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Abstract—Sensor-driven IoT systems are well-known for their
capacity to accelerate massive amounts of data in a compara-
tively short period of time. To have any use, the information
delivery and decision making based on the data require efficient
learning models together with dynamically deployed computing
and network resources. The current cloud and high-performance
computing infrastructures, as well as modern edge computing
systems especially in the 5G and beyond networks, can be
addressed to resolve these challenges. However, there are several
application areas especially in vehicular and urban computing,
where just harnessing more computational power does not solve
computational and real-time requirements of the modern sensing
systems that operate in mobile and context-dependent environ-
ments. For now, the mathematical challenges of distributed
computing and real-time learning algorithms have not been
profoundly addressed in the context of the IoT and real-world
sensing applications. Data-driven systems also require giving
full attention to information delivery, data management, data
cleaning, and sensor fusion technologies that need to be equally
distributed and real-time competent as the learning algorithms
themselves. New software-defined computing and networking
approaches and architectures are required to orchestrate the
numerous connected resources dynamically, controllably, and
securely along with the evolving needs. The key challenge here is
to uniform collaboration between different aspects of the system,
from data processing and delivery to the algorithms and learning
models, not forgetting the computational capacity and networking
capabilities, all this in real-time with real-world applications.

Index Terms—Edge-Cloud Continuum, Internet of Things, Ve-
hicular Computing, Machine Learning, Artificial Intelligence, Au-
tomotive Software, Software-Defined Vehicle, Software-Defined
Network, Smart Traffic.

I. INTRODUCTION

Today, driving is safer than ever. Modern cars implement
technologies for automatic braking, Cooperative Adaptive
Cruise Control (CACC), prevention of unwanted lane crossing,
distance keeping, and so on, to supply driver’s own cognition
and prevent accidents. However, 239 people died and 956
people were wounded in traffic-related accidents in 2018 alone
in Finland. Based on the Commission reports, 25 100 people
lost their lives on EU roads in 2018 and about 135 000 were
seriously injured. The EU has reaffirmed an ambitious long-
term goal, to move close to zero deaths in traffic by 2050
i.e. "Vision Zero" [1]. One of the main steps to achieve this
goal is safer vehicles, specifically, connected, and automated
vehicles interacting with other road users and with the digital
and physical road infrastructure [2].

Connected vehicles and vehicular edge computing is seen
as a potential solution for providing services and applications
for safe driving [3]. With increased networking and computing
capabilities, connected vehicles and vehicular edge networks
can perform challenging inference and learning task to support
driver’s cognition and automate the driving scenario. Such
intelligent systems demand training data, which can be provided
by in-vehicle sensors and external databases as shown in
Figure 1. However, how to combine this information in a
challenging real-time and mobile environment with modern
software-defined networks (SDNs) and computing resources is
still an open question.

In the context of vehicular sensor analytics, machine learning
(ML) and artificial intelligence (AI) solutions have previously
been used to improve lane [4] and road potholes [5] recognition.
These existing systems usually utilise only in-vehicle sensors
[6], such as camera, LiDARs, radars, and speed meters [7],
[8]. Driver’s behaviour is previously detected in the context of
smartphone usage during driving [9] and drunk driving [10],
however, underlining that generally human driver’s perception
and reasoning still maintain an advantage compared to fully
automatically controlled vehicles [11]. To understand the whole
picture of the driving performance, both in-vehicle sensors and
driver’s behavioural patterns have to be studied. Literally, local
real-time computing can ease driver’s senses to see "around
the corner" and detect potentially hazardous situations. In
our vision, we envisage simultaneous sensing of the driver,
vehicle, and driving environment, for which multi-sourced
sensor analysis and ML/AI approaches are integrated into the
vehicular edge-cloud continuum.

Vehicular sensors can produce a large amount of data in
a relatively short time [12] by which the current paradigm
is to utilise fast data transmission technologies [13], such as
5G networks [14], [15] and edge computing services [16],
[17], to replace or supplement traditional cloud computing
services. The vehicular environment, consisting of the car’s
own computers, driver’s smart devices, and road-side contact
points, holds a greatly potential computational capacity that
is, however, still unrecognised as a part of vehicular edge
computing [18], [16]. Indeed, several ML/AI models can be
brought to the automotive software system itself [19]. The main
question here is the management of the dynamic orchestration
of the vehicular edge-cloud continuum, or in layman terms,
what to compute, when, and where.



Fig. 1. An overview of the multiple data sources in a vehicular computing environment; public data from internet have to be fused with private sensor-driven
data expanding the situational awareness of the system.

A novel research field of vehicular edge computing has
emerged only recently [3], [6]. With networking capabilities
in 5G and beyond, connected vehicles themselves can be
seen as a part of such an edge system and, on a larger scale,
computational units for the vehicular edge-cloud continuum.
However, in-vehicular software systems and specialised hard-
ware components, such as GPU-capable AGX boards, are
relatively new on market and their ML/AI capabilities are not
fully evaluated and tested in practice. Specialised hardware
solutions can, on the other hand, be expensive but their role can
be seen to become more integral in automotive development.
The question remains where to computing which parts of the
inference and decision making logic. There are several open
questions on how to enable a fully operational pipeline from
collecting the multi-sourced sensing data, learning the ML/AI
models, and utilising the models for feedback and decision
making.

In this paper, we aim to conceptualise the problems emerging
in software and system developments where challenging data
management, machine learning, and analytics solutions need to
fit together with very dynamic and changing software constel-
lations. To summarise, we present the following contributions:

• We outline the challenges of bringing sensing-based
ML/AI model training and inference in the vehicular edge
itself in a distributed fashion (contrasting to the current
cloud-centric paradigm).

• We present a reference architecture for the ML/AI
pipelines for the edge-cloud continuum while maintaining
its manageability through the software-defined approach.

II. VISION STATEMENT AND RESEARCH AGENDA

Bringing sensing-based ML/AI solution into the vehicular
computing environment is largely understudied what comes

to the challenges of real-time requirements [20], [13], high
mobility of the clients [21], [22], and a need for task allocation
[16], [23]. Vehicular edge computing is an especially important
development area because it enables various critical aspect for
safer driving [24], [3]: Low latency enables real-time feedback
and various safety applications. In remote areas and while
on the move, connectivity lost to the cloud prevents decision
and information sharing, whereas, on the edge, local resources
are effectively harnessed for more resilient and fault-tolerant
computing. The solutions to these challenges can further be
generalised for other real-world use cases involving mobility
or real-time demands, such as smart hospitals, manufacturing,
and Industry 4.0. Based on this rationale, we emphasise the
following open challenges to be solved before the ML/AI
pipelines can be fully integrated into the vehicular edge-cloud
continuum:

Resource-efficient ML/AI and data analytics need to
meet the high mobility requirements of the vehicular
environment. The current state of the art for the sensor-driven
ML/AI solutions involves collecting the data from the clients
and sending it to a remote location, usually a cloud computing
service, for analysis, inference and prediction [25], [26], [27].
This is due to the easy-to-use and common cloud services [28]
and concern of the battery life and energy efficiency of the client
devices [29]. However, energy-aware distributed algorithms can
take advantage local computational power available on the edge
[24] and vehicles as a part of it. Indeed, there are even energy
benefits to gain from localised data processing [30]. With the
decreased need for data transmission, both energy and time
benefits can be gained. However, the orchestrating system needs
to dynamically consider existing capabilities and resources in
the system, including the vehicle itself and available edge



services. Thus, intelligent vehicular systems need to become
context-aware.

Context-aware sensing solutions are needed to meet the
real-time requirements. Large-scale sensor data analytics and
ML/AI solutions currently rely on novel algorithmic innova-
tions, especially federated learning [31], [32] and other highly
popular technologies [33], [34], [35]. However, with the real-
time requirements, more transparent results can be achieved by
relatively traditional statistical analysis tools, such as regression
and anomaly detection algorithms [36], [19]. For this, the full
understanding of the vehicle’s operating context, requirements,
resources, and limitations, need to be understood. Based on the
context-aware decision making, the most lightweight solution
can be used to provide as good or – especially in terms of
computation time and resource-efficiency – even better results
in the rapidly changing contextual conditions [37]. Withing
the dynamic intelligent solutions and capabilities, there is
an increasing need for ML/AI-fluent DevOps practices and
software pipelines that can consider different types of ML/AI
models, data processing steps, and data management.

There is a need for a full development pipeline for
edge-native and in-vehicle ML/AI, aiming towards an
intelligent vehicular edge-cloud continuum. Light-weight
ensemble learning methods can be used to create a set of
models to be chosen from, fitting to the dynamic nature of the
mobile and real-time vehicle-edge-cloud environment [38], [39],
[40]. However, automotive software and hardware solutions
still require work towards a fully integrated development
pipeline. Here, different parts of data processing need to
meet in an effective operational loop: 1) data collection from
various sources (including in-vehicle sensors and Internet-based
databases, such as weather and road condition data), 2) data
cleaning and preprocessing steps integral for real-life data, 3)
distributed and online ML/AI model building on the vehicular
edge network, and 4) real-time inference and decision making
without centralised support in the cloud. In addition, security
and privacy aspects need to be addressed [41].

Software-defined approach to configuration, orchestra-
tion, and maintenance of the required sensor, data pro-
cessing, storage, and network resources and the resulting
dynamic and complex systems of interacting vehicles (with
their sub-components), edge nodes, and cloud services is
required to make the vehicle-edge-cloud continuum possible
in the first place. Numerous developments on software-defined
solutions and reference architectures for vehicular and edge-
cloud computing have been suggested recently. The concept
of the software-defined vehicle is required to manage the
numerous electronic control units, sensors and their connections
through in-vehicle networks alone [42], [43]. Furthermore, the
software-defined networking approach emerges as a crucial
pre-requisite for managing vehicular ad-hoc networks of
connected vehicles necessary for the evolving smart traffic and
transport systems [44]. The offloading and external data services
then require software-defined, multi-access edge and cloud
computing solutions [45], [41] to be dynamically, scalably, and
securely orchestrated with the vehicular ad-hoc networks.

III. TOWARDS A REFERENCE ARCHITECTURE

For considering the ML/AI pipelines for the edge-cloud
continuum while maintaining its manageability through the
software-defined approach, especially from the automotive
perspective, we propose the following statements as design
principles for the possible reference architecture:

1) Extend the software on automotive so that it becomes
possible to run ML/AI tasks considering various data
sources for learning processes and add capabilities to
offload ML/AI tasks to MEC or cloud-based on the
task complexity, on-board capability, time sensitivity and
availability of the MEC;

2) Extend parallel and distributed ML/AI methods to bring
together driving patterns, in-vehicle sensors, and external
databases in a real-time manner;

3) Extend evaluation practices for the feasibility of sensor-
driven ML/AI for vehicular computing to improve driving
safety and human driver’s context-awareness.

4) To achieve the three above-mentioned design principles,
adopt the software-defined approach to orchestrate the
computing elements within the vehicle, ad-hoc vehicular
networks, and the networking and resource management
of offloaded edge and cloud services.

As shown in Figure 2, several parallel data-intensive tasks
need to be included in the potential reference architecture.
These are:

1) In-vehicular sensor and human interaction data gathering
in a real-time manner from data streams, as well as
receiving the relevant data items in branches from the
MEC and cloud back-end.

2) Data processing tasks individually for different data
sources, consisting of data cleaning, preprocessing, and
validation pipelines.

3) In-sensor, local (CPU or GPU), or edge-supported ML/AI
model training and validation with preprocessed data. In
addition, model up-keeping and life cycle need to be
considered to remove unnecessary information.

4) Fusing information coming from different data streams
and ML/AI models.

5) Inference and decision making based on the provided
knowledge from the model fusion, including all the
available information from both external and internal data
sources.

6) Offloading to other layers based on the analysis of
complexity, time sensitivity, layer capability identification
and availability.

As seen in Figure 2, edge and cloud parts of the operating
system can still largely be utilised to process large-scale
datasets, such as weather and road condition information. In
addition, layers have the capability to selectively offload tasks
to the other layers if necessary. Common to these data sources
is that they benefit collaborative and pervasive data collection
techniques including various sensor networks (such as roadside
cameras) and existing databases (such as weather models).
However, local in-vehicle sensors (including driver-adjusted



Fig. 2. A future reference architecture has to include components of edge-cloud continuum and vehicular computational capabilities orchestrated through the
software-defined approach.

wearables) should, by our statement, be processed locally
in the automotive itself. Based on the estimated real-time
dependencies coming up to the milliseconds especially in the
cases of accident prevention and driving management, it is
somewhat challenging to see the 5G or beyond network solely
going over its physical capabilities to deliver messages in a
given time constraint. With increasing specialised hardware in
vehicles themselves, a reference architecture should prepare for
local in-vehicle data cleaning, preprocessing, machine learning
model and training practices, in addition, to selectively offload
the tasks without affecting the real-time nature. Here, the
concept of a software-defined vehicle needs to be connected to
software-defined ad-hoc vehicular networks utilising the edge
and cloud services.

What is important in Figure 2, layers of information fusion
and inference (or decision making) receive knowledge from
both external and internal data sources. Thus, the architecture
should provide mechanisms to fuse not the data steams but
ML/AI models coming from external and internal sources.
Instead of training a single large-scale model at once, the
architecture is based on parallel sub-processes (of which there
can be more than two shown in Figure 2) that respond to
either a single sensor stream or dedicated local streams (in
the cases the local ML/AI model training already involves

sensor fusion). In the best case, the local data stream can be
read-only once by design, without heavy storing operations
but sharing only the updated models or keeping the up-to-date
models for the information fusion component to request. Some
steps towards collaborative [46] and asynchronous federated
learning [47] have already be taken to support mobile and
rapidly changing learning environment and context. However,
the challenge enabling versatile distributed machine learning
and data analysis pipelines in a dynamic, non-hierarchical
vehicular edge-cloud environment remain to be solved in the
future.

IV. CONCLUSIONS

Our work focuses on developing solutions for novel real-
time, context-aware data analytics and inference on the edge
and cloud computing environment, based on 1) rapid and timely
development of the low-latency edge environments within the
5G networks, 2) uprising of the low-cost, energy-efficient sens-
ing solutions within the Internet of Things (IoT) environments;
3) timely need of deploying Artificial Intelligence (AI) and
Machine Learning (ML) solutions beyond traditional cloud
computing environments in a real-time manner closer to the
client devices; enabled by 4) the emerging software-defined
architectural approaches and technologies to orchestrate in-



vehicle computing resources and networks, dynamic ad-hoc
vehicular networks, and related edge-cloud resources. The
development is foreseen to enable real-time, mission-critical,
context-aware, and efficient applications of the vehicular edge-
cloud computing continuum.
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