arXiv:1905.01665v1 [cs.CR] 5May 2019

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. Accepted in IEEE 5th World Forum on Internet of Things (WF-IoT), 15-18 April 2019.

OAuth 2.0 meets Blockchain for Authorization in
Constrained IoT Environments

Vasilios A. Siris, Dimitrios Dimopoulos, Nikos Fotiou, Spyros Voulgaris, George C. Polyzos

Mobile Multimedia Laboratory, Department of Informatics
School of Information Sciences & Technology
Athens University of Economics and Business, Greece
{vsiris, dimopoulosd, fotiou, voulgaris, polyzos}@aueb.gr

Abstract—We present models for utilizing blockchain and
smart contract technology with the widely used OAuth 2.0 open
authorization framework to provide delegated authorization for
constrained IoT devices. The models involve different trade-
offs in terms of privacy, delay, and cost, while exploiting key
advantages of blockchains and smart contracts. These include
linking payments to authorization grants, immutably recording
authorization information and policies in smart contracts, and
offering resilience through the execution of smart contract code
on all blockchain nodes.

Index Terms—delegated authorization, smart contracts, hash
time-locked payments

I. INTRODUCTION

The goal of the paper is to propose and discuss models
for combining the OAuth 2.0 open authorization framework
with blockchain and smart contract technology to provide
delegated authorization for constrained IoT devices, which
have intermittent or no connectivity to the Internet. The
motivation for considering the OAuth 2.0 delegated autho-
rization framework is that it is a widely used IETF standard
that is currently being investigated for authorization in IoT
environments by IETF’s Authentication and Authorization for
Constrained Environments (ACE) Working Group [1], [2]. An
important feature of OAuth 2.0 is that it provides authorization
for different levels of access, termed scopes. Nevertheless,
we note that OAuth 2.0 mainly defines the format of the
authorization message exchange and the models presented in
this paper are applicable for exploiting blockchain and smart
contract technology in the general context of authorization in
constrained IoT environments.

The remainder of the paper is structured as follows: In
Section [[Ij we present some background on authorization in
constrained environments using the OAuth 2.0 framework. In
Section we present two models for utilizing blockchains
and smart contract technology with OAuth 2.0 that involve a
different level of integration, and in Section |[[V] we present an
evaluation of the two models. Finally, in Section |V|we present
related work and in Section we present ongoing research
extending the models presented in the paper.

II. AUTHORIZATION IN CONSTRAINED ENVIRONMENTS

OAuth 2.0 is a framework for delegated authorization to
access a protected resource [3]. It enables a third party appli-

cation (client) to obtain access with specific permissions to a
protected resource, with the consent of the resource owner. Ac-
cess to the resource is achieved through access tokens, created
by an authorization server. The specific format of the access
tokens, which are discussed in more detail below, is opaque to
the clients and to OAuth 2.0. The authorization consent by the
resource owner is provided after the owner is authenticated;
however, the authentication procedure is not part of OAuth 2.0.
Authorization is provided for different levels of access, such
as read and write/modify, which are termed scopes, and for a
specific time interval. The OAuth 2.0 authorization flows can
involve intermediate messages exchanged before the access
token is provided by the authorization server. The details of
the authorization flow does not impact the general approach of
the proposed models, hence in our discussion we only consider
the initial client request and the authorization server’s response
containing the access token.

One type of access tokens are bearer tokens. Bearer to-
kens allow the holder (bearer) of the token, independently
of its identity, to access the protected resource. OAuth 2.0
assumes secure communication between the different entities.
Moreover, it assumes that the protected resource is always
connected to the Internet, hence can communicate with the
authorization server to check the validity and scope of the
access tokens presented by clients requesting resource access.
Both of the above two requirements are not always possible
in constrained environments [/1].

JSON Web Token (JWT) is an open standard that defines a
compact format to transmit claims between parties as a JSON
object [4]. JWTs can use the JSON Web Signature (JWS)
structure to allow claims to be digitally signed or integrity
protected with a Message Authentication Code (MAC) [3].
Hence, unlike simple bearer tokens, JWT/JWS tokens are
self-contained, i.e., they include all the necessary information
for the protected resource to verify their integrity without
communicating with the authorization server. Of course, this
requires that during its initialization or configuration phase
the protected resource is cryptographically bound with the
authorization server.

In constrained environments, in addition to intermittent or
no connectivity, the communication between the client and
the protected resource is not secure, hence transmitting bearer
tokens or self-contained JWTs over such insecure links can

allow other parties to obtain them through eavesdropping. For
this reason, in constrained environments Proof-of-Possession
(PoP) tokens are used [2]]. PoP tokens include a normal access
token, such as a JWT/JWS, and a PoP key [6]: access to the
protected resource is not possible solely with the access token;
the PoP key is necessary. Hence, the PoP key must be kept
secret and not transmitted in cleartext over insecure links.
Finally, more efficient encoding of JWTs based on CBOR
(Concise Binary Object Representation) has been recently
proposed to reduce the amount of data transferred [2].

III. COMBINING OAUTH 2.0 WITH BLOCKCHAINS

The advantages from combining OAuth 2.0 with
blockchains and smart contracts are the following:

e OAuth 2.0 typically requires the resource owner to be
online. Combining OAuth 2.0 with blockchains allows
authorizations to be linked to payments on the blockchain,
without requiring the online interaction with the resource
owner to provide consent.

o Blockchains can immutably record hashes of the informa-
tion exchanged during the OAuth 2.0 message flow and
cryptographically link authorization grants to payments,
providing indisputable receipts in the case of conflicts.

o Smart contracts can encode policies in an immutable and
transparent manner. Policies can depend on payments as
well as other IoT events recorded on the blockchain.

e Smart contracts run on a distributed platform and typi-
cally involve an invocation cost, hence handling access
requests by smart contracts can protect against DoS
attacks that involve a very high request rate.

Asynchronous authorization, where authorization requests are
accepted by the authorization server according to policies
defined by the resource owner, without requiring synchronous
interaction with the resource owner, is supported with ACE-
OAuth [2] and User-Managed Access (UMA) [7].

We present two models which involve a different level of
integration with blockchains and smart contracts, and have
different tradeoffs in terms of privacy, delay, and cost:

o Linking authorization grants to blockchain payments and
recording authorization information on the blockchain.

o Smart contract for handling authorization requests and
encoding authorization policies.

A hash-lock is a cryptographic lock that can be unlocked by
revealing a secret whose hash is equal to the lock’s value
h. Unlocking a hash-lock can be one of the conditions for
performing a transaction or for executing a smart contract
function. On a single blockchain, a hash-lock can be linked to
an off-chain capability, e.g., message decryption, if the hash-
lock secret is the secret key that can decrypt the message.
Time-locks are locks on a blockchain that automatically
unlock after an interval has elapsed. The time interval can be
measured in absolute time or can be measured in the number
of blocks mined after a specific block. One usage of time-locks
are refunds: a user (payer) can transfer an amount of currency
to a smart contract address, in the form of a deposit. The smart

contract can have a function for a second user to transfer the
deposit to another account (the payee’s account). However, if
the second user never calls this function, then the first user’s
deposit would be locked indefinitely in the smart contract’s
account. To avoid such indefinite locking of funds, the smart
contract can also include a refund function that allows the first
user to transfer the amount deposited from the smart contract
account back to the user’s account; however, this function can
be called only after some time interval, which is the interval
in which the second user must transfer the deposit from the
smart contract account to the payees account. Both hash-locks
and time-locks are used in the models presented below.

Contracts that include both hash and time-locks are referred
to as hash time-locked contracts (HTLCs) [8]]. Hash and time-
locks can be implemented in blockchains with simple scripting
capabilities, such as the Bitcoin blockchain, without requiring
elaborate programming capabilities of smart contracts. Hash
time-locked contracts have been used for atomic cross-chain
trading (atomic swaps) [9], [LO] and for off-chain transactions
between two parties that do not trust each other [11].

A problem that is not addressed in this paper is how to
verify that the IoT device is legitimate or to verify that the
IoT device and the authorization server share a common secret;
these problems are addressed in [12]].

In the models presented below, we assume that the Thing
(IoT device) providing the resource that the client wants to
access is constrained. The client sends a resource access
request to the URL of the authorization server (first model)
or to the ABI (Application Binary Interface) of the smart
contract that is responsible for handling access to the IoT
device (second model). The URL or ABI can be obtained by
having the client send a query to the IoT device or using some
discovery mechanism. Finally, in both models we assume that
the client, the resource owner, and the authorization server
have an account (public/private key pair) on the blockchain.

A. Linking authorization grants to blockchain payments and
recording hashes of authorization information

With this model the initial communication between the
client and the authorization server (AS) occurs as in the
normal OAuth 2.0 framework, Figure However, instead
of the AS providing the client with authorization credentials
after consent is given by the resource owner, the authorization
credentials are disclosed after the payment for resource access
is recorded on the blockchain. Hence, the resource owner does
not need to be online to provide consent, as in the case of the
normal OAuth 2.0 procedure.

Specifically, in step 1 the client requests resource access
from the AS over a secure channel. The AS generates a random
PoP (Proof-of-Possession) key, which in step 2 it sends to
the client together with its encryption with the secret keyﬂ
Thing, shared by the Thing and the AS; the client can use
this PoP key to establish a secure communication link with

IThe secret key that the Thing and AS share is established during the
configuration phase, when the Thing is bound to the AS.

[Client]

@ Request

[Blockchain] AS
OAuth2/ACE exchange
with E(token) instead
Eryug(PoP), PoP, E (token), h, price @ of token

Les]

h=Hash(s)

—

Submitted transaction metadata: Hash(token) and

Hash(Eqy,(PoP), PoP, E,(token))
Hash time-locked payment: client deposits amount that
Client deposit is transferred to resource owner with pre-image s
—_—
D — @ After step 5, payment is
Gets transferred to resource
Decrypt E(toker) owner account

to get token

No modifications to

Ep,p(Request, token), Eq,;, (PoP)
i OAuth2/ACE, token format

Fig. 1. Model 1: Authorization grants are linked to blockchain payments and
hash of information communicated using OAuth is immutably recorded on
the blockchain.

the Thing (IoT device). Also, the AS sends to the client
the access token encrypted with a secret s, E;(token), the
hash h = Hash(s) of the secret s, and the price for the
level of resource access that is requested. The secret s is
a one-time secret randomly generated by the AS for each
individual request, and is required for the client to decrypt
E,(token) and obtain the access token; the AS will reveal the
secret s once it confirms that the payment for resource access
is performed on the blockchain. The difference with normal
OAuth 2.0, in addition to the AS responding immediately to
the resource access request without obtaining consent from
the resource owner, is that the AS sends the encrypted access
token F,(token) instead of the access token in plaintext. Also,
the AS sends the hash A and the price for resource access.
Communicating the price from the AS to the client allows
different levels of resource access, which are encoded in the
access token, to correspond to different prices.

In step 3, two hashes are submitted to the blockchain: the
first one is the hash of the token that the AS will reveal once
payment has been confirmed. The second one is the hash of
three items: the PoP key encrypted with the secret key the AS
shares with the Thing Erping(PoP), the PoP key, and the
encrypted token F(token); the second hash serves as proof
of the information that is communicated using OAuth between
the AS and the client. The two hashes immutably record on
the blockchain the information that has been exchanged, which
can be validated in the case of disputes; however, they do not
ensure that the access token the client obtains from the AS
indeed allows access to the Thing.

Additionally, in step 3 a hash time-locked payment contract
is created on the blockchain, which allows the client to deposit
an amount equal to the requested price (step 4). This amount
will be transferred to the resource owner’s account if the secret
s (hash-lock) is submitted to the contract by the AS (step 5)
within some time interval. If the time interval is exceeded,
then the client can request a refund of the amount it deposited.
Once the secret s is revealed, the client can obtain s from the
blockchain (step 6) and decrypt F(token), thus obtain the
access token. At this point, the client has all the necessary

@ Request

Blockchain

I Epying(POP), Epcjien (POP),

E(token), h @
—

Hash time-locked payment enabled: client
deposits amount which is transferred to
resource owner account with pre-image s

Client deposit
-
-®

After step 5, payment is
transferred to resource
owner account

h=Hash(s)

Get s to decrypt E (token) and
get Ex,(POP), Epgien; (POP) e

No modifications to
OAuth2/ACE, token format

Ep,p(Request, token), Eq,;, (PoP)

Fig. 2. Model 2: Smart contract handling authorization requests and encoding
authorization policies.

information to request access from the Thing, using normal
OAuth 2.0 with the modifications from the ACE framework.

B. Smart contracts for handling authorization requests and
encoding authorization policies

In the second model, a smart contract is used to transpar-
ently record prices and other authorization policies defined by
the resource owner, which is also the owner of the smart con-
tract. Examples of such policies include permitting resource
access to specific clients, determined by their public keys on
the blockchain, and dependence of access authorization on IoT
events that are recorded on the blockchain.

Whereas in the previous model the client and the AS
communicated directly, in this model the interaction is through
the smart contract, Figure E} The smart contract code is
executed by all blockchain nodes, providing a secure and
reliable execution environment; this provides higher protection
against DoS attacks, compared to the model in Section [[II-A]
where resource access requests are sent directly to the AS. An
additional advantage achieved by allowing a smart contract
to handle resource authorization requests is that the smart
contract can securely bind the protected resource with the AS
responsible for handling authorization requests.

As in the model of Section [II-A] a hash time-locked
payment is enabled, allowing the client to deposit an amount
corresponding to the resource access price. The amount is
transferred to the resource owner’s account if the secret s that
unlocks the hash-lock is revealed. Once revealed, the client
can obtain the secret s, together with the other necessary
authorization information to access the protected resource.
If the blockchain is public, then s can be read by anyone,
hence everyone can obtain the access token. However, the
access token cannot be used alone, since the PoP key is
also required for accessing the resource. Nevertheless, privacy
concerns might require that the token is kept secret; this can
be achieved by encoding the token with the client’s public key.

In this scenario, the AS sends to the smart contract the PoP
key encrypted both with the Thing’s key, Erping(PoP), and
with the client’s public key, Epgciient(PoP). Hence, only

TABLE I
GAS FOR THE TWO OAUTH 2.0 - BLOCKCHAIN MODELS

[[Gas |
Model 1: payments and 102476
recording of hashes
Model 2: smart contract | 366277
handling access requests

the Thing and the client can obtain the PoP key. On the other
hand, in the model of Section the PoP key was sent
from the AS to the client over a secure communication link,
hence its encryption was not necessary.

IV. EVALUATION

For the evaluation we have deployed a local Ethereum node
running Go-Ethereunf] that was connected to the Rinkeby[]
public Ethereum testnet. The local node runs on a computer
with a 4 core CPU at 3.40 GHz, 16 GB RAM, and 64 bit
Ubuntu. Smart contracts were written in Solidity with the
Remixt] web-based editor. The authorization server was based
on a PHP implementation of the OAuth 2.0 frameworkﬂ The
client used Web3.js to interact with the Rinkeby blockchain.

Table [[| shows that the second model requires more than
three times the amount of gas, hence more than three times the
amount of EVM (Ethereum Virtual Machine) resources, com-
pared to the first model; this quantifies the tradeoff between the
advantages of the second model, as discussed in Section [[II-B]
and its higher cost. Regarding the delay, Figure [I] shows that
the first model has three blockchain transactions and Figure
shows that the second model has four transactions. Since the
total delay is expected to depend mainly on the block mining
time, the second model is expected to have a 33% higher delay
for responding to authorization requests.

V. RELATED WORK

The work in [13] presents a blockchain-based authorization
system where authorization proofs can be efficiently verified.
The work in [14] presents a blockchain-based decentralized
access control system where IoT devices interact directly
with the blockchain and are always connected, while [15]]
presents a system where policies and access control events
are directly recorded on Bitcoin’s blockchain. [16] presents
a smart contract-based system for providing access control
to IoT devices while satisfying access policies in terms of
the minimum time interval between consecutive accesses. The
above works all assume that the IoT device can directly
access the blockchain, which is not possible in constrained
IoT environments.

The work in [17] presents a system based on OAuth 2.0
where a smart contract generates authorization tokens, which
a key server obtains in order to provide private keys that
allow clients to access a protected resource. The work of [18]
contains a high level description for using smart contracts
with OAuth 2.0 to allow users to freely select the server

2https://geth.ethereum.org/
3https://www.rinkeby.io/
4https://remix.ethereum.org/
Shttps://github.com/bshaffer/oauth2-server-php

that provides authorization to their protected resource. The
difference of this paper is that we present two different
models, with different tradeoffs, for integrating OAuth 2.0 with
blockchains, utilizing hash and time-lock mechanisms.

VI. CONCLUSIONS AND FUTURE WORK

We have presented two models for utilizing blockchain and
smart contract technology with the OAuth 2.0 authorization
framework, which have different tradeoffs in terms of privacy,
delay, and cost. Ongoing work is investigating using different
ledgers for authorizations and payments, and providing decen-
tralized authorization using multiple ASes.

ACKNOWLEDGEMENTS

This research has been undertaken in the context of project
SOFIE (Secure Open Federation for Internet Everywhere),
which has received funding from EU’s Horizon 2020 pro-
gramme, under grant agreement No. 779984.

REFERENCES

[1] L. Seitz et al., “Use Cases for Authentication and Authorization in
Constrained Environments,” RFC 7744, IETF, January 2016.

[2] ——, “Authentication and Authorization for Constrained Environments
(ACE) using the OAuth 2.0 Framework (ACE-OAuth),” IETF Draft,
February 14, 2019.

[3] D. Hardt et al., “The OAuth 2.0 Authorization Framework,” RFC 6749,
Standards Track, IETF, October 2012.

[4] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” RFC
7519, Standards Track, IETF, May 2015.

[S] ——, “JSON Web Signature JWS),” RFC 7515, Standards Track, IETF,
May 2015.

[6] M. Jones, J. Bradley, and H. Tschofenig, “Proof-of-Possession Key
Semantics for JSON Web Tokens (JWTs),” RFC 7800, Standards Track,
IETF, April 2016.

[71 E. Maler et al., “User-Managed Access (UMA) 2.0 Grant for OAuth
2.0 Authorization,” May 25, 2017, last accessed 24/02/2019. [Online].
Available: https://docs.kantarainitiative.org/uma/wg/oauth-uma- grant-2.
0-05.html

[8] Bitcoin Wiki, “Hashed Timelock Contracts (HTLC),”
https://en.bitcoinwiki.org/wiki/Hashed_Timelock_Contracts, last
accessed 24/02/2019.

[9] X “Atomic cross-chain trading,”

https://en.bitcoinwiki.org/wiki/Atomic_cross-chain_trading, last
accessed 24/02/2019.

V. Buterin, “Chain Interoperability,” R3 Report, September 2016.

J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable
o-chain instant payments,” https:/lightning.network/lightning-network-
paper.pdf, January 14, 2016, last accessed 24/02/2019.

N. Fotiou, V. A. Siris, and G. C. Polyzos, “Interacting with the Internet
of Things using Smart Contracts and Blockchain Technologies,” in Proc.
of 7th Int’l Symp. on Security & Privacy on Internet of Things, in
conjunction with SpaCCS, 2018.

M. P. Andersen et al., “WAVE: A Decentralized Authorization System
for IoT via Blockchain Smart Contracts,” University of California at
Berkeley, Tech. Rep., December 2017.

R. Xu et al., “BlendCAC: A BLockchain-ENabled Decentralized
Capability-based Access Control for IoTs,” arXiv:1804.09267v1, April
2018.

D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access control,”
in Proc. of 17th IFIP Distributed Applications and Interoperable Systems
(DAIS), 2017.

Y. Zhang et al., “Smart Contract-Based Access Control for the Internet
of Things,” arXiv:1802.04410, February 2018.

O. Alphand et al., “loTChain: A blockchain security architecture for the
Internet of Things,” in Proc. of IEEE WCNC, 2018.

T. Hardjono, “Decentralized Service Architecture for OAuth2.0,”
March 25, 2018. [Online]. Available: https:/tools.ietf.org/html/
draft-hardjono-oauth-decentralized- 02

[10]
(11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

https://docs.kantarainitiative.org/uma/wg/oauth-uma-grant-2.0-05.html
https://docs.kantarainitiative.org/uma/wg/oauth-uma-grant-2.0-05.html
https://tools.ietf.org/html/draft-hardjono-oauth-decentralized-02
https://tools.ietf.org/html/draft-hardjono-oauth-decentralized-02

	I Introduction
	II Authorization in constrained environments
	III Combining OAuth 2.0 with blockchains
	III-A Linking authorization grants to blockchain payments and recording hashes of authorization information
	III-B Smart contracts for handling authorization requests and encoding authorization policies

	IV Evaluation
	V Related work
	VI Conclusions and future work
	References

