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Abstract—The emerging class of transient computing systems
enables computation to be sustained despite power outages due
to the variable nature of energy harvesting. However, existing
approaches are largely designed for specific architectures, and
hence are not broadly applicable across different IoT devices.
Emerging platforms based on portable, hardware-independent
software should rely on lightweight operating systems (OSs)
designed specifically for embedded IoT applications, such as
Arm mbed OS and Contiki OS. To enable the widespread use
of transient computing, transient approaches need to be inte-
grated into these operating systems. In this paper, we discuss
the challenges of providing software primitives for transient
computing to facilitate hardware-independent implementation
using standard OS APIs, and present the integration of a state-of-
art transient approach, Hibernus into mbed OS. This OS is chosen
due to the large community of developers and the open-source
IoT code availability. Transient computing is offered through a
modular and layered structure that uses the available mbed OS
APIs, including different strategies for retaining the system state
designed for different types of flash memory. To illustrate the
applicability of the proposed design, we implemented Hibernus
on two mbed platforms with different flash memories, which
respectively requires 4.7mF and 4.9mF of additional storage.

Index Terms—Energy harvesting, Transient computing, Inter-
net of Things, Arm mbed programming framework.

I. INTRODUCTION

Recent research on embedded IoT devices has looked to
replace batteries with energy harvesting (EH) sources, in
which the energy is scavenged from the device’s environment
[1]. However, the power from these sources is typically
characterized as being spatially and temporally dynamic, and
uncontrollable [2], [3]. This depends on factors including the
type of harvester, deployment location, time of day, weather,
type of activity, and makes systems susceptible to frequent
power interruptions and resets [4], [5].

To smooth the temporal dynamics of supply and consump-
tion, IoT devices typically incorporate an additional energy
storage. This approach is know as energy neutral operation
and attempts to balance the long-term energy consumption
against the harvested energy [6]. This is typically effective
with systems powered by a controllable EH source, in which
its availability and output can be determined at design time
and controlled at runtime. For these systems, the amount of
energy storage is introduced to accommodate the variability of

this power source. However, this storage does not necessarily
guarantee further application execution with devices powered
by an uncontrollable or scarce EH source (most of the natural
and renewable EH sources, e.g. wind, RFID or thermal). Here,
a system can be subjected to long periods of energy scarcity,
where it simply stops working once the energy storage avail-
able has depleted. Additionally, large energy storage needs
more time to charge, poses environmental issues and causes
increased size and cost of devices [7], [8].

Transient computing enables computation to be sustained
despite power outages, minimizing the need for additional
storage [9]. This is achieved by saving the system state
when a supply failure is imminent, and, following a supply
interruption, allowing execution to continue from where it
left off. Various transient approaches exist in literature to
facilitate the system state retention. These include software-
based approaches, where the state retention is ensured using
software strategies, and architectural approaches, which pro-
vide hardware support to maintain and save the state using
dedicated non-volatile elements, e.g. non-volatile processors
(NVPs) [10].

However, existing approaches are designed for architec-
tures which use fast non-volatiles memories (NVMs), such
as FRAM or MRAM and, therefore, they are currently not
applicable to many IoT platforms with flash memory. On the
other hand, new lightweight operating systems (OSs), specifi-
cally designed for embedded IoT devices and applications, are
emerging, which enable portable and hardware-independent
software development on IoT devices [11]. Predominant open-
source OSs targeting for IoT devices are Contiki OS [12],
TinyOS [13], Arm mbed OS [14] and FreeRTOS [15]. They
typically provide application programming interfaces (APIs)
(beyond bare-metal programming) to facilitate large-scale soft-
ware development. Additionally, most of the IoT platforms that
support these OSs use flash memory.

To enable the widespread use of transient computing, tran-
sient approaches need to be integrated within these operating
systems. In this paper, we discuss the challenges of providing
software primitives for transient computing to facilitate hard-
ware independent implementation using standard OSs APIs,
and enabling the system state retention with devices that
use flash memory. We then redesigned Hibernus [16], such



that it can be integrated with mbed OS to demonstrate the
applicability of transient approaches as part of an IoT OS.
Specifically, mbed OS provides a large number of features
(e.g. libraries and tools) to develop and connect IoT platforms
based on Arm Cortex-M microcotrollers (MCUs), including
security and drivers for sensors and I/O devices.

To incorporate Hibernus into mbed, a modular and layered
structure was designed, which separates platform indepen-
dent and platform dependent macro layers. This uses the
standard and available mbed OS APIs. Additionally, different
approaches for saving and restoring the system state are pro-
posed that consider flash memories and related parameters. A
practical implementation of Hibernus on two different MCUs
with flash memory (existing systems have used FRAM) is
presented to demonstrate the ability for transient computing
to operate on mbed platforms. An open-source implementation
has been released and can be downloaded1.

The reminder of the paper is organized as follows. Section
II presents IoT OSs properties and requirements for transient
computing. In Section III, the redesign of Hibernus is pre-
sented, while its operation on mbed platforms is presented in
Section IV. Finally, Section V concludes the paper.

II. IOT OS PROPERTIES AND DESIGN
CHALLENGES FOR TRANSIENT

In this Section, the IoT OS properties are discussed with
the aim of identifying the design challenges for transient
computing. An exploration of transient approaches is then
presented to demonstrate why Hibernus is the most suitable
approach.

A. IoT operating systems

Lightweight OSs foster the widespread use of IoT ap-
plications, by providing full support for a large number of
platforms, including Arm Cortex-M-based platforms. One of
the requirements for an OS specifically designed for IoT
systems is to fit within memory constrains. This is typically
achieved by providing a set of optimized libraries, which
enable common IoT functionality and a standard ways to
access different components and peripherals. Additionally,
driver support for a wide range of standard MCU peripherals
such as analog peripherals, interrupts, serial interfaces, ect,
is typically included. This enables portability and ease-of-use
across multiple platforms. Finally, projects built with these
OSs can be compiled and tested with different compilers and
tool-chains, such as Arm Compiler 5, GCC and IAR.

In the following, the main design challenges for transient
computing are considered:

• Although IoT OSs make available APIs to facilitate the
implementation of additional features, specific support
(i.e. drivers) for each platform is still required to enable
transient computing due to differences in the underlying
hardware platforms;

1Available at: https://os.mbed.com/teams/Energy-Driven-Computing-
University-of-So/code/Hibernus/

• Most of the platforms that support IoT OSs use flash
memory, which typically holds the application image
as well as the first-stage boot-loader. However, existing
transient approaches have been designed for fast and
low-power NVMs; because of this, the impact of using
a relatively slow NVM has to be considered. External
NVMs, e.g. FRAM communicating via SPI with the
MCU, can be potentially used for saving and restoring the
system state. However, this is not an integrated solution
and requires hardware-assisted support;

• Due to the large number of compilers and IDEs typically
supported by IoT OSs, the selected transient approach
should satisfy the requirement of being suitable across
multiple platforms. This limits the applicability of so-
lutions that require modifications at the compiler level
or that rely on hardware-assisted solutions (e.g. extra
hardware).

B. Transient approaches

In this Section, an exploration of the most common transient
approaches is briefly presented to clarify, following the design
requirements presented in Section II-A, why Hibernus was
selected as a suitable approach to be implemented with IoT
OSs.

The first software-based approach presented was Mementos,
which places static trigger points following various strategies.
When a trigger point is reached, Mementos [17] saves an image
of the system state into NVM if the supply voltage is below a
static saving threshold voltage. However, it requires compiler-
level modifications to enable the placement of these trigger
points. A different approach, namely Quickrecall [18], relies
on a unified memory structure to reduce the time needed for
the state retention. However, it can only be applied to fast and
low power NVMs, which makes it unsustainable with flash
memories.

Hibernus is a platform- and application-agnostic software-
based approach that relies on guard bands. A guard band is a
voltage threshold that relates to the amount of energy required
to hibernate (VH ) the entire system state (snapshot) to NVM
(e.g. FRAM) before sleeping. The state is then restored when
the voltage rises above a second voltage threshold (VR). This
approach is suitable for IoT OSs because it does not dictate
specific hardware constrains or require modifications at the
compiler level. Additionally, it can be extended to systems
with flash memory but the additional storage to enable the
saving operation has to considered. An adaptive version of
Hibernus, that is Hibernus++ [19], enables forward progress
in application execution by self-calibrating VH and VR but it
requires extra hardware.

III. HIBERNUS REDESIGN

In this Section, we discuss the redesign of Hibernus with
mbed, focusing on the software structure, to demostrate the
applicability of transient approaches with IoT OSs (Section
III-A). We then present different snapshot strategies for flash
memory (Section III-B) and considerations related to the



Fig. 1. Flow-chart illustrating the core algorithm of Hibernus [16].

energy store required to enable the system state retention
reliably (Section III-C).

A. Software structure

Fig. 1 shows the operation of Hibernus. It moves between
two states, active and hibernation, when the supply voltage
VCC passes thresholds. It uses hardware interrupts to detect
when VCC drops below VH or rises above VR. These can
be triggered using an internal comparator (if available) or an
external comparator.

To integrate Hibernus into mbed, we designed a modular
structure that operates at different layers of abstraction, sepa-
rating platform independent (PI) and platform dependent (PD)
functions. This OS was selected at first because it runs on 32-
bit ARM embedded devices, provides a hardware abstraction
layer and supports a large number of platforms. However, the
structure presented here can be extended to other IoT OSs.

As shown in Fig. 2, the core algorithm can be considered
as PI at the level of abstraction presented in Fig. 1. This is
because it does not dictate any specific requirement for the
type of NVM (and related snapshot strategy) or comparator
needed to generate the interrupts. As a result, the algorithm is
located in a PI library (hibernus.h and hibernus.cpp)
that only uses standard mbed APIs for its methods and does
not require any modification by the software designer.

At a lower level of abstraction, a configuration layer defines
the type of snapshot strategy and the comparator settings (i.e.
internal or external). This layer is located into a separate file
(config.h) that can be accessed by designers to set their
parameters (a default configuration is already set for each
platform).

The PI libraries are then implemented to enable the selected
screenshot strategy and comparator settings. At this level
of abstraction, methods are defined that use standard mbed
API functions as well functions (e.g. copyRAMtoFlash())
whose implementation is specific for each platform. A lower
device layer is, therefore, added to include the hardware and
its software drivers. Specifically, these drivers relate to the
platform- an memory-dependent methods to access the flash
memory and to access the core registers. This layer is located
into a separate PD library (driver.h and driver.cpp)
that only needs to be written once for each platform.

Fig. 2. API for Hibernus, based on a layered structure to separate platform
independent and platform dependent macro layers.

B. Snapshot strategies

Different snapshot strategies are presented specifically de-
signed for flash memories and related parameters.

Flash memories operate by erasing a block of cells (page)
before writing. The size of this page can range between a
few bytes to a few kilobytes. A given number of pages forms
a sector. Erasing a sector is an energy consuming process
because it involves generating a voltage pulse using a charge
pump and directly impacts on the on the hibernation process.
Flash memories are asymmetrical as the reading is faster
and more power efficient than the writing. For this reason,
the presented strategies aim to optimize the time and energy
overhead due to the writing process.

As show in Fig. 3 a), a basic approach was implemented
which saves the entire RAM to flash. This approach was
originally implemented with Hibernus (designed for MCUs
with FRAM) and relies on the fact that the size of the
NVM is typically many times larger than the RAM. However,
with flash memories, the number of sectors dedicated to
other purposes other than holding the application image (e.g.
.text segment) can vary. For this reason, different options
to reduce the amount of data saved from RAM to flash during
hibernation have been considered.

In the basic implementation each snapshot consists of the
entire RAM including the unallocated part of the memory,
as well as a dedicated segment, containing pointers and flags
required for the restore (pointers/flags in Fig. 3 a)). To reduce
the number of sectors required in flash, this dedicated segment
can be moved into the unallocated part (if available) of the
RAM instead (using a static address) before copying the RAM
into flash.

A better solution was recently proposed, which consists of
saving only the allocated part of the RAM to flash (see Fig.
3 b) [20]. In this case, each snapshot consists of the .data,
.bss and .heap segments, as well as the .stack and the
dedicated section, containing pointers and flags required for
the restore. To identify these segments, the saving process
needs to track the end of the .heap segment and the top
of the .stack.

Finally, a novel approach is proposed which aims to signif-
icantly reduce the number of erase operations, by copying in



Fig. 3. Snapshot strategies.

Fig. 4. Snapshot strategy illustrating selective state.

flash only the blocks of the RAM memory that have changed
since the last restoring process. As shown in Fig. 4, the RAM
memory is divided into two identical segments (RAM-1 and
RAM-2). The main application code only acts on the RAM-
1 segment, which is divided into different blocks (block1,
block2, ... , blockn). Similarly, RAM-2 is organized using the
same block structure. At each restore, the content from flash
is saved to both segments, RAM-1 and RAM-2. In this way,
RAM-2 preserves an image, at the restore time, that is not
modified during the execution of the main IoT application.
At the hibernation time, RAM-1 and RAM-2 are compared
and only the blocks that have changed are saved in flash. For
example, in Fig. 4 only block2 is saved in flash during the
second snapshot.

Other selective policies for efficient state retention with
transient systems which exploit the properties of different
NVM memories were recently proposed [21]. Due to the
modular structure of the presented software, these polices can
be added and evaluated as separate modules.

C. Energy Storage

The energy consumed for the state retention process with
flash memory, Eσ , depends on the erasing cost and the energy
required for saving the RAM and core registers to flash:

Eσ = nsEs + nαEα (1)

where ns is the number of sectors to be erased and nα is
the size of the RAM and registers (in bytes). Es is the energy
required to erase one sector (J) and Eα are the energy required
to copy each RAM byte to NVM (J/byte).

Fig. 5. Test platform.

Hibernus requires enough energy to be stored in the capac-
itance between the supply rails to save a snapshot. Given a
defined VH , the energy Eδ stored between VH and systems’s
minumum opration voltage Vmin is:

Eδ =
V 2

H − V 2
min

2
· C (2)

To ensure stability, sufficient C must be present or added
so that Eσ > Eδ , to enable complete hibernation (even with
a sudden loss of supply).

IV. EXPERIMENTAL VALIDATION

In this Section, to illustrate the applicability of the proposed
design to platforms with different flash memory, a practical im-
plementation of Hibernus on two mbed platforms is presented.

The first platform, a Freescale KL05Z, is built on the Arm
Cortex M0+, with small RAM capabilities (4KB), 32KB of
flash, and holds an internal comparator that can be used to
trigger the interrupts for saving and restoring. For this board,
due to the small RAM capabilities, flags and pointers are
saved into a separate sector in flash. The second one, a NXP
LPC11U24, is built on the Arm Cortex M0, with higher RAM
capabilities (8KB), and requires an external comparator. For
this board, due to the high RAM capabilities, the flags are
saved in RAM.

Fig. 5 shows the test platform used for this validation, where
the MCU is connected to the output of the energy source
through a schottky diode to prevent back-flow of charge to
the source. Here, C is the required energy storage to enable
state retention reliably with flash memory. The value of this
capacitance C has to be calculated for each board, based on
the amount of energy required for hibernation operation. For
this purpose, we considered the basic snapshot strategy that is
complete state.

Fig. 6 and Fig. 7 show the power and time needed to save
the system state with the KL05Z and LPC11U24, respectively.
The first platform consumes an average power of 66mW at
3V, for 51.8ms, to erase 5 sectors (each sector is 1KB) and
an average power of 50.4mW at 3V, for 66.6ms, to copy the
entire RAM plus the pointers/flags segment, corresponding to
an energy equal to 6.7mJ. The required capacitance C is equal
to 4.7mF, for a given VH equal 2.4V and Vmin equal to 1.7V
(see Eq. 2).

The second one consumes an average power of 66.45mW
at 3V, for 98.4ms, to erase 2 sectors (each sector is 4KB) and
an average power of 66.33mW at 3V for 41ms, for copying
the entire RAM, corresponding to an energy equal to 9.2mJ.



Fig. 6. Power consumption and time required to save the system state
including the erasing for the KL05Z.

Fig. 7. Power consumption and time required to save the system state
including the erasing for the LPC11U24.

The required capacitance C is equal to 4.9mF, for a given VH
equal 3V and Vmin equal to 2.3V (see Eq. 2).

It is interesting to notice that the time for erasing and
writing between the two platforms changes significantly. This
depends on the specific flash memory settings (i.e. the ability
of erasing multiple consecutive sectors at the same cost),
the size and number of sectors to be erased and the size
of the RAM memory. Finally, Fig. 8 illustrates the system
behaviour with a sinusoidal wave and a simple binary counter
as application, demonstrating the suitability of Hibernus with
mbed using the KL05Z. A similar behaviour can be plotted for
the LPC11U24 platform. Signals S1 and S2 on this figure refer
to the unrectified and rectified supply inputs, respectively. It
shows the hibernation, which is divided into two parts; erase
and write, main application execution, restore and sleep times.

V. CONCLUSION

In this paper, we discussed the challenges in integrating
transient computing, i.e., Hibernus as part of an IoT OS.
These relate to the ability of providing software primitives
to facilitate hardware-independent implementation of these
approaches using standard OSs APIs, and enabling the system
state retention with flash memories. This support is offered
through a modular structure that uses available OS APIs. We
then defined three different strategies for saving the system
state designed for flash memory and validated Hibernus on
two mbed platforms.

Fig. 8. Experimental results showing basic hibernate/restore operation with
the KL05Z.

VI. ACKNOWLEDGMENT

This work was supported by the UK EPSRC Grant
EP/P010164/1 and by the Swiss SNF grant 157048. Exper-
imental data can be found at DOI 10.5258/SOTON/D0885.

REFERENCES

[1] Y. C.-W. et al., Energy Harvesting in Internet of Things. Singapore:
Springer Singapore, 2018, pp. 35–79.

[2] P. Bogdan et al., “Making the internet-of-things a reality: From smart
models, sensing and actuation to energy-efficient architectures,” in Int.
Conf. on Hardware/Software Codesign and Syst. Synthesis, 2016.

[3] H. Jayakumar et al., “Powering the internet of things,” in IEEE/ACM
Int. Symp. on Low Power Electron. and Design, Aug 2014, pp. 375–380.

[4] O. B. Akan et al., “Internet of hybrid energy harvesting things,” IEEE
Internet of Things J., vol. 5, no. 2, pp. 736–746, April 2018.

[5] M. Magno et al., “Adaptive power control for solar harvesting multi-
modal wireless smart camera,” in 2009 Third ACM/IEEE Int. Conf. on
Distributed Smart Cameras, Aug 2009, pp. 1–7.

[6] A. Kansal et al., “Power management in energy harvesting sensor
networks,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 4, Sep. 2007.

[7] A. Kerhet et al., “Distributed video surveillance using hardware-friendly
sparse large margin classifiers,” in 2007 IEEE Conf. on Advanced Video
and Signal Based Surveillance, Sep. 2007, pp. 87–92.

[8] V. Jelii et al., “An energy efficient multimodal wireless video sensor
network with ez430rf2500 modules,” in 5th Int. Conf. on Pervasive
Computing and Applications, Dec 2010, pp. 161–166.

[9] B. Lucia et al., “Intermittent Computing: Challenges and Opportunities,”
in 2nd Summit on Advances in Programming Languages, vol. 71, 2017.

[10] K. Ma et al., “Nonvolatile processor architecture exploration for energy-
harvesting applications,” IEEE Micro, vol. 35, no. 5, pp. 32–40, Sept
2015.

[11] O. Hahm et al., “Operating systems for low-end devices in the internet
of things: A survey,” IEEE Internet of Things J., vol. 3, no. 5, pp. 720–
734, Oct 2016.

[12] A. Dunkels et al., “Contiki-a lightweight and flexible operating system
for tiny networked sensors,” in 29th IEEE Int. Conf. on Local Computer
Networks, Nov 2004, pp. 455–462.

[13] P. L. et al., TinyOS: An Operating System for Sensor Networks. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 115–148.

[14] “Arm mbed os,” https://www.mbed.com/en/development/mbed-os.
[15] “Freertos,” http://www.freertos.org.
[16] D. Balsamo et al., “Hibernus: Sustaining computation during intermittent

supply for energy-harvesting systems,” IEEE Embedded Syst. Letters,
vol. 7, no. 1, pp. 15–18, March 2015.

[17] B. Ransford et al., “Mementos: System support for long-running compu-
tation on rfid-scale devices,” in 16th Int. Conf. on Architectural Support
for Programming Languages and Operating Syst., 2011, pp. 159–170.

[18] H. Jayakumar et al., “Quickrecall: A low overhead hw/sw approach
for enabling computations across power cycles in transiently powered
computers,” in 27th Int. Conf. on VLSI Design, Jan 2014, pp. 330–335.

[19] D. Balsamo et al., “Hibernus++: A self-calibrating and adaptive system
for transiently-powered embedded devices,” IEEE Trans. Comput.-Aided
Des. Integr. Syst., vol. 35, no. 12, pp. 1968–1980, 2016.

[20] N. A. Bhatti and L. Mottola, “Efficient state retention for transiently-
powered embedded sensing,” in Int. Conf. on Embedded Wireless Syst.
and Networks, ser. EWSN ’16, 2016, pp. 137–148.

[21] T. D. Verykios et al., “Selective policies for efficient state retention in
transiently-powered embedded systems: Exploiting properties of nvm
technologies,” Sustainable Computing: Informatics and Systems, 2018.


