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Abstract—In this work, we apply information theory inspired
methods to quantify changes in daily activity patterns. We use
in-home movement monitoring data and show how they can
help indicate the occurrence of healthcare-related events. Three
different types of entropy measures namely Shannon’s entropy,
entropy rates for Markov chains, and entropy production rate
have been utilised. The measures are evaluated on a large-
scale in-home monitoring dataset that has been collected within
our dementia care clinical study. The study uses Internet of
Things (IoT) enabled solutions for continuous monitoring of in-
home activity, sleep, and physiology to develop care and early
intervention solutions to support people living with dementia
(PLWD) in their own homes. Our main goal is to show the
applicability of the entropy measures to time-series activity data
analysis and to use the extracted measures as new engineered
features that can be fed into inference and analysis models.
The results of our experiments show that in most cases the
combination of these measures can indicate the occurrence of
healthcare-related events. We also find that different participants
with the same events may have different measures based on one
entropy measure. So using a combination of these measures in
an inference model will be more effective than any of the single
measures.
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I. INTRODUCTION

Finding patterns in activity data collected by IoT has been

applied to various research fields, including object tracking [1],

intrusion detection [2], and healthcare [3]. Existing research

mainly focuses on using machine learning (ML) models and

algorithms to learn and analyse patterns from raw data [4].

Although such methods can find the direct combination of

raw data points that can indicate interesting events, they are

not able to utilise statistical and useful information about

the data, such as the distribution of data points and the

uncertainty in such distributions. Determining the distribution

and uncertainty will introduce more useful information into

ML models and thus can potentially contribute to building

accurate prediction and inference models.

In this paper, we propose three measures that are constructed

based on entropy. Our goal is to provide measures to enhance

the ability of processing models to quantify the changes in

data patterns and improve the outcome of predictive and

analytical machine learning models. We empirically evaluated

these measures on the data that we have collected in an in-

home healthcare monitoring IoT platform (illustrated in Fig. 1)

to support PLWD. Our preliminary results indicate that, in

most cases, combining these new measures into data analysis

pipelines can suggest occurrences of certain healthcare-related

events. These measures show different suitability on different

participants’ data. So these measures as engineered features in

modern ML methods can improve the outcomes of inference

and predictive models.

II. SYSTEM AND DATA

We have developed a digital platform, called Minder, to

integrate in-home IoT sensors to collect physiological data,

sleep data, environmental data, and activity data in a privacy-

aware and secure manner. A list of the IoT devices in our

platform is shown in Table I. The dataset used in this study

includes 9,370 person-day activity data collected between
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TABLE I
IOT DEVICES IN THE PLATFORM

Digital Marker IoT Device Frequency

Activity Passive infrared sensors Triggered by movement
Home device usage Smart plugs Triggered by device use
Body temperature Smart temporal thermometers Twice daily or continuous using a wearable device
Blood pressure and heart rate Wearable devices Twice daily
Weight and heart rate Smart scale with body composition and heart rate Once a day
Respiratory and heart rate during sleep Sleep mat Once a minute
Environmental light Light sensors Every 15 minutes
Environmental temperature Temperature sensors Once an hour

Fig. 1. An overview of our in-home IoT monitoring system. The system
allows integration of different in-home activity and physiology data. It also
provides a framework for deploying and validating analytical models.

December 2020 and March 2022. We have used the Minder

platform to collect remote monitoring data in a dementia

study. The study has received ethical approval and all the

data used and presented in this research has been anonymised.

The Minder platform provides an overview dashboard, which

allows a monitoring team to observe raw data and predicted

alarms raised by analytical models. The platform has four key

components: 1) sensors installed in participants’ homes (the

platform is designed to be device agnostic), 2) the back-end

system including Cloud infrastructure, storage, and analysis

tools, 3) the user interface for data visualisation and presenting

clinical information, environmental information, and alerts,

4) clinical intervention where healthcare practitioners use the

system/alerts and interact with the participants, caregivers and

respond to their healthcare needs.

In our system, activity data is collected using passive

infrared (PIR) sensors, which are installed in five locations in

the home: bathroom, bedroom, lounge, kitchen, and hallway.

A PIR sensor in a certain location is triggered when a person

passes by and sends an alert to the system at the same time,

which records the time and the location of the alert. The raw

data is time-series containing location and time information,

as Fig. 2 shows.

The data is labelled by our monitoring team who react to the

alerts generated on the platform and verify the alerts by con-

tacting PLWD or their caregivers. The labels contain different

healthcare-related events, including accidental falls, abnormal

Fig. 2. An example for raw Passive Infrared (PIR) data. The data is selected
from one participant. The x-axis shows the time of the day, and different
colours represent different locations in the house.

motor function behaviour, hospital admissions, Urinary Tract

Infections (UTIs), anxiety and depression, disturbed sleep

patterns, agitation, and confusion. We combine the activity

data and the labels from different participants to create the

dataset.

III. METHODOLOGY

We aim to capture and model complex features that cannot

be directly obtained through linear and nonlinear functions

in training models. Fig. 3 shows an example of a participant

with more routine activities and a participant with less routine

activities. We use entropy to capture the uncertainty from

two perspectives including location-based and route-based

changes.

A. Shannon’s entropy

If the occurrence at locations is regarded as random events,

we can consider measuring the extent of occurrence of

these random events. Shannon’s entropy [5] is a conventional

method to quantify information. We apply Shannon’s entropy

to represent changes in activity patterns. Suppose that there

are n locations in a participant’s activity, denoted as X =
{x1, x2, . . . , xn}. The Shannon’s entropy of the activity data

is:

H(X) = −

n
∑

i=1

P (xi) logP (xi) (1)



Fig. 3. An example of a participant with more routine activities and another participant with less routine activities. The participant with more routine activities
tends to have more consistent daily activities at the same time on each day. The x-axis shows the time of the day, the y-axis shows different days, and the
different colours represent different locations in the house.

In which P (xi) is the probability at location xi. When the

activity pattern changes, H(X) will also change accordingly.

It shows the change in locations of the participants’ activities.

Shannon’s entropy for the activity data for a sample household

is shown in Fig. 4(a).

B. Entropy rate of a Markov chain

If the transition between locations in the home is con-

sidered, then the activity data can modelled as a Markov

Chain. Compared with healthy individuals, PLWD often have a

more non-structured routine [6]. Therefore, finding a method

to represent the routineness plays an important role in the

identification of participants’ healthcare-related events. The

first-order Markov chain model is used to profile the living

routine of the participants, where the current location of an

individual in the home is only dependent on their previous

location [7]. Given that X = {x1, x2, . . . , xn} represents

n locations in a participant’s activity. la, lb ∈ X , represent

the locations at previous moment and current moment. The

probability of transitioning from location la to location lb is:

Pij = P (lb = xj |la = xi) (2)

In which, xi, xj ∈ X . The first-order Markov chain model

can be represented by n × n Pij as a Transition Matrix T .

For example, as shown in Fig. 5, an activity route X with five

locations (bathroom, bedroom, kitchen, lounge, and hallway)

can be represented by a Transition Matrix T . We build the

model based on a time window and calculate the entropy rate

ξ of the first-order Markov chain model to quantify the changes

[8]:

ξ = −
n
∑

xi,xj∈X

P (la = xi)Pij logPij (3)

We use 16 weeks of activity data to calculate T , and use

the rest of the data to calculate the entropy rate. The entropy

rate of a sample household is shown in Fig. 4(b).

C. Entropy production rate

As another method to describe the transitioning between

routes in the home, we use the Entropy Production (EP) rate,

which is a description of diverse non-equilibrium principle [9].

Some ML models have been proposed to calculate EP, which

can be applied to time-series data [10], [11]. As Fig. 2 shows,

our in-home activity data is time-series data. The in-home

movement can be also regarded as a non-equilibrium system

[12], [13]. Thus, we consider applying an ML method to

calculate the EP rate in our activity data. The Neural Estimator

for Entropy Production (NEEP) can estimate EP from the time-

series data of relevant variables without detailed information

[14].



Fig. 4. Entropy measures for a household. The x-axis represents Monday of each week, the y-axis represents the average on each day of the week after
normalisation. These entropy measures show promising variations and have different performances when the participant was experiencing certain events.

Fig. 5. An activity route X with five locations. The rectangular boxes represent the locations, and the arrows represents transition between locations in the
house. Different colours represent different start locations (blue: bathroom, orange: bedroom, green: kitchen, black: lounge, and red: hallway). The numbers
next to the lines represent transitional probabilities which correspond to the table and Transition Matrix T .

Fig. 6. A simplified view of the network to calculate EP.

Given a Markov chain trajectory S = {s1, s2, . . . , sL} and a

function hθ that takes two states st and st+1, where θ denotes

the trainable neural network parameters, the output of NEEP

is defined as:

∆Sθ (st, st+1) ≡ hθ (st, st+1)− hθ (st+1, st) (4)

J(θ) = EtEst→st+1

[

∆Sθ (st, st+1)− e−∆Sθ(st, st+1)
]

(5)

In which Et denotes the expectation over t, which is

uniformly sampled from {1, . . . , L− 1}, and Est→st+1
is

the expectation over transition st → st+1 .

In NEEP, an embedding layer is used to transform the

discrete state into a trainable continuous vector. The two

embedding vectors st and st+1 are then fed into a hidden

multi-layer perceptron (MLP) for hθ [14]. A simplified view

of the network is shown in Fig. 6 . The calculated entropy

production rate for a sample household is shown in Figure

4(c).



Fig. 7. The Entropy results for a group of households. The left part of X-axis represents the Entropy measures and the right part of X-axis represents
healthcare-related events. The four varying degrees of blue on the left part represent the four group after the Z-score normalisation. The different shapes in
red on the right side represent the participants were experiencing certain healthcare-related events. C1, C2, and C3 are some examples for discussion. C1: the
relationship between “anxiety and depression” and the entropy measures, C2: the relationship between “disturbed sleep pattern” and the entropy measures,
C3: the relationship between “agitation” and the entropy measures.

D. Time windows

To evaluate the proposed measures, we perform an analysis

with a one-week window to investigate the relation between

activity pattern changes and healthcare-related events. Choos-

ing a short window such as one week also has the advantage of

making our entropy measures not being influenced by seasonal

effects. We calculate the three entropy measures on each day

of the week, then calculate the average value to represent

one week’s quantified entropy measures. Due to the effect of

the sun-downing and circadian rhythms in PLWD [15] and to

investigate their potential effect on these measures, we slice

one day into different time periods, i.e. daytime (06:00–18:00)

and night (18:00–24:00 and 00:00–6:00).

IV. ANALYSIS AND RESULTS

To harmonise the measures across different households’

data, we apply Z-score normalisation to each household’s

data separately, and divide the data equally into four groups

based on the normalised entropy values [16] : very high, high,

low, very low. Fig. 7 demonstrates the results of a group of

households. We take C1, C2 and C3 as examples for analysis.

C1 in Fig. 7 shows the episodes that the participants

were experiencing “anxiety and depression” (noted by the

clinical monitoring team by conducting a weekly survey). For

participant 1, the first triangle shows that the EP for daytime

became higher, the second and the third triangles show that

the entropy for night became higher. For participant 3, the



first triangle shows that the EP for daytime and night became

higher while the second triangle shows that the entropy for

daytime, the entropy for night, the entropy rate for night and

EP for night became higher. For participant 4, all the three

triangles show that the entropy for night became higher.

C2 in Fig. 7 shows that the participants were experiencing

“disturbed sleep pattern”. For participant 1, the entropy for

night became significantly higher. For participant 2, the en-

tropy for daytime or the entropy rate for night became higher.

In some cases, both of them maybe increased at the same time.

For participant 3, almost all the entropy measures became

higher except the entropy rate for night. For participant 4,

the entropy for daytime, the entropy rate for night and the EP

for daytime slightly increased.

C3 in Fig. 7 shows that the participants were experiencing

“agitation”. For participant 1, the entropy for night became

higher. For participant 2, the entropy for daytime, the entropy

rate for night and EP for daytime increased. For participant 3,

almost all the entropy measures became significantly higher

except the entropy rate for night and the EP for night. For

participant 4, the first triangle shows that the EP for daytime

and night significantly increased while the second triangle

shows that the values of these two entropy measures were

slightly higher.

According to our analysis, we find that:

• In most cases, considering only one entropy method may

not give an ideal prediction result, but a combination

of these entropy methods can suggest the occurrence

of healthcare-related events and might improve the pre-

diction accuracy. For example, in C1 of Fig. 7, when

participant 1 experiencing “anxiety and depression”, if

we only consider the entropy for night, it is difficult to

predict the case which is represented by the first triangle.

• The same healthcare-related events may be associated

with different entropy measures in various cases. For

example, in C2 of Fig. 7, when experiencing “anxiety and

depression”, almost all the values of the entropy measures

of participant 3 are higher. However, for participant 4,

only the EP for daytime and night show significant

changes, while the other entropy measures stay normal.

C1 and C3 in Fig. 7 also show similar results.

V. CONCLUSION

In this paper, we have proposed three different types of

entropy measures that cannot be directly constructed through

training ML models. Based on our preliminary results, we

identify a number of directions for future research. Our results

show that our proposed measures can be used to indicate

activity changes using in-home movement monitoring data.

The activity changes identified by changes in entropy mea-

sures can then be used to identify the occurrence or risk of

healthcare-related events. The retrospective analysis presented

in this paper is based on historical data. We plan to deploy

these measures in our digital platform and evaluate the clinical

utility of these measures in real-world settings in our current

dementia care study.
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