indoor smart space to demonstrate how
existing sensor infrastructure, comprising of PIR motion sen-
sors and environmental CO2 sensors, can be repurposed for so-
cial distancing monitoring. We also showed how these sensors
can be used to identify locations that tend to be crowded and
those that are underutilized and safer to occupants. Our work
paves the way toward novel infrastructure-based monitoring
solutions that can be used to support preventative health
countermeasures.
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