(OLLSCOILNAGAILLIMHE

[JNIVERSITY oF GALWAY

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the
published version when available.

TinyML benchmark: Executing fully connected neural

e networks on commaodity microcontrollers

Sudharsan, Bharath; Salerno, Simone; Nguyen, Duc-Duy;
Author(s) | Yahya, Muhammad; Wahid, Abdul; Y adav, Piyush; Bredlin,

John G.
Publication
Date 2021-06-20
Sudharsan, Bharath, Salerno, Simone, Nguyen, Duc-Duy,
Y ahya, Muhammad, Wahid, Abdul, Y adav, Piyush, & Bredlin,
eulsissiian John G. (2021). TinyML benchmark: Executing fully
I aEiten connected neural networks on commodity microcontrollers.

Paper presented at the IEEE 7th World Forum on Internet of
Things (WF-10T 2021), New Orleans, Louisiana, USA, 20-24
June, DOI: 10.13025/rmkg-1966

Publisher | National University of Ireland Galway

Link to
publisher's | https://doi.org/10.13025/rmkg-1966
version

Item record | http://hdl.handle.net/10379/16770

DOl http://dx.doi.org/10.13025/rmkqg-1966

Downloaded 2024-04-27T02:32:447

Some rights reserved. For more information, please see the item record link above.

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

TinyML Benchmark: Executing Fully Connected
Neural Networks on Commodity Microcontrollers

Bharath Sudharsan*, Simone Salernof, Duc-Duy Nguyen*, Muhammad Yahya*, Abdul Wahid*
Piyush Yadav*, John G. Breslin*, Muhammad Intizar Ali*
*Data Science Institute, NUI Galway, Ireland
{bharath.sudharsan, ducduy.nguyen, muhammad.yahya, abdul.wahid, piyush.yadav, john.breslin} @insight-centre.org
feloquentarduino @ gmail.com
fSchool of Electronic Engineering, Dublin City University, Ireland, ali.intizar@dcu.ie

Abstract—Recent advancements in the field of ultra-low-power
machine learning (TinyML) promises to unlock an entirely new
class of edge applications. However, continued progress is re-
strained by the lack of benchmarking Machine Learning (ML)
models on TinyML hardware, which is fundamental to this
field reaching maturity. In this paper, we designed 3 types of
fully connected Neural Networks (NNs), trained each NN using
10 datasets (produces 30 NNs), and present the benchmark by
reporting the onboard model performance on 7 popular MCU-
boards (similar boards are used to design TinyML hardware).
We open-sourced and made the complete benchmark results freely
available online [1_-] to enable the TinyML community researchers
and developers to systematically compare, evaluate, and improve
various aspects during the design phase of ML-powered IoT
hardware.

Index Terms—IoT Devices, Offline Inference, Edge Intelligence.

I. INTRODUCTION

TinyML aims to bring ML inference on ultra-low-power
IoT devices, typically under a milliWatt, thereby breaking
the traditional power barrier that prevents widely distributed
machine intelligence. By performing offline inference near data
source, TinyML enables greater responsiveness while avoiding
the energy cost associated with wireless communication, which
is far higher than that of computing. Since TinyML has a
significant role to play in future technology, a widely accepted
benchmark is required to unlock the full potential of the field.

Neural Networks on MCUs. Mounting interest in TinyML
has led to some maturity in the field, thus releasing software
stacks such as Edge-ML [1], Open-NN [2]], RCE-NN [3],
TensorFlow Micro inference runtime [4]]. Particularly the
TFMicro attracts attention due to its ability to allow the portable
and straightforward execution of NNs on commodity MCUs.
For the TinyML benchmark, over the code generation-based
methods such as uTensor [5]], we use TFMicro as it provides
portability across MCU vendors, at the cost of a fairly minimal
memory overhead. Also, TFMicro uses an interpreter to execute
an NN graph, which means the same model graph can be
deployed across different hardware platforms such as GPUs,
TPUs, and also MCUs. Although NNs (DNNs, CNNs, RNNs,
LSTMs) are the dominant force in ML, non-NN based ML
solutions also show a great importance in TinyML due to their
low-power computation and memory requirements.

ITrained TFLite models, complete benchmark results, and more details
on chosen MCU boards, datasets, NNs are available at https://github.com/
bharathsudharsan/TinyML-Benchmark-NNs-on-MCUs

TABLE I
MCUS, DATASETS, NNS CHOSEN FOR TINYML BENCHMARK.

Processor, Flash (MB),
Board Name SRAM, Clock (MHz)
B1: Teensy 4.0 Cortex-M7, 2, 1IMB, 600
B2: STM32 Nucleo H7 Cortex-M7, 2, 1 MB, 480
B3: Arduino Portenta Cortex-M7+M4, 2, 1IMB, 480
MCUs B4: Feather M4 Express Cortex-M4, 2, 192KB, 120
B5: Generic ESP32 Xtensa LX6, 4, 520KB, 240
B6: Arduino Nano 33 Cortex-M4, 1, 256KB, 64
B7: Raspberry Pi Pico Cortex-M0+, 16, 264KB, 133
Name: Feature dimension, Class counts
D1: Iris Flowers: 4, 3 D6: Breast Cancer: 30, 2
D2: Wine: 13, 3 D7: Texture: 40, 11
Datasets D3: Vowel: 13, 11 D8: Drive Diagnosis, 48, 11
D4: Silhouettes: 18, 4 D9: MNIST Digits: 64, 10
D5: Anuran Calls: 22, 8 D10: Human Activity: 74, 6
Name: Topology
Fully FC Ix10: 1 layer with 10 neurons
Connected FC 10+50: 15t layer with 10 neurons, 2ndwith 50
NNs FC 10x10: 10 layers, with 10 neurons in each layer

Supervised ML Models on MCUs. The sklearn-porter [6],
m2cgen [7]], emlearn [8]], micromlgen [9]] are the popular
libraries to generate optimized C code. These libraries can be
used to create ML use case models with non-NN ML techniques
like KNN, SVM, and Naive Bayes that can execute on TinyML
hardware. Here, the trained ML model is first ported to produce
its plain C version, then written/exported inside a . h file. When
the users aim to port tree-based decision tree, random forest
models, the SRAM optimized method [[10] can be used.

II. TINYML BENCHMARK

Table [I| presents the MCU boards (B1 - B7), datasets (D1
- D10) and NNs (3 types) used for TinyML benchmark. The
chosen MCUs are popular example hardware that is widely
used to design IoT devices, and billions of similar specification
devices exist globally. In TensorFlow, we defined 3 types of
fully connected NNs (FC 1X10, FC 10+50, FC 10X10) and
trained using D1 - D10 datasets. The resultant 30 models are
converted into TFLite format and then converted into a C
byte array. Later these models are compiled and flashed using
Arduino IDE. Finally, each model are executed on B1 - B7, and
the experimental results are reported in Fig. [T] For statistical
validation, the results correspond to the average of 5 runs. In
the remainder of this section, we analyze the results.
Inference Performance on MCUs. Fig. a, presents the
average time taken by MCUs to infer using D1 - D10 datasets.
For all 3 NN types, Teensy 4.0 (B1) is the fastest as it performed

https://github.com/bharathsudharsan/TinyML-Benchmark-NNs-on-MCUs
https://github.com/bharathsudharsan/TinyML-Benchmark-NNs-on-MCUs

FC 10x10
FC 10+50

FC1x10

— a. b.
8 103 -
g FC 10x10 102 1
S 107 4 FC 10+50
IS
> FC 1x10
E 10?
B1-B7 B1-B7 B1-B7
a 130
X = FC 10+50 e
s .- :
f_g 126 - - o
. i s

D1-D10 D1-D10 D1-D10
24.675
—_ 24.650
0 24625
X
" 24.600
45: #5751 FC Ix10 = FC 10+50 = FC 10x10
o 24.550
n 24525
e.
24.500

I I I [I [I I I I
D1 D2 D3 D4 D5 Dé D7 D8 D9 D10

T T T T T T T T T T
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

T T T T T T T T T T
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Fig. 1. TinyML benchmark results: a. Average time taken by boards B1 - B7 to infer using all datasets D1 - D10; b. Inference time on B2 for D1 - D10; c. Flash
memory consumed by B2; d. Time consumed by Arduino IDE to compile each network trained using D1 - D10; e. SRAM memory consumed by B2.

inference in 3.14 us, 11.13 ps, 18.12 us respectively. For the
same data samples, Raspberry Pi Pico (B7) is the slowest (=99
- 175 x times slower than B1), as it took 313.77 us, 1953.96
s, 2801.82 ps. Although B7 has a faster clock than Arduino
Nano 33 (B6), it is still slow as Cortex M4 is superior to Cortex
MO+. Although B1 - B3 has the same Cortex M7 processor,
B1 still is significantly faster as it has the highest clock speed
of 600 MHz.

Fig.[I] b, presents the complete inference time on the second-
fastest STM32 Nucleo H7 (B2) for each of the 30 models. When
considering FC 1x10, for the 4 features DI, it took 5.16 us to
infer, and for the highest 74 features D10, it took 872.85 s to
infer. When considering FC 10x10, for D1, it took 20.15 us,
and 3369.54 s for D10. Portenta (B3) and B2 are on quite a
par since they share processors from the same ARM Cortex-M7
family, but B2 is faster across all the NN topologies.

Onboard Accuracy. We fed test sets to each of the 30 models
when executing on B1 - B7 via COM Port to perform inference.
We report that the same models, from board to board, show only
0.4 - 1.6 % variation in onboard accuracy. Also, the models
during execution on MCUs, show the same level of accuracy, F1
score as its original TFlite models when evaluated on Google
Colab.

Memory Consumption on MCUs. The run-time variables
generated during NN execution are stored in the SRAM. The
chosen boards have only 192 kB to a max of | MB SRAM,
which restricts the deployment and execution of large models.
SRAM in MCUs is always limited since adding more memory
leads to higher power leakage and manufacturing costs. Before
flashing, when compiling the NNs and IoT applications, the
memory requirements for target boards are calculated by the
compiler (such as Atmel Studio, Keil MDK) in use. In Fig.
[} c-e, we provide the time taken by Arduino IDE to compile
each of the 30 models for B2, along with the complete Flash
and SRAM requirements. The models trained using the datasets
with more features, classes consumed higher compilation time,
and higher fash memory.

Price-performance Ratio. Portenta (B3) that costs ~100 $

(the price of NVIDIA Jetson Nano GPU) is the most expensive
board but still does not outperform the ~20 $ Teensy 4.0 (B1).
Moreover, B1 can be the most fastest yet reasonably priced
board as it can be overclocked up to 1 GHz. The ~30 $ STM32
Nucleo H7 (B2) is the second-fastest, contains many IO pins
and dev-related features like STLink debugger. ESP32 (BS5) has
the best price-performance, as it is only ~3 $ and just ~17 -
91 ps slower (see Fig.[I] a) than B1. The Raspberry Pi Pico is
as cheap as ESP32 but ~292 - 2692 us slower.

III. CONCLUSION

TinyML is a rapidly evolving field that requires comparability
amongst low-power hardware innovations, particularly when
executing neural workloads. In this paper, to enable continued
progress and stability in this field, we presented and analyzed
the onboard performance of 30 NN models on 7 popular MCU
boards. We open-sourced the complete benchmark results that
can be utilized to speed up the design phase (going from idea
to product) of ML-powered IoT hardware.

ACKNOWLEDGEMENT

This publication has emanated from research supported in part
by a research grant from Science Foundation Ireland (SFI) under
Grant Number SFI/16/RC/3918 (Confirm) and also by a research
grant from Science Foundation Ireland (SFI) under Grant Number
SFI/12/RC/2289_P2 (Insight), with both grants co-funded by the
European Regional Development Fund.

REFERENCES

[1]
[2]
[3]

“Edgeml: https://microsoft.github.io/fedgeml/,” 2021.

“Opennn: https://www.opennn.net/,” 2021.

B. Sudharsan, J. G. Breslin, and M. 1. Ali, “RCE-NN: a five-stage pipeline

to execute neural networks (cnns) on resource-constrained iot edge devices,”
in International Conference on Internet of Things, 2020.

[4] “Tfmicro: https://www.tensorflow.org/lite/,” 2021.

[5] “utensor: https://github.com/utensor/utensor,” 2021.

[6] “sklearn-porter: https://github.com/nok/sklearn-porter,” 2020.

[7]1 “m2cgen: Code-generation for various ml models into native code.” 2020.

[8] “emlearn: https://github.com/emlearn/,” 2020.

[9] “Micromlgen: https://github.com/eloquentarduino/micromlgen,” 2021.
[10] B. Sudharsan, P. Patel, J. G. Breslin, and M. 1. Ali, “Ultra-fast machine
learning classifier execution on iot devices without sram consumption,”
in IEEE PerCom Workshops, 2021.

	Introduction
	TinyML Benchmark
	Conclusion
	References

