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Abstract—Most of the IoT applications are distributed in
nature generating large data streams which have to be analyzed
in near real-time. Solutions based on Complex Event Processing
(CEP) have the potential to extract high-level knowledge from
these data streams but the use of CEP for distributed IoT
applications is still in early phase and involves many drawbacks.
The manual setting of rules for CEP is one of the major draw-
back. These rules are based on threshold values and currently
there are no automatic methods to find the optimized threshold
values. In real-time dynamic IoT environments, the context of the
application is always changing and the performance of current
CEP solutions are not reliable for such scenarios. In this regard,
we propose an automatic and context aware method based on
clustering for finding optimized threshold values for CEP rules.
We have developed a lightweight CEP called µCEP to run on
low processing hardware which can update the rules on the run.
We have demonstrated our approach using a real-world use case
of Intelligent Transportation System (ITS) to detect congestion
in near real-time.

Index Terms—Clustering, Complex event processing, context-
aware, intelligent transportation system, internet of things, ma-
chine learning, real-time

I. INTRODUCTION

Internet of things (IoT) is based on the vision of connecting
everyday objects to internet in order to form a cyber-physical
system, where every object will be represented by its virtual
representation enabling the control of physical world remotely
[1]. In this regard, the low cost and wide distribution of
IoT devices have not only increased the opportunities for
innovative applications but have also increased the number
of devices connected to the internet. According to CISCO,
by the end of 2020, there will be almost 50 billion devices
connected to internet [2]. As a consequence, the complexity
and the amount of data generated by these devices is also
increasing.

Many of these applications are distributed in nature and
require real-time processing of data such as transportation
systems or supply chain logistics. Such applications require
methods which are capable of interpreting patterns, apply them
to current situations and take accurate decisions with minimal
time latency. Data is in the form of real time events requiring a
paradigm shift in the methodology for analyzing and inferring
high level knowledge. Real time data analysis in such cases
means that data have to be analyzed before the data are stored.
As an example, let’s consider an Intelligent Transportation

System (ITS) for detecting a congestion; if all the data is
gathered in a central platform and then analyzed, it would
detect the congestion long after it has already happened and
resulting in no added value in order to meet their ambitions.
Instead, such applications require distributed and near real-
time solutions which can analyze the data on the fly and can
infer high-level knowledge in near real-time.

To extract high-level knowledge from this large amount of
data in real-time, an Event Driven Architecture (EDA) called
Complex Event Processing (CEP) has been proposed in recent
years [3]. The research area of CEP includes processing,
analyzing and correlating event streams from different data
sources using distributed message-based systems to extract
high-level or actionable knowledge in near real-time [4]. The
core of the CEP is a rule-based engine which can extract
casual and temporal patterns using pre-defined rules. CEP
provides the processing capability of big data engines which
enables it to analyze the data and extract patterns on the run in
near real-time with distributed architecture. One of the major
difference from traditional big data engines is that CEP can
handle multiple events which are seemingly unrelated and can
correlate them to provide a desired and meaningful output.

The use of CEP is increasing in many IoT applications
due to its ability to process large volumes of events in real-
time. ITS is one of the main application which has seen the
significant impact with the wide spread usage of IoT. The
increasing number of traffic sensors in cities along with the
recent concept of crowd sensing [5] has resulted into the
amount of data generated to a level where conventional data
analysis methods are proving to be a limiting factor. The
ability of CEP to process data streams in real-time makes
it ideal candidate for ITS as demonstrated by various works
found in literature [6][7]. Similarly, there are other applications
found in literature where CEP provides solution to manage and
analyze data streams in near real-time such as supply chain
management systems [8] and smart buildings [9].

In order to detect complex events, systems based on CEP
require rules which have to be given manually by the sys-
tem administrators, who are expected to have the required
background knowledge; unfortunately sometimes is neither
available nor so precise. The manual setting of rules and
patterns limits the use of CEP only for domain experts and
poses a weak point. And even though with prior expertise



and knowledge, experts are prone to make errors in choosing
optimized parameters for dynamic systems. Systems based on
CEP deploy static rules and there is no means to update the
rules automatically. In real-time dynamic IoT applications,
the context of the application is always changing and the
performance of CEP will deteriorate in such scenarios. For
example, a high temperature reading in summers will have
different meaning as compared to the same reading in winters.
Similarly, a high traffic density during the day is a normal
event as compared to the same event happening late at night.
Hence, a system based on CEP for extracting high-level
knowledge should incorporate the current context into account
and adapt its rules accordingly.

In our work, we propose a distributed approach based
on lightweight CEP called Micro Complex Event Processing
(µCEP) which is developed to run on embedded devices with
limited processing power and is able to update the rules on
the fly. We propose a novel approach for finding optimized
parameters for CEP rules using machine learning methods
which is adaptive with respect to current context. Our propose
architecture is able to infer complex events from raw data
streams in a distributed manner by running on low processing
boards and is able to provide adaptive solutions at the same
time. A real-world example of ITS is used to elaborate our
approach.

In short, following contributions are made in this paper:
• We propose and developed a distributed architecture

for inferring complex events from raw data streams
using lightweight complex event processing which is
able to update rules automatically;

• We propose and developed a novel method based on
machine learning for calculating optimized param-
eters for CEP rules and update it according to the
current context.

The remainder of the paper is organized as follows. In
section 2, we formally define the problem using a real-world
example of ITS and highlight the drawbacks in current CEP
based solutions. Section 3 explains our proposed architecture
with the brief description of components involved. Section 4
is focused on the implementation and description of initial
results. Finally, section 5 presents the conclusion and future
work.

II. PROBLEM DEFINITION

In this section, we formalize the problem with the help of
a real-world use-case scenario of ITS. In the city of Madrid,
thousands of heterogeneous traffic sensors have been deployed
on different locations across the city. These sensors provide
real-time information about the traffic flow in the city such as
average traffic speed, average traffic intensity, type of traffic or
type of road etc. CEP has the potential to provide a distributed
solution for analyzing, correlating and inferring high-level
knowledge from this large amount of data in near real-time.
The core of CEP is a rule-based engine which requires rules
for extracting complex patterns. These rules are based on
different threshold values. For example, traffic speed can be

analyzed using a simple rule as “if current speed is less than a
threshold speed then generate slow speed event”. The setting
of these rules require system administrators to have prior
knowledge about the system which is not always available
and poses a weak aspect. Secondly, every road segment has a
different response. There might be a road segment with speed
restrictions as compared to a free flow road segment so the
threshold values will be different for both road segments. In
this way, at city level there will be hundreds of road segments
and it is almost impossible for the administrators to understand
the behavior of individual road segment.

In current systems based on CEP, rules set by system
administrators are static and there are no means to update them
automatically. It can effectively degrade the performance of
application as IoT mainly consist of dynamic environments
where the context of application is always changing. For
example in the event of bad weather or rain, traffic will move
slowly and the rules which are set for normal conditions can
generate a false alarm of congestion. Threshold values will
be different in such conditions. In addition, the response of
the road is also changing with respect to time. A road might
have a different behavior in morning rush hours as compared
to quite night hours. In short, following drawbacks have been
identified in current technologies based on CEP:
• Threshold values have to be set manually and there

is no automatic way to find the optimal threshold
values.

• Threshold values set are static and once set, CEP
system is unable to update it during run-time.

• Current solutions are not context-aware and adaptive
by nature.

III. PROPOSED ARCHITECTURE

In our work, we propose to to exploit historical data in order
to find optimized threshold values for CEP rules automatically.
We have proposed an approach based on clustering analysis
which is an unsupervised machine learning method to group
the underlying data into different events and the boundaries
separating the events serve as the threshold values for CEP
rules. An overall architecture of the proposed solution is
shown in the Figure 1. It consist of the following two main
components.
• Micro Complex Event Processing ( µCEP) Engine
• Adaptive Clustering

A. Micro Complex Event Processing Engine

CEP Engine is a software component capable of detecting
asynchronously, independent incoming Events of different
types and generating a Complex Event by correlating all of
these events. In this sense, Complex Events can be defined as
the output generated after processing many small, independent
incoming input data streams, which can be understood as a
given collection of parameters at a certain temporal point. A
CEP Engine is commonly provided with a series of plug ins or
additional sub-components in order to improve data acquisition
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Fig. 1. Proposed Architecture and Block Diagram

from external sources, and also a sort of business logic to
create the output of the system.

The CEP Engine presented in this work is known as µCEP,
which derives from the SOL/CEP engine provided by the
FIWARE project [10]. From a conceptual and functional point
of view, both SOL/CEP and µCEP are very similar, however
the latter has disassembled the functionality of the former in
three different software modules, as can be viewed in Figure
2. Thanks to the modularity and configurable design of the
µCEP, this Engine can be implemented on hardware boards
with limited processing capability such as Raspberry Pi [11]
or the UDOO board [12].
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Fig. 2. µCEP system Architecture

The Event Collector module is responsible for reading data
streams from different data sources and represent it in the
form of internal events which can be processed by the Com-
plex Event Detector module using rules defined in DOLCE
language [13]. Complex Events detected are forwarded to
the Complex Event Publisher module which is responsible
for broadcasting the required information to different IoT

applications. The three functional modules represented in this
architecture are introduced in the following sections:

1) Event Collector: This is the entry point to the µCEP
Engine, whose primary goal is gathering all the information
coming from specified sources, through different communi-
cation protocols and using varying data formats, known as
data feeds or data sources. Once the module has been fed
with data, its secondary objective consists in transforming the
information into a specific data format, an Event, which will
be then delivered to the Complex Event Detector module as
presented in Figure 3.
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In our work we have extracted the Event Collector module
from the main engine‘s kernel as compared to previous version
in order to provide better flexibility at the development stage.
Now, it is up to the system developer which data source
protocol should be used: Apache Kafka, MQTT, AMQP, or
even periodic HTTP requests. In this sense, when running the
engine in a constrained hardware board, the Event Collector
module can be written in a way that implements the less
required functionality (software libraries), thus minimizing the
amount of memory needed to operate. Concerning the Decoder
sub-module, its purpose is to translate the acquired data into
the internal representation understood by the µCEP.

2) Complex Event Detector: The Complex Event Detector
module can be understood as the kernel of the µCEP en-
gine. It controls event detection and production of expected
results by using temporal persistence of volatile events until
constraints of rules are entirely satisfied. This module has
been implemented using the standard C++ library, thus getting
rid of unnecessary external libraries. The small, code-efficient
implementation (less than 300 KB after compilation) of the
component makes it possible to implement CEP functionalities
in common utility hardware boards such as Raspberry Pi or
the UDOO board. Each DOLCE Rules file served to the µCEP
suffers a process of compilation allowing converted rules to
be processed in a more efficient manner during runtime. Each
time a rule is triggered, the engine composes a Complex Event



message (including data of incoming Events if desired) and
output it to the Complex Event Publisher module. .

3) Complex Event Publisher: The last step for the data life
cycle inside the µCEP engine is Complex Event Publisher.
This module receives Complex Events and delivers them to
the selected Data Sinks after transforming the complex events
in the format required by external applications. It can be seen
as the opposite functionality provided by the Event Collector
module, as it also supports various communication protocols
and data formats.
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Fig. 4. Flow chart of Adaptive Clustering

B. Adaptive Clustering

Clustering refers to the unsupervised machine learning
method which is used for grouping similar objects on the basis
of predefined metric such as distance or density. Clustering is
a general technique used widely for knowledge discovery in
big data sets and several variants of algorithms are found in the
literature. Clustering separates the data into different possible
events and group the data points from the same event together.
The application of clustering is diverse and can be found in
vast range of fields such as detecting credit card fraud from
online transaction data [14] or detecting abnormalities from
brain images data for medical research purposes [15].

In our work, we explore the application of clustering to find
the boundaries between different events which can serve as
threshold values for CEP rules. Figure 4 shows the flowchart

of our proposed solution for adaptive clustering. In real-
time scenarios, the definition of context is changing with
time. In morning hours, traffic intensity is usually more with
low average speed and hence the definition of bad traffic
is different from the night hours when traffic is relatively
smoother. The response of traffic is different at different time
periods and hence we proposed to have different threshold
values for different time periods. We time sliced the historical
data in terms of morning, afternoon, evening and night traffic
hours and extract the data only for specific time period. More
details are described in the next section.

After extracting the data, we apply feature scaling [16] in
order to optimize the clustering algorithm. Feature scaling is
a method to bring all the features on the same scale so they
contribute equally to the clustering algorithm. The range of
values of different features of traffic data are on different scale.
If one of the feature has considerably wider range as compared
to other features, the optimization function for clustering will
be governed by that particular feature and will impact the
boundaries. The general expression for feature scaling using
standardization is

X ′
1 =

X1 − µ1

σ1

(1)

where X ′
1 is the new feature vector after scaling, X1 is the

initial feature vector, µ1 is the mean value of feature vector
and σ1 is the variance of feature vector.

We have implemented k-means clustering algorithm which
is an iterative algorithm which forms the clusters by finding
centroids such that the sum of the squares of distance from
centroids to data is minimized [17]. For a data set X with n
number of samples, it divides them into k number of disjoint
clusters, each described by the centroid value. In the first
initialization step, it assigns initial centroids, most commonly
by selecting k number of samples randomly from the data
set X . In a second step it assigns each sample to its nearest
centroids and forms k clusters. In the third and final step, it
creates new centroids by calculating the mean value of the
samples assigned to each previous centroid and calculates the
difference between the old and new centroids. It keeps on
iterating the process until the algorithm converges. We applied
k-means clustering with the k = 2, hence it resulted into two
clusters. The midpoint between the two centroids divides the
data into different events. We propose to use these midpoints
as threshold values for CEP rules as it defines the boundary
between different events.

In general, threshold values for CEP rules are static and
is a major drawback when deployed in real-world dynamic
environments. Statistical properties of the underlying data may
change over time resulting in inaccurate threshold values.
Therefore, we propose to keep track the changing in data
distribution by accessing the quality of cluster as new data
arrives. And as the quality of clusters deteriorate, k-means
model is retrained and new threshold values are found using
latest data.
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Silhouette index s(i) [18] is used to access the quality of
clusters which is defined as

s(i) =
b(i)− a(i)

max(a(i), b(i))
(2)

where a(i) is the mean intra cluster distance, and b(i) is
the mean nearest-cluster distance i.e. distance with the nearest
cluster center which the data is not part of. s(i) ranges from
−1 to 1 where 1 indicates the highest score and −1 as the
lowest for cluster quality. As new data arrive, silhouette index
is calculated using the cluster centroids and if s(i) < 0.5, it
acquires the latest data and repeat all the steps. In this way,
our algorithm can track the changing in the underlying data.
As an example, if the rain effects the traffic system, new data
values will fit poorly to the old clusters and the quality of

TABLE I
THRESHOLD VALUES UPDATE (WEEKDAYS)

Traffic Period Time Range Threshold Values Silhouette index
Morning 8 am to 12 pm 130 veh/h, 43 km/h 0.51

Afternoon 12 pm to 4 pm 175 veh/h, 51km/h 0.57
Evening 4 pm to 8 pm 145 veh/h, 49km/h 0.55

Night 8pm to 12 am 96veh/h, 48 km/h 0.50

clusters will decrease. As our algorithm detects it, it will use
the latest data to find new threshold values.

IV. RESULTS

We have divided the data into four traffic periods depending
on the time context as shown in the Table I and Figure 5 shows
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the clustering result for individual traffic period. We used the
historical data of the recent last month (which is available
online 1) between the time range mentioned and applied k-
means clustering with k = 2. It results into two clusters as can
be seen from the Figure 5. Blue cluster represents high average
traffic speed and high traffic intensity indicating smooth traffic
flow or good traffic state. Whereas red cluster represents
traffic points with low average traffic speed and low traffic
intensity which represents bad traffic state. Midpoint between
both cluster centers represents the boundary separating both
states and we used this boundary to define threshold values
for detecting complex Events. Once new threshold values are
found, they are published on a MQTT broker in a JSON
format where event collector module is listening. As it detects
new threshold values, it update the rules using new threshold
values. Figure 6 shows an instance of a MQTT broker where
different topics for three road segments are defined and as the
new threshold value for a certain road segment is calculated,
they are published under the specific topic.

Once threshold values are calculated, CEP rules can be used
to detect a complex Event. Algorithm 1 shows a pseudo code
for detecting bad traffic state where a rule is defined to check if
three consecutive readings of traffic speed and traffic intensity
are less then the threshold values.

Algorithm 1 Example Rule for CEP
1: for (speed, intensity) ∈ TupleWindow(3) do
2: if (speed(t) < speedthr and intensity(t) <
intensitythr AND

3: speed(t + 1) < speedthr and intensity(t + 1) <
intensitythr AND

4: speed(t + 2) < speedthr and intensity(t + 2) <
intensitythr) then

5: Generate complex event Bad Traffic
6: end if
7: end for

1http://datos.madrid.es/portal/site/egob/

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a context-aware method to
analyze and extract high-level knowledge from data streams
in near real-time for distributed IoT applications. Our propose
method is automatic, adaptive and is able to cope with
dynamic environments as opposed to current state of the art
methods. We have demonstrated the feasibility and usage of
our proposed architecture with the help of a real-world use
case scenario of ITS. In future, we aim to work on making our
method more generic and apply on other use-case scenarios
such as smart buildings.
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