
Research in Visible Light Communication Systems
with OpenVLC1.3

Ander Galisteo
IMDEA Networks Institute &

Universidad Carlos III de Madrid
Madrid, Spain

ander.galisteo@imdea.org

Diego Juara
IMDEA Networks Institute

Madrid, Spain
diego.juara@imdea.org

Domenico Giustiniano
IMDEA Networks Institute

Madrid, Spain
domenico.giustiniano@imdea.org

Abstract—In this paper, we present the design and implemen-
tation of our latest OpenVLC1.3 platform to perform research in
Visible Light Communication Systems. We retain the advantages
of the previous versions such as TCP/IP layers support, soft-
ware programmability and low-cost front-end. We re-design the
transceiver to support higher modulation rates and sensitivity.
This allows us to reach a throughput of 400 kb/s (a factor of 4
with respect to the previous version) and increase the distance
by a factor of 3.5. We further improve the software robustness
of the system and reduce the form factor at similar hardware
cost.

I. INTRODUCTION

Visible Light Communication is gaining significant interest
as a medium to connect to the Internet [1]–[3]. In the last few
years, a range of applications have been developed with low-
end Visible Light Communication (VLC) platforms: human
sensing [4], communication with toys [5], mobile interac-
tion [6], indoor localization [7], [8] and passive VLC [9], [10].
Industry interest is also resulting in the establishment of the
IEEE 802.11bb task group, where the objective is to amend the
Medium Access Control (MAC) and Physical Layer (PHY) of
IEEE 802.11 with Light Communications [11].

To solve the lack of an open-source and flexible platform
for low-end VLC research, we introduced OpenVLC at the
VLCS’14 workshop [12], that allowed for quick and flex-
ible testing of new VLC protocols and applications. More
recently, we introduced OpenVLC1.2 [13] with the attempt of
increasing the data rate. However, the board was still working
only at relative short range and was largely affected by light
interference.

In this paper, we introduce the latest version of our platform,
OpenVLC1.3, that increases the data rate and the communica-
tion range without adding any hardware cost to the platform.
Our contributions are as follows:
• We make a design that occupies a smaller physical space,

improve the hardware of OpenVLC1.3 and add high-pass
and low-pass filters to minimize the effect of noise in
the system, including the Direct Current (DC) from other

The project that gave rise to these results received the support of a
fellowship from ”la Caixa” Foundation (ID 100010434). The fellowship code
is LCF/BQ/ES16/11570019.

Fig. 1: OpenVLC1.3 cape on top of an embedded board.

illumination sources and high-frequency components from
the circuitry such as the overshooting generated by the
amplification stages.

• We improve the software stability and make a new design
in software to modulate the LED light. This allows us to
perform sampling rate over 2 MHz and achieve a UDP
throughput of about 400 kb/s. This throughput could fulfill
the needs of a range of applications with only off-the-shelf
low-end hardware.

• We design a new technique for computation- and memory-
limited fast frame detection to solve the problem of con-
strained memory in the microcontroller.

• We design and implement a new reception mechanism
to avoid the synchronization problems present in previous
versions of OpenVLC.
The rest of this paper is organized as follows. Section II

introduces the background on OpenVLC and a high level view
of the system architecture. Details on the design of hardware,
firmware and driver for the transmitter (TX) and receiver (RX)
are presented in Section III and Section IV, respectively. The
evaluation results are reported in Section V and the limits
of the OpenVLC1.3 in Section VI. Finally, discussions and
conclusion are drawn in Section VII.

II. NEW SYSTEM ARCHITECTURE

The new version of OpenVLC consist of four parts: the
BeagleBone Black (BBB) embedded board [14], the OpenVLC
cape, the OpenVLC firmware and the OpenVLC driver. The
OpenVLC cape is the front-end transceiver that is attached
directly to the BBB. The OpenVLC firmware uses real-978-1-5386-4980-0/19/$31.00 2019 IEEE

ar
X

iv
:1

81
2.

06
78

8v
2

 [
cs

.N
I]

 5
 M

ar
 2

01
9

TABLE I: Comparison between OpenVLC versions.

TX HW TX SW RX HW RX SW Data rate
OpenVLC1.0 High Power LED Kernel software Basic components Running in Kernel 18kb/s

OpenVLC1.2 Support for higher power
LED and faster modulation

Firmware with user space
connection

Faster PD and
external amplifier

New frame detection and
faster reception in firmware 100kb/s

OpenVLC1.3 More powerful LED
and external power

Faster firmware and
direct connection to Kernel

Filters to remove interferences
and reduced cape size

New frame and
symbol detection 400kb/s

Application layer

Transport layer

Network layer

VLC MAC

Non-time
sensitive VLC PHY

TCA

TIATime sensitive
VLC PHY

Kernel Space

User Space

HardwareSoftware

OpenVLC Driver

PRU

LED

PD

Fig. 2: The diagram of OpenVLC1.3.

time processing in the BBB’s Processing Real-time Units
(PRUs), that work as microprocessors. The OpenVLC driver
is a module in the Linux kernel. Both the firmware and the
kernel module implement the VLC MAC and PHY layers
and implement primitives such as sampling, symbol detection,
coding/decoding and Internet protocol interoperability. Also,
OpenVLC1.3 retains the best characteristics of previous ver-
sions, being flexible and open-source and communicating with
a low-cost front-end.

With respect to its predecessor, the architecture of Open-
VLC1.3 has been re-designed in order to increase the network
performance. The new hardware (HW), called OpenVLC1.3
cape, is shown in Fig. 1. The OpenVLC1.3 cape has been
modified, reducing its surface by more than 50%. This also
allows to use the remaining pins to connect sensors, for
instance for Internet of Things applications.

The system architecture of OpenVLC1.3 is shown in Fig. 2.
The hardware runs on external power to allow higher power
consumptions and harnesses the new LED and Photodiode
(PD), together with ancillary circuits, to transmit and receive
visible light signals, respectively. The software is responsible
for modulating the LED light in order to transmit and sample
the incoming signals to receive, both implemented in the
OpenVLC1.3 firmware. The software also implements the
MAC layer and part of PHY layer in the OpenVLC1.3 driver.

There are three main differences in the design comparing
OpenVLC1.3 to its predecessors:
• A new design of the OpenVLC cape (hardware).
• A new system architecture (both in software and hardware).
• A firmware implemented in the PRUs for data transmission

as well as frame and symbol detection (software).
To boost the date rate in OpenVLC1.3, we exploit the

PRUs of the BBB. Time-sensitive operations are implemented
in the 2 PRUs that control the General Purpose Input-
Output (GPIO) to modulate LED light and perform sampling
of incoming signals. This separation was also proposed in
OpenVLC1.2, but resulted in overall lower performance and

required some module in user space. Communication between
the driver and the firmware is now performed using a shared
memory. A new technique for computation- and memory-
limited frame detection also resides in the firmware (the details
are presented in Sec. IV). The OpenVLC driver implements
the MAC protocol and non-time sensitive PHY operations.
This maintains the advantages of software-based flexibility and
programmability while increasing its performance.

OpenVLC1.3 is already available to the research commu-
nity1. A summary of the improvements of each version can
be found in Tab. I.

A. Data exchange

The data stream is received in the driver from upper layers.
The VLC frame is prepared and then the symbol stream is sent
to the shared memory from where it is read by the firmware in
the PRU, as seen in Fig. 2. The PRU then controls the GPIOs
to modulate the LED light for data transmission.

At the receiver, light signals are detected by the PD and
sampled by the firmware in the PRUs. Once a valid preamble
and Start-Frame-Delimiter (SFD) are detected, received data
is sent to the shared memory, and then received and processed
by the OpenVLC driver. Finally, the received data is sent to
the network layer, where it is handled using the TPC/IP Linux
kernel.

B. Firmware

The firmware of OpenVLC runs in the PRUs of the BBB,
which operates at 200 MHz, meaning that each instruction
takes 5 ns. Each PRU has its own memory and a shared one
between the two. The size of each memory of the PRUs is 8KB
and the shared memory is 12KB. The reason behind adopting
the PRUs in OpenVLC is to increase the data rate and handle a
higher sampling frequency of the Analog-to-Digital Converter
(ADC). Nevertheless, this effort also requires a tight timing
precision in both the modulation and sampling processes. For
this reason, assembly is used to program the PRU. In this way,
the code of the PRU has been designed to know the exact
number of instructions executed and, subsequently, the time
required to execute them. In addition, the memory space in
the PRU is very limited and this requires careful optimization
of all instructions. Finally, there is no enough memory to
implement queues, and as such, the communication between
the PRU and upper layers must be handled carefully.

C. Kernel Driver

The main objective of OpenVLC is to have a flexible,
low-cost and reconfigurable system for communication using

1www.openvlc.org

www.openvlc.org

TABLE II: Frame format and sizes (in bytes).

Preamble SFD Frame Length Dst. Address Src. address Payload Reed-Solomon
3 1 2 2 2 0-MAX 16

visible light. In order to do so, OpenVLC1.3 has been designed
to be as versatile and easy to use as possible. For this reason,
we have taken two design decisions:
• OpenVLC is mostly code-based and the use of VLC hard-

ware is as small as possible. This makes easy to modify
the behavior of the platform just by modifying the software
code, such as introducing new MAC protocols.

• OpenVLC should be easy to use and adaptable to most
use case scenarios. Taking this into account, OpenVLC’s
interface has been designed as a Linux kernel module.
The OpenVLC kernel module allows us to create a network

interface. This means that any user will see the OpenVLC
module as if it is just another network device such as Wi-
Fi or Ethernet and any application that we would like to run
would be connected through the VLC network interface. As
the kernel runs in the processor of the BBB, its processing
power is much higher than the one of the PRU microcontroller.
For this reason, the most computationally demanding tasks are
left in the kernel.

III. TRANSMITTER

In this section we present all the different parts that allow
OpenVLC to perform a VLC transmission.

A. Kernel module for transmission
When a user space application transmits data, first the packet

is received from the IP layer of the kernel. After unwrapping
the frame, the driver prepares the header for the VLC MAC
layer. The frame structure is presented in Table II. Each frame
starts with a frame header that contains the following fields:
preamble, SFD, frame length, destination address and source
address. Each field in the MAC header (starting from the frame
length) can be freely modified, for instance to adapt it to the
IEEE 802.15.7-2011 standard for VLC [15] and upcoming
802.11bb standard for integration with Wi-Fi [11].

The preamble consists of 24 alternating HIGH and LOW
symbols. After that, the SFD is appended to avoid false
positives. The next field denotes the length of frame in bytes,
followed by the destination and source addresses.

We use Reed-Solomon code to correct errors in the data
field during the transmission. The bits for Reed-Solomon are
appended to the frame. We use Reed-Solomon (216,200) error
correction code in our default configuration. Subsequently, we
use Manchester line encoding, which encodes one bit into two
symbols with On-Off-Keying (OOK) modulation (a symbol is
either a HIGH or a LOW) and it ensures that the average
signal power remains constant. In particular, Manchester line
coding converts a 1 bit into a LOW-HIGH symbol pair and a
0 into a HIGH-LOW. This is done to avoid flickering. Both
Reed-Solomon code and Manchester encoding are also used
in the 802.15.7-2011 standard [15]. Finally, the driver places
the VLC frame in a shared memory, so that the OpenVLC
firmware in the PRU can access it.

PRU 0

OpenVLC
driver

0 1 2 3 … n

Size: 8KB

(a) Memory sharing
between the Open-
VLC driver and the
PRU0 at the trans-
mitter.

PRU 0 PRU 1

OpenVLC driver

0 1 2 3 … nVLC Channel

0 1 2 3 … n

Size: 8KB

Size: 12KB

(b) Memory sharing between the PRUs and
between PRU1 and the OpenVLC driver at the
receiver.

Fig. 3: Memory interface of OpenVLC1.3 (‘#’ stores the
physical address of the latest updated data).

B. Shared memory

In Fig. 3(a) we show how the shared memory is used in
OpenVLC. The kernel driver transmit data to the PRU using a
shared memory. The first 32-bits (referred as the first ‘register’
in the rest of this paper) of the shared memory are the only
space where the PRU can write data. This register is used to
exchange status flags between the kernel and the PRU.

The communication works as follows: the PRU constantly
reads the value of the first register. If it is zero, it reads it again
in a loop, waiting for its value to change. If the kernel receives
data from upper layers, it will modulate it and put it the shared
memory. When it finishes, it writes in the first memory address
the number of registers that the PRU should read. The kernel
will not be able to write into the shared memory again until the
PRU finishes the transmission. The PRU will then transmit the
data and once it finishes, it changes the flag in the first memory
register to zero so that the kernel knows that the memory is
available again.

C. Firmware for signal transmission

For the transmission, the PRU is used for the sole purpose
of emitting the visible light signal according to the pattern of
HIGH and LOW symbols stored in the shared memory. Two
PRUs are available in the BBB, and only one PRU is used for
transmitting the signal. We implement a counter to track the
time between symbols. When it reaches zero, a new symbol
is transmitted. In order to transmit each symbol, a HIGH or
LOW signal is sent through one of the pins of the BBB. In
the current implementation, HIGH corresponds to emitting the
visible light signal and LOW to not emitting any signal.

D. Hardware improvement

The main purpose of the TX circuit is to take the signal
given by the BBB and amplify it to turn the LED on/off.
As mentioned above, the HW is controlled using the firmware
implemented in the BBB’s PRUs. The HW used for the Open-
VLC transmitter can be seen in Tab. III. We have improved the

TABLE III: Main components of OpenVLC1.3.

Component Name
ADC ADS7883

OP-AMP LTC6269
MOSFET FQPF30N06L

LED XHP35A-01-0000-0D0HC40E7CT
Lens TINA FA10645
PD SFH206K

DC-DC LM2585SX-ADJ

TX circuit compared with previous versions mainly to support
a higher transmission rate and a larger communication range.
• Increase the transmission rate: we use a PRU at the TX

to modulate the LED light at higher speeds. Moreover, we
use a MOSFET gate driver transistor to control the current
flowing to the LED and support a faster switch.

• To expand the communication range: a LED that maximizes
the power supported by the transmission circuit, working
at 2.8 W with a luminous flux of 400 lm. A lens has
been attached on top of the LED to better concentrate the
optical power and thus, reach further distance. A heat-sink
is attached to better dissipate the heat generated by the high-
power LED.

IV. RECEIVER

In this section we explain the design and behavior of the RX.

A. Hardware for reception

In the previous versions of OpenVLC, the bottleneck for
the throughput was the RX’s sampling rate. In OpenVLC1.3,
this is solved partly by introducing a new faster photodiode
(PD). This PD does not have its own amplifying circuit. Thus,
we add an external amplifier to the RX. The PD’s position in
the cape is also adjusted for a better detection of visible light.
The most important components are shown in Tab. III.

The bottleneck of the system for the transmission distance
on the reception circuit was the high sensitivity to noise on
the receiver circuit. For this reason, a reception chain has been
added between the PD and the ADC. In previous versions there
was only an amplification stage between the PD and the ADC.
In this version, as seen in Fig. 4, the first amplification stage
is a low-noise Trans-Impedance-Amplifier (TIA) that converts
the current of the PD into voltage.

Subsequently, a high-pass filter is used in order to remove
the low frequency components (specially the DC component
from other illumination sources). The cut-off frequency of this
filter is 10 KHz. This filter allows us to remove the DC light
component and other sources of interference. Although non-
visible for the human eye, a light flickering at this frequency
would distort the VLC signals. After this, a DC component of
2.5 V is added to the signal so that the signal is centered at
half the span of the ADC. Then, the second amplification stage
prepares the signal for the dynamic range of the ADC. Finally,
before the ADC, a low-pass filter with cut-off frequency
of 1.1 MHz removes the higher frequency noise components
mainly due to overshooting of the amplifiers.

Photodiode

1st Amplification stage 2nd Amplification stage

High pass filter Low pass filter

Fig. 4: Reception chain.

B. Firmware for signal reception

The configuration of the RX is more complex than of the
TX. It requires two PRUs. One for handling the HW in a very
precise manner and another for processing the received signal.

One of them, PRU0, performs signal sampling from the
ADC and obtains the Received Signal Strength (RSS) and
sends it to the other PRU, PRU1, that handles signal detection
and the process of converting the raw signal into bits. PRU0

reads the RSSs from the ADC at a frequency higher than twice
the symbol rate.

Then, the raw value from the channel is shared with PRU1.
PRU1 interprets the RSSs into symbols for frame detection.
PRU1 continuously checks if a new RSS has been read by
PRU0. If yes, PRU1 processes it immediately.

1) The bit slip problem: One of the most sensitive stages in
a communication system is the correct reception of transmitted
symbols. One of the main problems with low-cost systems
is that TX and RX get easily desynchronized over time.
Their clocks are not exactly the same and the frequencies
at which they run are slightly different. This could make
the system sample a symbol twice or miss a symbol. This
problem is known as “bit slip” [16]. In the older OpenVLC1.2,
the TX and RX frequency were adjusted to the instruction
level. This meant that there are exactly the same number of
instructions between two symbols transmission and between
two symbols reading. However, the clocks in the TX and RX
always run at slightly differently frequency, and thus, part of
the synchronization problems was still present.

In order to solve this problem, we need to make sure that:
• All the symbols are sampled at least twice.
• The system should detect if a symbol has been sampled

more than twice.
OpenVLC1.3 over-samples the signal to assure that all the

symbols are sampled at least twice. The higher the oversam-
pling rate, the more information the system is going to have to
detect the symbol correctly. Nevertheless, a high oversampling
rate requires a fast processing. In our case, in order to fulfill
the requirements mentioned above, the sampling frequency
fsampling should be:

2fsymbol < fsampling < 3fsymbol (1)

With this configuration, OpenVLC1.3 makes sure that we
always receive at least 2 sample per symbol and a maximum
of 3. It is not possible to receive 4 samples per symbol,
which is necessary to assure the second condition. In the
implementation, we modulate at 1 MHz and sample at the
receiver at a rate of 2.1 MHz.

The symbol detection in OpenVLC1.2 was just a threshold-
ing algorithm with one sample per symbol with the consequent

(a) 1 sample per symbol (sym-
bol lost).

(b) 2 sample per symbol (no
symbol lost).

Fig. 5: Bit sleep problem. The red circles represent the ideal
sampling time. The grey stars represent the real sampling time
given by the drift.

bit sleep problem. In OpenVLC1.3, we avoid this by using
a pseudo-edge detection algorithm. Manchester modulation
converts a 1 bit into a LOW-HIGH symbol pair and a 0
into a HIGH-LOW. This means that the maximum number
of symbols with the same value is 2. There cannot be more
than 2 consecutive HIGHs or LOWs. With two samples per
symbol, the system makes sure to read at least each symbol
twice, at it can be seen in Fig. 5.

OpenVLC1.3 can count the number of samples with the
same value. If the number of samples is 2 or 3, only 1 symbol
has been received. If the number of samples is 4 or 5, 2
symbols have been received. This method can be thought as
a very simple and rudimentary edge detection system, as it
looks for changes in the signal to see when a new symbol (or
pair of symbols with the same value, depending on how long
ago was the last change in the signal) has been received.

2) Frame detection: The system assumes that a new frame
is being detected when the last samples received correspond
to the preamble + SFD. The frame detection technique is the
one used in OpenVLC1.2 [13] as it showed to be both low-
complexity in processing (required by our application) and
very effective. This technique works as follows: First, the RSS
values read are compared with their previous values. Because
at the beginning of a frame in the preamble (0xAAAAAA)
every HIGH is between two LOWs and every LOWs between
two HIGHs, every symbol is different from the previous one.
If the value of the last 24 bits received is not the same as the
preamble, the system continues to collect samples. If it does,
continues receiving data.

Once the preamble is detected it continues receiving the rest
of the frame. Once received and demodulated, the data is sent
to the OpenVLC driver for further processing.

3) Communication between PRUs: The signal reception
starts with the PRU0 reading values from the ADC and putting
them in a memory shared by both PRUs. This memory is used
as a circular memory. When it reaches the end, it continues
filling the beginning of the shared memory. In the first register,
the address of the latest memory where data has been written
is stored as illustrated in Fig. 3(b). In this way, PRU1 is able to
keep track of the RSS obtained by PRU0 in real time. Then, the
PRU1 processes the samples taking two symbols at a time, to
determine if the encoded Manchester bit is a 1 or a 0. If they
contain valid data, it is decoded and shared with the kernel
using the same process as for the transmitter.

C. Kernel for reception

The frame is received by the kernel after being converted
from symbols to bits in the PRU. The Reed-Solomon code is
checked with three possible outputs:
• The Reed-Solomon reports no errors, so the packet is

forwarded.
• The Reed-Solomon shows some errors that is able to correct,

so corrects them and forwards the packet.
• The Reed-Solomon code shows that there are too many

errors, so discards the packet.
If the packet is forwarded, the kernel encapsulates the packet

so that upper layers can manage it.
Both in the transmission and in the reception of packets,

OpenVLC considers that, although more powerful, the kernel
cannot run in real time. For this reason, two driver queues
are implemented, one for transmission and one for reception.
Every incoming packet that arrives to the kernel is queued
and transmitted to the PRU or to upper layers as soon as
the resources are available. In this way, we minimize the
likelihood of losing a frame because the CPU is occupied.

V. EVALUATION

In this section we evaluate the performance of OpenVLC1.3.

A. Reception chain

In order to understand the behavior of the reception chain
we have measured the raw signal with an oscilloscope. As it
can be seen in Fig. 6, the signal is noisy and small after the
first amplifier. Then, the signal is filtered and centered around
the center of the ADC’s span. Finally, the signal is amplified
and cleaned, to improve the reception.

B. Throughput vs. payload

1) Setup: We use two OpenVLC1.3 nodes, one as TX
and the other as a RX. Since OpenVLC1.3 provides a new
network interface that can be easily accessed by upper layer
applications, we use the tool iperf to evaluate the UDP
performance of OpenVLC1.3.

2) Results: The first test performed is to see how the system
works depending on its payload. In previous versions of
OpenVLC, the payload had a huge impact in the system. If the
payload was too short, the overhead due to the physical layer
headers was too big, decreasing the throughput. Nevertheless,
if the payload was too big, the reception was desynchronized
and the frame lost. As we modify the symbol detection
technique, now no frames are lost due to the size of the
payload. For this reason, the bigger the payload, the better.
All the following tests are done with payloads of 800 bytes.

Throughput vs. distance. This test contains the two most
important parameters regarding VLC. The first one is the
distance at which the VLC communication takes place. The
second one is the maximum throughput achievable by the
system. OpenVLC has been tested over distance under 3
different scenarios. In the first one, the system has been
deployed in a realistic scenario with no artificial lights on (here
OpenVLC is seen as the primary illumination source), but with

0 1 2 3 4 5
Time (s) 10-6

0.2

0.4

0.6

0.8

1

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5
Time (s) 10-6

2.3

2.4

2.5

2.6

2.7

2.8

V
ol

ta
ge

 (
V

)

0 1 2 3 4 5
Time (s) 10-6

1

2

3

4

V
ol

ta
ge

 (
V

)

Fig. 6: Received signal after the first amplifier (left), after the high-pass filter (center) and at the entrance of the ADC (right).

0 2000 4000 6000 8000
Distance (mm)

0

100

200

300

400

T
hr

ou
gh

pu
t (

kb
/s

) W. open
W. closed
Interference

Fig. 7: UDP throughput as a function of the distance.

the windows open during the day (“W. open”). In the second
one, OpenVLC is tested without any external light interference
and the window shutter closed (“W. closed”). In the last one,
we open the windows, and we add an artificial fluorescent light
source with frequency components that enter in the frequency
band of the OpenVLC receiver (“Interference”).

As it can be seen in Fig. 7, the maximum throughput that
OpenVLC achieves is 400 kb/s. Until 3.5 meters, the difference
between being in a completely dark environment (“W. closed”)
and with external light (“W. open”) is negligible, which did not
happen in previous versions. This is due to the filters added
in the reception chain. Then, at 3.5 meters the intensity of
the external light level becomes similar to transmitted light,
making it more difficult for the ADC to differentiate between
HIGH and LOW symbols, so the throughput starts to drop.
When the windows are closed, the communication is possible
at longer range, reaching 6 meters.

In summary, the maximum achievable distance is more than
three times better than the previous version and 6 times better
than the original one. Also, the throughput is 4 times better
than the previous version and more than 22 times better than
the first version [12] [13].

VI. LIMITATIONS OF THE SYSTEM

The OpenVLC1.3 platform has several limitations, as any
real system. The first one is that the throughput can not
be improved without major changes in both software and
hardware. Changing the ADC would increase the cost of
the board and the processing power required to perform the
reception. Also, although technically possible to use OpenVLC
as a transceiver, in the current version, the throughput is
maximized using one board as transmitter and one as receiver.

In addition, the communication is UDP, as there is no return
VLC link in the system. This design decision has been taken
after realizing that:

• The processing power of the BBB’s PRUs is limited, and
having a bidirectional system requires at least twice as
processing power as an one-way link.

• The current trend in networking is that VLC will operate in
hybrid systems, where the downlink is VLC and the uplink
is RF. By using the USB interface in the BBB, users may,
for instance, use Wi-Fi to send uplink data as well as ACKs
for downlink VLC.

VII. CONCLUSION

In this paper, we have presented our latest OpenVLC version
and we have evaluated its performance improvements. To
the best of our knowledge, OpenVLC1.3 is the first low-
cost research platform that achieves a UDP throughput of
400 kb/s using only low-end off-the-shelf hardware. Apart
from being used for research and teaching as its predecessors,
OpenVLC1.3 can enable real-world applications.

REFERENCES

[1] “pureLiFi,” https://purelifi.com/, 2018.
[2] J. Zhang, X. Zhang, and G. Wu, “Dancing with light: Predictive in-frame

rate selection,” in Proc. IEEE INFOCOM, 2015, pp. 1–9.
[3] C. B. Liu, B. Sadeghi, and E. W. Knightly, “Enabling vehicular visible

light communication (V2LC) networks,” in Proc. VANET, 2011.
[4] T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou, “Human sensing

using visible light communication,” in ACM MobiCom, 2015.
[5] N. O. Tippenhauer, D. Giustiniano, and S. Mangold, “Toys communi-

cating with leds: Enabling toy cars interaction,” in IEEE CCNC, 2012.
[6] C. Zhang, J. Tabor, J. Zhang, and X. Zhang, “Extending mobile

interaction through near-field visible light sensing,” in Proc. MobiCom.
ACM, 2015, pp. 345–357.

[7] Y.-S. Kuo, P. Pannuto, K.-J. Hsiao, and P. Dutta, “Luxapose: Indoor
positioning with mobile phones and visible light,” in Proc. MobiCom.
ACM, 2014, pp. 447–458.

[8] C. Zhang and X. Zhang, “Litell: robust indoor localization using un-
modified light fixtures,” in Proc. 22nd Annual International Conference
on Mobile Computing and Networking. ACM, 2016, pp. 230–242.

[9] Q. Wang, M. Zuniga, and D. Giustiniano, “Passive communication with
ambient light,” in ACM CoNEXT, 2016.

[10] X. Xu, Y. Shen, J. Yang, C. Xu, G. Shen, G. Chen, and Y. Ni, “Pas-
siveVLC: Enabling Practical Visible Light Backscatter Communication
for Battery-free IoT Applications,” in ACM MobiCom, 2017.

[11] “802.11bb,” https://standards.ieee.org/develop/project/802.11bb.html,
2018.

[12] Q. Wang, D. Giustiniano, and D. Puccinelli, “OpenVLC: Software-
Defined Visible Light Embedded Networks,” in ACM VLCS, 2014.

[13] A. Galisteo, D. Juara, Q. Wang, and D. Giustiniano, “Openvlc1.2:
Achieving higher throughput in low-end visible light communication
networks,” in 2018 14th Annual Conference on Wireless On-demand
Network Systems and Services (WONS), Feb 2018, pp. 117–120.

[14] “BeagleBone Black,” http://beagleboard.org/Products/BeagleBone+Black,
2018.

[15] “IEEE 802.15.7-2011 - IEEE Standard for Local and Metropolitan Area
Networks–Part 15.7: Short-Range Wireless Optical Communication Us-
ing Visible Light,” https:// standards.ieee.org/standard/802 15 7-2011.
html, 2011.

[16] O. Jung and C. Ruland, “Analysis of the statistical self-synchronization
mode of operation,” ITG FACHBERICHT, pp. 119–126, 2004.

https://standards.ieee.org/standard/802_15_7-2011.html
https://standards.ieee.org/standard/802_15_7-2011.html

	I Introduction
	II New System Architecture
	II-A Data exchange
	II-B Firmware
	II-C Kernel Driver

	III Transmitter
	III-A Kernel module for transmission
	III-B Shared memory
	III-C Firmware for signal transmission
	III-D Hardware improvement

	IV Receiver
	IV-A Hardware for reception
	IV-B Firmware for signal reception
	IV-B1 The bit slip problem
	IV-B2 Frame detection
	IV-B3 Communication between PRUs

	IV-C Kernel for reception

	V Evaluation
	V-A Reception chain
	V-B Throughput vs. payload
	V-B1 Setup
	V-B2 Results

	VI Limitations of the system
	VII Conclusion
	References

