
Using the MEAN Stack to Implement a RESTful Service for an Internet of Things
Application

Andrew John Poulter∗, Steven J. Johnston†, Simon J. Cox‡

University of Southampton,
Faculty of Engineering and the Environment,

Southampton, United Kingdom
Email: a.j.poulter@soton.ac.uk∗ sjj698@zepler.org† s.j.cox@soton.ac.uk‡

Abstract—This paper examines the components of the
MEAN development stack (MongoDb, Express.js, Angular.js, &
Node.js), and demonstrate their benefits and appropriateness to
be used in implementing RESTful web-service APIs for Inter-
net of Things (IoT) appliances. In particular, we show an end-
to-end example of this stack and discuss in detail the various
components required. The paper also describes an approach to
establishing a secure mechanism for communicating with IoT
devices, using pull-communications.

Keywords-Internet of Things; IoT; REST; MEAN; web pro-
gramming; MongoDb, Express.js, Angular.js, Node.js

I. INTRODUCTION

The phrase Internet of Things (IoT), describes the fusion
of electronic hardware devices, and Internet connectivity.
Although in its strictest sense this term refers to a het-
erogeneous network of interconnected devices: in practice
many IoT devices are not directly connected to each other —
but rather connect to other services which then provide the
interfaces to other devices, or to human users. Such devices
are increasingly becoming common-place in homes, offices,
and in industry: for example smart thermostats or lighting
controllers. This paper examines the use of the MEAN web
development tool stack (named for its constituent parts:
MongoDb, Express.js, Angular.js, & Node.js) for developing
back-end services and front-end web-based user interfaces
for the data produced by such IoT devices.

II. THE MEAN STACK

Developers of dynamic web applications have been using
the LAMP open-source tool stack [1] (consisting of the
Linux Operating System, the Apache Web Server, MySQL
as a database and PHP as the scripting language) for
some time. However, a new tool stack for web-application
development has emerged over the last few years — known
as the MEAN Stack or just MEAN.

MEAN takes it’s names from the four tools that together
provide both client & server-side components for interactive
web applications: MongoDb which provides the object-
database; Express.js which provides a framework for web
routing; Angular.js for web applications; and Node.js — the
JavaScript engine, and web server component [2].

All four of these tools are based around the JavaScript
language — which although initially developed for client-
side web programming has entered into common usage for
server-side programming, thanks in large part to environ-
ments such as Node.js.

A. Node.js

Although canonically listed last when referring to MEAN,
Node.js (or just Node) is the most important tool of the stack.
Built around Google’s V8 JavaScript engine (originally writ-
ten to execute client-side JavaScript, within the Chrome web
browser), and implemented in C++; Node provides a high-
performance, asynchronous event-based server [3]. Node can
be used to build a lightweight and high-performance web
server environment [4], ideal for constructing web-service
APIs. It is used for this purpose by a number of major
companies — including Walmart [5] & PayPal [6].

B. Express.js

Express.js builds on the underlying capability of Node,
by providing a web application server framework. This
framework provides a wrapper around a lower-level Node
interface: giving the developer, a convenient means to handle
routing and HTTP operations (such as GET and POST).
Express.js facilitates a simplified and more elegant solution
than (re-)implementing these services directly using Node.

C. MongoDb

The majority of web-services will require some sort of
storage: often in the form of a database management system.
Whilst traditionally that might have been provided using an
SQL-based Relational Database Management System (such
as MySQL or SQLServer) there is a growing trend to use
a NoSQL type of database. NoSQL (also known as “No
Only SQL”) databases can be used to provide a more flexible
“document-oriented database” with a dynamic schema.

MongoDb is a high-performance NoSQL database built
around the JSON data format [7] — and as such is ideally
suited to a server-side JavaScript environments such as those
provided by Node. In October 2015, MongoDb was the
the most popular document-oriented NoSQL database, and



4th most popular Database Management System overall: as
measured by the “Knowledge Base of Relational and NoSQL
Database Management Systems” [8].

D. Angular.js

The last part of the MEAN stack is Angular.js (or Angu-
lar). Angular is an open-source web application framework,
maintained by Google, which provides a client-side frame-
work for MVC (Model-View-Controller) [9] single page web
applications.

To gain the maximum benefit from Angular, it can be
combined with two other packages: Yeoman & Bootstrap.

Yeoman provides an environment which enables the use
of generators: simple script-based tools that can be used
to scaffold the bare-bones of a Angular web app. The
Yeoman project teams describe it as a tool which “...can
help developers quickly build beautiful web applications”
[10].

Bootstrap is a popular Open-Source CSS framework (orig-
inally created by Twitter), which is described as “...the most
popular HTML, CSS, and JS framework for developing
responsive, mobile first projects on the web”. [11] Bootstrap
provides elegantly designed CSS elements, making it easy
to design web content with a clean, modern look.

Together, the combination of these tools with the under-
lying logic implemented with Angular, make it very easy
to create a powerful and richly designed web application,
which can consume the web-services provided by the other
tools in the stack.

III. REPRESENTATIONAL STATE TRANSFER & THE
INTERNET OF THINGS

Representational State Transfer [12], widely known as the
REST or RESTful model for web-services, uses the native
HTTP operations: POST, GET, PUT & DELETE [13] to map
on to the four fundamental database operations — Create,
Read, Update & Delete. A simple API can be built to link
these four HTTP verbs to functions which Create, Read,
Delete or Update records within a web-service. This service
can then be consumed by any type of authenticated client
device.

The client can be a web page, or web application; or
the service can be programatically consumed by a custom-
written software application on a PC, smart phone, tablet
or other device; from within a simple script (for example
in Python); or a highly-complex data-science application
implemented in a low-level language, or a tool such as
MATLAB or R.

It is clear that a RESTful API maps very well onto many
classes of IoT application. For example, an IoT appliance
that has no in-built User Interface can act as a special-
purpose posting-client: accessing the the API, it can push
its sensor data to a central server using a POST (Create)
method. The data thus produced is centrally collated and

is available to be consumed by GET-ing the data from the
service.

IV. THE ADVANTAGES OF THE MEAN STACK FOR
IMPLEMENTING AN IOT WEB-SERVICE

A. Node

Whilst there are a multitude of ways to implement a
REST API, doing so using the MEAN stack, and specifically
the use of Nodes & Express, enhances productivity by
reducing the development effort required; whilst delivering
an effective, efficient, and highly-scalable implementation.
Although presently still less commonly known than the
LAMP stack, MEAN appears likely to become influential;
especially given Microsoft’s increasing involvement with
Node (including creating their own version of Node for
ARM processors) [14] as a part of Windows 10 IoT Core
— which runs on ARM devices such as the Raspberry Pi 2
[15].

Research has shown [4] that a Node server significantly
outperforms both Apache and Nginx [16] for serving dy-
namic content — and Node’s implementation of JavaScript
is more than 2.5 times faster than the more traditional PHP
approach, by efficiently utilizing available hardware.

B. JSON

A REST API needs to consume and produce data, encoded
in a consistent manner. Whilst many choices exist (XML,
YAML, etc.) a popular choice is JSON. JSON is well
suited to data that needs to be both human and machine-
readable. JSON data is, arguably, easier for a human reader
to understand than XML; and can also be easily parsed by
a computer. Tools and libraries to parse JSON exist in all
major programming languages and environments.

JSON’s key-value pair format is ideal for use with regular
parametric data — such as may be produced by a sensor
device, or transmitted as a command-and-control message
to a device or actuator.

From Node or another JavaScript implementation JSON
data is already in the native format & as such requires no
further parsing unlike, for example, XML.

C. MongoDb

The advantage of the use of a document-oriented database,
such as MongoDb is that is offers a dynamic (rather than
fixed, and rigid) schema [17]. This means that if the data
structure of the database is required to change, as a result
of needing to store additional parameters; new data with a
different structure can be accommodated within the database,
alongside earlier data, without the need to perform large-
scale data manipulation on the whole database.

MongoDb is also a good choice for storing JSON encoded
data. MongoDb internally stores data in an efficient binary
JSON format (BSON) — which allows for quick and easy



import and export. It is also is also ideally suited to stor-
ing and processing large volumes of data. It can scale to
thousands of nodes and petabytes of data [17].

MongoDb also exhibits better runtime performance for
simple operations at a small-scale (single node), than Mi-
crosoft SQL Server Express [18].

V. IMPLEMENTING A REST API FOR AN IOT DEVICE
USING MEAN

A simple example of a REST IoT back-end service was
constructed using MEAN, in order to further explore its
utility for such an application.

A. The Node & Express web-service

An example web-service was built using Node & Express,
with the corresponding data stored on a MongoDb database
running on the same server. As the server was built to be an
experimental platform, it provided a full implementation of a
REST API — permitting four operations (POST, GET, PUT
& DELETE) on all data. In a real implementation (especially
one where there was a requirement for data integrity) it
would be good practice not to support PUT operations
— rendering the data immutable. Similarly, providing a
DELETE operation for individual or bulk data may be
undesirable.

The initial implementation did not use any type of authen-
tication, and permitted all operations to be carried out by any
connected user or device. Whilst this is a valid approach for
an experimental server operating on a private network, this is
clearly not a model that should be adopted for any publicly
addressable, Internet connected service. Hosting the service
on a server using HTTPS, and modifying the service such
that some or all API calls require authentication via Basic
authentication [19] is very simple however, and was explored
in subsequent work.

B. Hardware: a simple IoT device

Once the service had been implemented, an example of a
sensor device was constructed from commodity development
hardware. The device consisted of a Microchip MCP9808
temperature sensor, which was polled at a pre-determined
time interval over an I2C interface by code running on
an Ateml ATMEGA328 microcontroller. Together the mi-
crocontroller and the temperature sensor create a “sensor
unit”: which transmitted the temperature, as an ASCII string,
over a wired serial link to a BeagleBone Black single-board
computer. The BeagleBone Black then combined the raw
data, with a device ID and a timestamp, before POST-ing
the data to the web-service using a Python script, written
using the popular Requests library [20].

The use of a dedicated microcontroller to act as an
interface to the lower-level hardware meant that the sensor
hardware becomes genericized, allowing the microcontroller
to provide a consistent interface to the gateway portion

of the device, enabling hardware to be substituted without
significant modification to the design of the device.

This modular approach also gave maximum flexibility to
the overall design of the device. The BeagleBone acted as a
gateway — and can be trivially modified to handle multiple
sensor units. Additionally the wired serial link can easily be
reimplemented to use a wireless link — such as an XBee
ZigBee module — if the installation calls for the location
of the sensor to be remote from the gateway.

The use of low-powered, modularlized hardware commu-
nicating with more powerful base-station gateways means
that the low-cost modules can be deployed widely without
being constrained by connectivity or power.

The MEAN web-service recorded the data generated by
this hardware setup as four JSON key-value pairs (the device
identifier, the timestamp, the temperature recorded, and the
MongoDb unique ID for the item). Data can be retrieved
from the service either by accessing specific data items (by
ID) or by retrieving all of the data. In either case data was
returned as JSON. Post-processing this data, for example
plotting data over time, can then be conducted using any
tool or software capable of accessing JSON data via a web
API.

C. An Angular web application

The web-service was also used to provide the back-end
to a single page web application, implemented using the
combination of Angular.js, Yeoman, and Bootstrap described
in Section II-D.

This web application provided a means to view the raw
data for a given device ID, as well as providing a means to
delete and edit individual data points. Additional function-
ality, such as specific visualization of the data, the use of an
authenticated API & secure data links, and functionality to
permit configuration of the device can also be added.

D. The use of Node.js within a device

During this work, we explored running JavaScript code
via Node.js directly on a device. There are a number of open-
source libraries that enable high-level scripting languages
such as Python and JavaScript, to directly interface with the
hardware on a device. One such library, is the Node library
onoff [21], which enables direct access to GPIO pins from
JavaScript, on a number of supported development hardware
platforms: including Raspberry Pi and BeagleBone. Other
libraries support access to hardware data busses: for example
I2C and SPI.

With the increase in availability of single-board computers
(and the significant decrease in their cost) seen in recent
years, and the significant computing power that they are
now able to provide: there is a reduced requirement to
tightly optimize embedded code running on these devices,
in comparison to the situation of even a few years ago. This
additional computing power (available at low-cost thanks



to the economies of scale resulting from the smartphone
revolution) has meant that embedded systems are now able
to benefit from greater abstraction between the hardware and
the software.

Although there are some productivity benefits from devel-
oping software using scripting languages — it is not yet clear
how well these translate to their use for software or firmware
to be run on devices. Whilst these types of language may
be well suited to some activities (such as early prototyping,
and hobbyist use) there are some performance overheads
to using these languages — and (critically for real-world
applications) a significant configuration control overhead,
when compared to statically linked code. Code written using
one version of a library or module may not work with
another version and versions of libraries are often tied to
specific versions of the underlaying language interpreter.

As such, although there may be some merit to the use of
scripting languages to implement firmware on a device —
further work is required to more formally assess the benefits
and costs; and conduct a more rigorous examination of any
performance and security issues that may be present.

VI. A MORE ADVANCED IMPLEMENTATION OF AN IOT
SERVICE — USING THE MEAN STACK

Whilst the use-case presented in Section III and explored
in Section V is ideal for simple cases; this kind of write-only
connection from the device, to the Internet, is only appropri-
ate for a relatively small number of applications. Although
such a model enables an Internet connected sensor to push
data to a central repository — it does not provide a means
for an Internet-connected actuator to receive command-and-
control data (such as would be required to turn on a light, or
change the temperature at which a system operates). Even
a sensor-only device may have a requirement for a return
path — for example, to modify sensor parameters (such as
frequency of sensing) or to provide a means to perform a
software, or firmware, update to the device.

One approach to implement this inbound communications,
would be to open a direct connection from the end-user
(or their client application) to the device; however this
poses risks for the security of the device (and thus the
system) by potentially exposing the device to malicious
or erroneously malformed communications messages from
the user. It also places a requirement on the device to
authenticate an inbound communication; and to remain in
a state where it is ready to receive communications.

A. Server-based pull-communications

An alternative is to provide a reverse path for commu-
nications back to the device, by having the device period-
ically (at a frequency appropriate to the application) poll
the web-service, looking for updated command-and-control
messages. This type of pull-communications to the device
is inherently more secure, as it obviates the need for a

direct connection into the device from a remote user. By
managing all inbound connections at the server, it also
makes it easier to securely and definitively authenticate
the source of the command-and-control messages received.
Providing the device can securely establish the identity of
the web-service: using security techniques common-place
within web applications, such as Transport Layer Security
(TLS) [22], and providing that the device (or the user
or user client) is securely authenticated to the server: the
device itself never has to consider the security challenges of
directly authenticating a user or other command-agent. This
authentication can use either HTTP Basic authentication, or
a more advanced protocol.

It also potentially permits a lower power-consumption
from the device as it may enter a sleep state during the pe-
riods between the predetermined communications intervals
rather than remaining constantly in a higher-power state, in
order to receive communications at unknown times.

Using this paradigm for pull-communications, an IoT
device can collect and then act upon messages: depending on
their content. The messages may be a simple command (e.g.
“turn on light #0A49”), or may be more a more complex
control message (e.g. “adjust heater output to maintain a
room temperature of 20.5°C”).

B. Remote software updates

Using this notification approach, system control messages
can also be specified: for example to instruct the device to
retrieve a software update from the server. This paradigm
is analogous to the way that Operating System patches are
often distributed: remote systems do not push the update
to the computer — but rather the computer monitors a
known repository, waiting for an indication that updates
are available. The use of this technique also means that
the computer does not have to be directly addressable from
the Internet: as may be the case if it is connected to a
network which is protected by a Firewall or behind a router
using Network Address Translation (NAT). When updates
are available, these are then downloaded by the computer.
The origin of these updates may be verified using TLS, and
their content checked for integrity using a hashing function
such as SHA-1.

Software updates for an IoT device can range from secu-
rity patches and simple updates to the firmware — all the
way through to a significant reconfiguration of the operation
of the device. Such reconfiguration can modify the device
to provide new functionality — and can utilize previously
dormant hardware within the device. For example, a remote
sensor could be reconfigured to operate more effectively,
based on analysis of data that it has previously gathered
— information that was not known when the device was
originally deployed. The ability to remotely reconfigure a
device that has been deployed is very appealing: although
there are a number of ethical considerations to so doing.



To provide additional security to the process, crypto-
graphic algorithms can be used to sign the software and
messages as authentically originating from an approved
source — and by utilizing a private key within the device, to
ensure that only messages, data or software updates intended
intended for a specific device are usable by that device.

C. Alternatives to Basic Authentication — OAuth2

The OAuth2 protocol [23] is an open standard protocol
designed to negotiate access to a resource, and facilitate
authentication via the use of access tokens. Although most
commonly used to provide a mechanism to authenticate
a user to a website, using identity services from a third-
party provider (for example: Google), without exposing the
user’s credentials from that provider to the site they wish
to use; the protocol also supports authenticating a user to
a resource, where the site hosting the resource is its own
identity provider.

The advantage of doing this (versus a more simplistic
approach, directly using the user credentials) is that the
password never has to be stored by the client. The finer
granularity this method offers means that a user can revoke
access for a given token (for example, a particular client
application), without effecting other tokens.

The OAuth2 protocol defines four types of Authorization
Grant — which can be used to negotiate access, and issue
a token. These different grant types are each best suited for
different applications. Although the four grant types describe
a different negotiation process, upon successful completion
they all result in the issue of an access token — which is
used to authenticate the connection by being sent as a part
of the HTTP header (hence it still requires the use of TLS).
An OAuth2 service can, depending on the implementation,
also issue a refresh token to facilitate reissuance of an access
token, after the original token has expired.

The Authorization Code grant, and the Implicit grant are
primarily intended to enable web-services to access data held
on another web-service. They can be used to authenticate
a user of a web application associated with an IoT device
against the API of another web resource — such as Twitter
or Facebook. For example, a user could choose to use the
IoT device’s web application share data from that device —
in the form of a tweet, or Facebook message.

The Resource Owner Credentials grant is designed to give
access to a (semi-trusted) client application. The user needs
to provide their password at the time of first authentication
(or any subsequent re-authentication in the event of token
expiry or revocation) — but this is never stored by the
client application. In this use-case a user can have a client
application (whether on a mobile device, or a more tradi-
tional computer) to access the web-service: using a Resource
Owner Credentials access grant to obtain access the web-
service.

Lastly, the Client Credentials grant type is exclusively
used for machine-to-machine communications where there
is no specific human user involved: rather the device or client
authenticates itself (as a known and trusted client) with the
service. This uses a very similar process to the Resource
Owner grant — but using credentials relating to the client
itself, rather than a human user.

Both the Resource Owner, and Client Credentials grants
are well suited for use in the context of IoT; and the server-
side element of both can easily be implemented using Node,
Express, and other libraries (such as OAuth2orize [24] &
Passport [25]).

An implementation of a web-service using an OAuth2
Resource Owner Credentials grant was constructed during
follow-on work to the original activity.

D. Containerization

One of the major trends of the last year has been the
increasing interest in, and usage of, containerization to
deploy applications — using tools such as Docker [26].
Docker enables a developer to package an application,
together with all of its dependencies, into a standardized
and lightweight container which can then be deployed to
a production environment. This technique makes it possible
for a developer to ensure that all of the required dependen-
cies will be met, regardless of the state of the configuration
of the base operating system on the machine onto which the
application is to be deployed.

Whilst there is certainly potential to utilize container-
ization services to facilitate a MEAN web-service or ap-
plication, there are also other (potentially lighter-weight)
approaches that can be adopted. Node provides the node
package manager (npm) [27] — which uses a JSON file
to identify the configuration and dependencies of a Node
application; and can automatically download all required
library code. Because of the level of abstraction from the
underlying OS that Node provides: this technique can be
used to enable npm to automatically configure an envi-
ronment to run any Node application. Similar package
management tools exist in other scripting languages. This
technique obviates, to some extent, the need for a container-
ized approach when using Node applications. However in a
production environment there is still a necessity to ensure
that lower-level dependencies (such as the correct versions of
Node and MongoDb) are present. Containerization such as
Docker provides one way to ensure that these can be rapidly
deployed: and if such a method is being utilized then it can
easily be extended to incorporate the Node application and
its dependencies.

Whilst beyond the scope of this work, there is also the
potential to use this containerization paradigm as a part of
a process that can deliver atomic transactional updates to an
IoT device’s software or firmware. Further work is planned
to investigate the validity of this approach.



VII. CONCLUSIONS

This work has shown that the MEAN stack is well
suited to creating back-end services for the class of Internet
of Things devices requiring a web-services API. MEAN
offers productivity and performance advantages over more
traditional tool stacks — such as LAMP.

A combination of Node & Express.js, with a MongoDb
database provide an excellent implementation of a JSON-
based web-service; not least because all of the tools within
the stack will natively utilise the underlaying JSON data.
Such a MEAN stack web-service is also highly scalable —
thanks to the benefits of both Node and MongoDb.

Whilst formally assessing the merits of running Node
and other scripting languages & interpreters directly on the
hardware was beyond the scope of this work; this work has
demonstrated that this is possible — and that it merits some
further exploration and consideration of use-cases.

Using a web-service to securely enable remote software
updates is both possible and appealing. Experimental work
to implement and asses this for IoT devices is ongoing.

The use of software containers to facilitate the scalable
deployment of MEAN stack web-service also merits further
exploration as the technology matures.

REFERENCES

[1] G. Lawton, “LAMP lights enterprise development efforts,”
Computer, vol. 38, no. 9, pp. 18–20, Sep. 2005. [Online].
Available: http://dx.doi.org/10.1109/MC.2005.304

[2] MEAN.io. (2015) MEAN — Full-Stack JavaScript Using
MongoDB, Express, AngularJS, and Node.js. [Online].
Available: http://mean.io/

[3] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build
High-Performance Network Programs,” IEEE Internet Com-
puting, vol. 14, no. 6, pp. 80–83, 2010. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/MIC.2010.145

[4] I. K. Chaniotis, K.-I. D. Kyriakou, and N. D. Tselikas, “Is
Node.js a viable option for building modern web applications?
A performance evaluation study,” Computing, pp. 1–22,
2014. [Online]. Available: http://dx.doi.org/10.1007/s00607-
014-0394-9

[5] J. O’Dell, “Why Walmart is using Node.js,” 2012.
[Online]. Available: http://venturebeat.com/2012/01/24/why-
walmart-is-using-node-js/

[6] Github. (2015) Projects, Applications, and
Companies Using Node. [Online]. Available:
https://github.com/joyent/node/wiki/Projects,-Applications,-
and-Companies-Using-Node

[7] T. Bray, “The JavaScript Object Notation (JSON) Data
Interchange Format Interchange Format,” 2014. [Online].
Available: https://tools.ietf.org/html/rfc7159

[8] Knowledge Base of Relational and NoSQL Database
Management Systems. [Online]. Available: http://db-
engines.com/en/ranking

[9] A. Leff and J. T. Rayfield, “Web-application development
using the Model/View/Controller design pattern,” Proceed-
ings Fifth IEEE International Enterprise Distributed Object
Computing Conference, pp. 118–127, 2001.

[10] Yeoman: The web’s scaffolding tools for modern webapps.
[Online]. Available: http://yeoman.io

[11] Get Bootstrap. [Online]. Available: http://getbootstrap.com

[12] R. T. Fielding and R. N. Taylor, “Principled design
of the modern web architecture,” in Proceedings
of the 22Nd International Conference on Software
Engineering, ser. ICSE ’00. New York, NY,
USA: ACM, 2000, pp. 407–416. [Online]. Available:
http://doi.acm.org/10.1145/337180.337228

[13] R. Fielding and J. Reschke. (2014) Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content. [Online].
Available: https://tools.ietf.org/html/rfc7231

[14] J. Martin. (2015) Microsoft Forks Node.js
to Support ARM. [Online]. Available:
http://www.infoq.com/news/2015/05/nodejs-arm

[15] L. Upton. (2015, 30/4/2015) Windows 10 for iot. [Online].
Available: https://www.raspberrypi.org/blog/windows-10-for-
iot/

[16] Welcome to NGINX Wiki’s documentation. [Online].
Available: https://www.nginx.com/resources/wiki/

[17] Internet of Things : MongoDB. [Online]. Available:
https://www.mongodb.com/use-cases/internet-of-things

[18] Z. Parker, S. Poe, and S. V. Vrbsky, “Comparing NoSQL
MongoDB to an SQL DB,” Proceedings of the 51st ACM
Southeast Conference on - ACMSE ’13, 2013. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2498328.2500047

[19] R. Fielding and J. Reschke, “Hypertext Transfer Protocol
(HTTP/1.1): Authentication,” 2014. [Online]. Available:
http://tools.ietf.org/html/rfc7235

[20] K. Reitz. Requests: HTTP for Humans. [Online]. Available:
http://docs.python-requests.org/en/latest/

[21] OnOff – GPIO access and interrupt detection with JavaScript.
[Online]. Available: https://github.com/fivdi/onoff

[22] T. Dierks and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.2,” 2008. [Online]. Available:
https://tools.ietf.org/html/rfc5246

[23] D. Hardt, “The OAuth 2.0 Authorization Framework,” 2012.
[Online]. Available: https://tools.ietf.org/html/rfc6749

[24] J. Hanson. OAuth2orize library. [Online]. Available:
https://github.com/jaredhanson/oauth2orize

[25] ——. Passport : Simple, unobtrusive authentication for
Node.js. [Online]. Available: http://passportjs.org

[26] What is Docker? [Online]. Available:
https://www.docker.com/what-docker

[27] npm: the Node package manager. [Online]. Available:
https://www.npmjs.com


