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Abstract
The FlexRay bus is a modern standard used in the
automotive industry. It offers deterministic message
transmission with zero jitter while using time-triggered
scheduling in the static segment. When several vehicle
variants (i.e. different models and their versions) share
the same signal, the car manufacturers require to sched-
ule such signal at the same time in all vehicle variants.
This requirement simplifies the signal traceability and
diagnostics in different vehicle variants using the same
platform and simplifies reuse of components and tools.

In this paper, we propose a first fit based heuristic
algorithm which creates the schedules for several vehi-
cle variants at once, while transmitting a given signal at
the same time in all the schedules. The scheduling algo-
rithm also takes the time constraints as release dates and
deadlines into account. Finally, different algorithm ver-
sions are compared on benchmark sets and low compu-
tational time demands are validated on large instances.

1 Introduction
The current automotive industry produces vehicle mod-
els containing a lot of electronic control units (ECUs).
These units are used to control almost everything from
directional indicators to the driver assistance system.

Moreover in the upcoming vehicle models x-by-wire
systems are replacing mechanic and hydraulic control
systems. Consequently, the demand of the bus band-
width will increase significantly and more criticality-
related requirements will need to be satisfied. The
FlexRay standard has been designed to handle this situ-
ation. The bus offers ten times more bandwidth com-
pared to the CAN bus. A static segment with time
division multiple access can be used for time critical
signals. In this segment, signals are transmitted to the
bus at exact time points determined by a schedule. The
schedule must be known in advance.

1.1 Motivation

It is s basic practice for automotive concerns that many
vehicle models are built on a common technological
platform. For example, the vehicle models as Audi A3,
SEAT Leon, Volkswagen Golf and Škoda Octavia share
a modular construction of the MQB platform. More-
over, these vehicle models also have many versions
(with a basic or advanced ECUs with different sensors
etc.). In order to simplify the reuse of components,
it is desired to have the inner vehicle communication
as similar as possible for all the models and variants.
From this perspective, it would be ideal to create just
one schedule for all variants with all theirs signals but



such a schedule would have a very low utilization of the
bus and, consequently, it would limit the number of sig-
nals. We need to deal with this and find some clever
solution. In our case, we follow the practice where
the same signals are placed in the same positions in all
schedules they participate and each vehicle variant has
a schedule which differs in positions of specific signals
only. With this requirement, it is, for example, easier to
develop a diagnostic tool because one tool can then be
used for all vehicle variants (shortly variants). From an-
other point of view, it also simplifies the configuration
of ECUs, typically supplied by third parts, because one
bus configuration of the ECU may fit to several vari-
ants. In the consequence, the less expensive tests are
involved because many mistakes (related to the time de-
pendent electromagnetic interferences for example) are
eliminated.

There are already several algorithms that are used for
the FlexRay static segment scheduling, but these are
suited for one variant schedules only. Our new scenario
considers new algorithm that creates the schedules for
all the variants at once. We call this problem Multi-
Variant scheduling.

1.2 FlexRay overview
The FlexRay standard describes a new generation bus
developed to satisfy the performance and safety require-
ments in the advanced automotive industry. It is able to
operate with data transmission rates up to 10 Mb/s. The
FlaxRay communication protocol was further designed
to fit all criticality constraint requirements that arise in
automotive industry.

The standard offers two channels to be used for com-
munication. These channels can be used for indepen-
dent communication as well as for increasing the fault
tolerance. We can use different network topologies such
as a bus topology or an active star topology. It is also
possible to use a hybrid topology and different topolo-
gies in both channels. A set of ECUs connected to the
shared FlexRay network is denoted as a cluster. Each
ECU connected to this network is called a node. The
node can transmit/receive information to/from a bus
in predetermined time intervals. A few special nodes
(ColdStart nodes and Sync nodes ) are used for starting
the bus up and the bus time synchronization.

The FlexRay communication is organized in cycles.
Each communication cycle has its own six-bit cycle
number. Thus, there can be up to 64 different cycles.
The set of these different cycles is called a hyperperiod
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Figure 1: FlexRay communication scheme

and it is periodically repeated. One communication cy-
cle (presented in Figure 1) consists of four segments:

• Static segment
• Dynamic segment
• Symbol window
• Network idle time

Only the static segment and network idle time are
mandatory. In the static segment, the time critical sig-
nals are exchanged using a time-triggered scheme based
on TDMA. The data structure used by the nodes to
transmit the data within the static segment is called a
frame. The schedule that controls when the frame is
transmitted to the network must be known before the
bus is started. The dynamic segment fulfills the require-
ments for event-triggered communication. In this seg-
ment, dynamic minislotting based scheme is employed.
The symbol window is used for network management
messages and special symbol broadcasting. The net-
work idle time (also referred as NIT) is the last segment
and during this time no communication takes place. In
this time, each node synchronizes its own inner clocks
before a new communication cycle starts.

In this paper, we will focus only on the static seg-
ment. The static segment is divided into time intervals
of the same duration called static slots. Each frame of
the static segment within the hyperperiod is identified
by its cycle and slot number. A given slot is reserved
for a given node (i.e. the frames transmitted in a given
slot need to be from one node in all cycles). The frame
can contain more than one signal but the sum of pay-
loads of these signals must not exceed the duration of
the slot.

1.3 Related works
Several papers were published recently that focus on
the FlexRay protocol and particularly the static segment
scheduling problem. The FlexRay 3.0.1 is described in
detail by the FlexRayTMCommunication System Proto-
col Specification [1]. In the automotive industry, this



bus is used together with the AUTOSAR Specifica-
tion [2, 3]. Nowadays, BMW or Audi use the FlexRay
bus in several series-production vehicles. BMW pre-
sented its real-world benefits in [4].

A milestone in the static segment scheduling area is
the article [5] where the transformation of the basic
static segment scheduling problem without time con-
straints to a two-dimensional bin packing problem was
introduced. The authors presented an ILP model and
also a successful heuristic based on the first fit heuristic
for the bin packing problem. The objective is to min-
imize the number of the scheduled slots and obtain an
extensible schedule. The time-constrained problem was
proposed in [6]. This paper employs an idea of two-
stage scheduling, when in the first step, frame packing
is performed. After packing the signals to the frames,
a frame scheduling algorithm creates the schedule. The
response time analyze for the rate monotonic schedul-
ing of the static segment was proposed in [7]. But this
paper does not meet the requirements of the AUTOSAR
specification and also require modifications of the mid-
dleware.

A genetic algorithm for the FlexRay scheduling is in-
troduced in [8, 9]. These papers take care not only about
the static segment scheduling but also about the place-
ment of tasks into the nodes. A new idea of a switched
FlexRay network is presented in [10]. In the switched
network, an active star hub is replaced by a switch. It of-
fers the possibility to send different frames in different
branches in the same time interval. The branch-and-
price based algorithm combined with the branch-and-
bound was developed for such frame scheduling. More-
over, the first fit decreasing heuristic was presented
which returns good results for input cases even if the
exact algorithm does not finish at the appropriate time.
An ILP model for scheduling of signals that can have a
jitter in the period is proposed in [11]. The constraint
logic programming formulation (CLP) for fault-tolerant
scheduling in the FlexRay static segment is introduced
in [12].

The concept of holistic time analysis of the FlexRay
communication protocol is presented in [13] and [14].
The scheduling algorithm and time analysis for the dy-
namic segment are proposed in [15].

All these articles focus on creating independent
schedules and no shared constraints are taken into ac-
count.

In the computer science, a similar problem as multi-
variant scheduling is the multiprocessor task schedul-
ing, where some tasks needs two or more processors si-

multaneously to be executed. The survey for this prob-
lem is in [16]. In [17] the problem complexity is inves-
tigated for the multiprocessor task scheduling problem
with prespecified processor allocations. It means that
it is known in advance exactly which set of processors
will be used to execute each task. But in the multipro-
cessor task scheduling problem each task is executed
only once, thus it has no period assigned.

1.4 Paper outline

The paper is organized as follows: Section 2 de-
scribes the multi-variant time constrained static seg-
ment scheduling problem and the signal set used for
benchmarking. In Section 3, new efficient data struc-
tures are introduced and the first fit based heuristic al-
gorithm is proposed which are the main contributions of
this paper. Computational efficiency and performance
evaluation of the experiments are presented in Section
4, Section 5 concludes the paper.

2 Problem statement

The problem addressed in this paper is to create the
FlexRay static segment schedules for a set of variants.
The objective is to find an assignment of a signal set S
into slots and cycles such that the number of the used
slots is minimized (i.e. the length of the longest static
segment, of all variants, is the shortest possible).

The FlexRay network configuration consists of many
parameters including the cycle length, the number of
static slots in the static segment, the duration of the
static slot, duration of the NIT segment, etc. These
parameters are usually predefined by the system
designer and further followed by the ECU suppliers.
We assume that these parameters are known and are
not the part of the optimization process. The following
setting based on the BMW network design [18] is
used in this paper. The communication cycle duration
F is equal to 5 ms where the static segment takes
3 ms and the rest of the communication cycle is
filled by the dynamic segment, symbol window and
NIT. There are 75 static slots each with duration
of 0.04 ms. The frame payload W is in the range
from 32 to 128 bits. Each signal i has the following
parameters defined (the same denotation is used in [6]):



Ni - unique identifier of the ECU, which transmits sig-
nal i,

Ti - the signal period, the signal is assumed to be trans-
mitted only once in the FlexRay cycle,

Oi - the signal release date, it is the latest time after
which the first instance of the signal is produced in
relation to the start of the hyperperiod,

Ci - signal length in bits,
Di - the deadline associated to the signal i, it repre-

sents the maximum age acceptable at the consumer
endpoint.

Moreover, in the multi-variant scheduling, each sig-
nal can be used by one or more variants. For this reason,
binary matrix Vi,j is introduced as follows: Vi,j is equal
1 if the variant j uses the signal i and 0 otherwise. If two
or more variants should use signal i in the schedule, this
signal must be placed at the same position (cycle, slot,
even offset in the frame) in all of these schedules. We
call this a shared constraint. This is the reason why it is
not possible to create all those schedules independently.

The next assumption is the usage of the AUTOSAR
communication stack [2], which is the de facto stan-
dard for automotive applications and it is also consid-
ered for other industry applications such as aviation. In
this context, the AUTOSAR frame contains processing
data units (PDU) where each PDU consists of one or
more signals. In the AUTOSAR context, it is defined
that scheduling is static and cannot be changed during
the runtime. It is further assumed that the maximal sig-
nal size cannot exceed the data payload of the frame. It
means that the signal cannot be split into two or more
frames. Moreover, in the AUTOSAR specification, it
is defined that one slot is strictly assigned to one node.
So it is not possible to use multi-node multiplexing be-
cause the slot is reserved for the transmission to the
same ECU in every cycle.

2.1 Signal set
The scheduling approaches are applied to the modi-
fied Society of Automotive Engineers (SAE) bench-
mark signal set. The SAE report describes a set of
signals sent between seven different subsystems in an
electric car prototype. The Basic SAE signal set defines
53 sporadic and periodic signals. A periodic message
has a fixed period 5, 10, 100 or 1000 ms, and implic-
itly requires the latency to be less than or equal to this
period. For our purposes, these periods must be resam-
pled because the AUTOSAR specification only allows
periods which are equal {m · 2n | n = 1 . . . 6}, where

m is the shortest period. Sporadic messages have la-
tency requirements imposed by the application: for ex-
ample, all messages sent as a result of a driver action
have a latency requirement of 20 ms. The reader is re-
ferred to the work of Kopetz [19] for a more detailed
benchmark description. Due to the high FlexRay band-
width and electronic equipment’s requirements in to-
days cars we extended the SEA benchmark using NET-
CARBENCH [20] to increase the number of signals
with the same probability distribution function of pa-
rameters. The newly created signal sets have up to 3000
signals per node and a few added parameters (such as
release date and deadline). The signals are exchanged
among up to 23 nodes. Several signals are sent only on
a change event where the maximum deadline is defined.
These signals are transformed to periodic signals with
periods equal to deadlines.

2.2 Time constraints
In order to simplify the problem, we consider release
date Oi and deadline Di to be rounded to the start of
the earliest and the end of the latest complete cycle re-
spectively in which we can transmit signal i (as in [6]).
This simplification is adequate since the precise speci-
fication of the release dates and deadlines have an influ-
ence only if these values fall in the static segment. But
if they fall in the dynamic segment, they are rounded
to the length of the cycle anyway. This simplifies our
scenario because the release dates and deadlines can be
only multiples of the cycle length. The position of a
signal within the static segment of a particular cycle is
insignificant with respect to the position of the signal
within the hyperperiod. But a situation can arise when
an optimal solution is discarded by this transformation
because, due to the rounding, we can cut off a few feasi-
ble signal positions from the search space and, thus, we
may lose some optimal solutions. But we assume that
this situation is rare in real cases.

2.3 Example 1: Multi-variant signal set
For a better understanding we introduce a small exam-
ple. In our case, the communication cycle duration is
set to 5 ms and the frame payload is 16 bits. There are
eight signals sent by the three ECUs with the parameters
described in Table 1. These signals are to be scheduled
to two variants. Matrix Vi,j is shown in Table 2. Vari-
ant I uses signals A,B,C,D, F,G and variant II uses
signals B,C,E, F,H . So it means that signals B,C, F



Signal Node Period Length Rel. date Deadline
A 1 5 ms 8 b 0 ms 5 ms
B 1 10 ms 8 b 0 ms 10 ms
C 1 10 ms 8 b 0 ms 10 ms
D 1 20 ms 8 b 5 ms 15 ms
E 1 20 ms 16 b 10 ms 15 ms
F 1 10 ms 16 b 5 ms 10 ms
G 2 20 ms 8 b 0 ms 15 ms
H 3 20 ms 8 b 0 ms 15 ms

Table 1: Parameters of signals in Example 1
Variant A B C D E F G H
I 1 1 1 1 0 1 1 0
II 0 1 1 0 1 1 0 1

Table 2: Matrix representing assignment of signals to
variants considered in Example 1

are used in both variants and they have to be scheduled
at the same positions. A feasible (respecting the time
constraints and shared constraints) solution for this case
is presented in Figure 2. The signal G cannot be placed
into the second slot because this slot is used by the first
node and the signal G is transmitted by node 2. So a
new slot must be allocated for the signal. The same sit-
uation is with signal H in variant II.
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Figure 2: Feasible schedules for Example 1

3 Algorithm
In this section, we will explain the components of the
proposed algorithm. But first, let us introduce the main
data structures used in our algorithm.

3.1 Multischedule

The most important thing for the algorithm is to use an
efficient data structure for the schedule representation.
In our case, there are two ways how to do it. In the
first, and also most natural way, it would be possible to
have one schedule for each variant (like in Figure 2).

We call them native schedules. But in this case, dur-
ing the scheduling process, there is a lot of inefficiency
because we have to go through all of these schedules
to check the shared constraints. Moreover, if there is a
significant number of common signals for several vari-
ants, it is also necessary to allocate them in every sched-
ule. But it is sufficient to know their position just in one
schedule because this position must be the same for all
variants using them. Therefore, in our algorithm, we
use a different representation because we assume that
many signals are used in all variants.
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Figure 3: Feasible multischedule for Example 1

With this assumption, we can make a more effi-
cient representation. Instead of creating schedules for
each variant we create just one shared schedule (mul-
tischedule) for all variants. Here, the common signals
are placed once and there is no redundancy caused by
checking the constraints. But unlike in the native sched-
ule, in the multischedule two or more signals may over-
lap. Just like the native schedule consists of frames, the
multischedule (MS) consists of multiframes. We denote
these multiframes as MSi,j , where i is the cycle number
and j is the slot number. The multischedule for Exam-
ple 1 is presented in Figure 3. We can see that signal E
is scheduled at the same position as signal A in MS3,1.
It is easy to derive any native schedules from the mul-
tischedule by removing all signals that are not used in
the particular variant.

3.2 Mutual exclusion matrices
For placing signals to the multischedule, we need to
know which signals may be mutually overlapped. Over-



lapping can arise only if these two signals are not sched-
uled together in any variant. Otherwise, it would result
in an infeasible schedule for a variant that uses both sig-
nals. Checking if we can overlap two particular sig-
nals is a relatively time consuming operation because
we need to check all variants if they use both signals
or not. But, this information is static and known in
advance. Therefore, during the reading of the input
instance, we create a Signal Mutual Exclusion Matrix
(SMEM). SMEM is a symmetric binary matrix with the
dimension equal to the number of signals. The matrix
contains 1 for each pair of signals if these signals are to
be scheduled together in some variant or 0 otherwise.
Thus two signals S1 and S2 can mutually overlap only

A
B
C
D
E
F
G
H

A
 B
  C
   D
    E
     F
      G
       H

1
1 1
1 1 1
1 1 1 1
0 1 1 0 1
1 1 1 1 1 1
1 1 1 1 0 1 1
0 1 1 0 1 1 0 1

Table 3: Signal mutual exclusion matrix for Example 1

if SMEMS1,S2 = 0. In our Example 1, it holds only for
pairs {A,E}; {A,H}; {D,E}; {D,H}; {E,G} and
{G;H} as presented in Table 3.

The multischedule has one extra feature in addition
to the native schedule. As can be seen in Figure 3, one
slot in the multischedule can be occupied by more than
one node. In our case, in multiframe MS1,3 two signals
are scheduled. Signal G is from node 2 and signal H is
from node 3. To be sure that this behavior does not re-
sult in an infeasible schedule, we permit this only if the
signals from these two nodes do not appear together in
one variant. Thus, we need to know the same informa-
tion as what holds in SMEM for signals, but in this case
for nodes. We can also derive this information from the
input instance and save it to the matrix. We call this
matrix a Node Mutual Exclusion Matrix (NMEM). This
symmetric binary matrix contains 1 if the nodes are dif-
ferent and appear in some variant together and 0 other-
wise. The NMEM matrix for our Example 1 is shown
in Table 4.

Node 1
Node 2
Node 3

Node 1
               Node 2
                              Node 3

0
1  0
1  0  0

Table 4: Node mutual exclusion matrix for Example 1

Input: S
(SMEM, NMEM)← CALCULATEMEMS(S, Vi,j );
SL← SORT(S);
initialize MS;
for i← 1 to |SL| do

PLACESIGNALTOSCHEDULE(MS, SLi, SMEM,
NMEM);

end
Algorithm 1: First fit algorithm

3.3 First fit heuristic

In article [5], it was shown that the scheduling problem
for the static segment of the FlexRay without time con-
straints is reducible to the two-dimensional bin pack-
ing problem. For this problem, the first fit decreasing
heuristic (items are sorted according to decreasing size
and then placed one by one to bins in the first suitable
position) is known and applicable with an approxima-
tion factor 2 (it is proved that solution found by the
heuristic can not be worse than twice w.r.t. optimum).
But, after adding time constraints, this approximation
factor does not hold. So we propose the general first fit
heuristic that is initialized by ordered list of signals SL.
Used First fit algorithm is outlined in Algorithm 1.

At the beginning of algorithm, the mutual exclusion
matrices are calculated (from signal set S and matrix
Vi,j), then the SL list is constructed by ordering the sig-
nals from S. Then, we allocate the memory and ini-
tialize the multischedule MS. After that, the signals are
sequentially read from SL and we place them to the mul-
tischedule by the first fit policy.

The most important part of the first fit algorithm is the
PlaceSignalToSchedule procedure (Algorithm 2). This
procedure is responsible for finding a sufficient posi-
tion (a position where all the constraints are satisfied)
and placing the signal to the constructed MS. First, the
procedure needs to find a feasible position for the first
instance of the signal. We denote these instances as the
signal job. The FindPositionForSignal procedure finds
this position and saves it to the placePosition variable.



PlaceSignalToSchedule
(MS, signal, SMEM, NMEM)
{
infeasiblePosition← true;
while infeasiblePosition = true do

placePosition =
FINDPOSITIONFORSIGNAL(MS, signal,

SMEM, NMEM);
if placePosition not found then

break;
end cycle, slot, offset
← placePosition;
infeasiblePosition← false;
while cycle < hyperperiod do

if (cycle, slot, offset) is not suitable for signal
then

infeasiblePosition← true;
break;

end
cycle += Tsignal;

end
end
if infeasiblePosition then

placePosition←ALLOCATENEWSLOT(MS);
end
PLACESIGNAL(signal, MS, placePosition);
}

Algorithm 2: PlaceSignalToSchedule procedure

For the signal placement we have to know the cycle
number, the slot number and also offset in a frame. It is
not possible to deduce the offset in the frame after the
scheduling phase as in [5]. Because of the shared con-
straints, it does not hold that if there are enough free bits
for the signal in the multiframe we can also find enough
free bits in the sequence for placement.

If no feasible position for the first signal job is found
then we can finish searching because there is no appro-
priate position in the already allocated slots. Therefore,
we need to allocate a new slot in MS and obtain the first
feasible position for the signal in this slot and place it
there.

If a feasible position is found by the
FindPositionForSignal procedure it does not nec-
essary mean that we can place the signal there. This
holds only if SL is sorted in an increasing order of
periods but not in a general case. Thus, we need to
check the conflict for each signal job. If the position
of the first signal job is determined, then the positions

FindPositionForSignal (MS, signal, SMEM, NMEM)
{
(slot, cycle, offset)← lastPosition;
foreach slot after lastPosition do

foreach node in GETNODES(slot) do
signalNode = Nsignal;
if NMEMsignalNode,node then

continue with next slot;
end

end
foreach cycle after lastPosition < Dsignal do

offset = FINDSUITABLEOFFSET(MScycle,slot,
signal, SMEM, NMEM);
if offset is found then

lastPosition← (slot, cycle, offset);
return lastPosition;

end
end

end
return not found;
}

Algorithm 3: FindPositionForSignal procedure

of all the signal jobs are easy to deduce because of
the strict period. Its slot number and offset in the
frame are the same, only the cycle number is greater
by a multiple of the signal period. If there are free
positions for all the signal jobs then the feasible signal
position is found. We can stop searching and place the
signal to the determined position. Otherwise in the
case when some signal job cannot be assigned to the
corresponding position in the multiframe we need to
find a new position for the first signal job and check its
feasibility again.

The most computationally intensive and complex
part is calling the FindPositionForSignal procedure de-
scribed in Algorithm 3. The procedure can be called
many times for a single signal. First, we restore the po-
sition found by last procedure call because we want to
find the next one. If the procedure is invoked for the
first time the lastPosition variable is equal to the sig-
nal release date. Then, we check the multiframes after
this position that satisfy the time constraints until some
sufficient position is found. But we only need to check
the multiframes in the slots in which the transmitting
node can operate. Because more than one node can be
assigned to one slot in MS we iterate through all these
nodes and check if there is some conflict. If not, we
look for a sufficient multiframe otherwise we can skip



this slot. A multiframe is sufficient if we can find an
offset where the first signal job could be placed. This is
done by the FindSuitableOffset procedure presented in
Algorithm 4.

FindSuitableOffset (frame, signal, SMEM, NMEM)
{
freeBits = ALLOCATEMEMORY(W );
foreach fs in GETSIGNALS(frame) do

fsOffset = GETOFFSET(fs);
if SMEMfs,signal then

for i← fsOffset to fsOffset +Cfs do
freeBits[i]← 1;

end
end

end
return FINDFIRSTSUITABLEOFFSET(freeBits[i]);
}

Algorithm 4: FindSuitableOffset

For placing the signal job to the multiframe, there
must be at least as many free bits in the sequence as is
in the payload of the signal. The free bit, in our case,
means that, in this bit of the multiframe, no signal is
placed that could cause a conflict with the currently as-
signed one. Hence, we create the binary array called
freeBits that has the same length as is the multiframe
payload. Initially, the freeBits array contains only ze-
roes. Then, we iterate through all signals fs already as-
signed to the multiframe. If fs is in conflict with the as-
signed signal all positions in the freeBits corresponding
to fs are set to 1. Finally, each position of the array con-
tains 0 if the bit in the mutiframe is free and 1 otherwise.
The FindFirstSuitableOffset function then finds the first
position in the freeBits array where the sequence of ze-
roes of length at least equal to the payload of the signal
starts. This position is also equal to the first position
where the signal can be placed in the multiframe. Thus,
this position is returned as a sufficient offset.

4 Experimental results
The proposed algorithm was coded in C++ and tested
on a PC with an Intel R©CoreTM2 Duo CPU (2.8 GHz)
and 8 GB RAM memory. For the experiments, the
SAE benchmark signal set was used. From this basic
set we created seven extended benchmark sets as in [6].
Detailed description of the extended sets is as follows:
set1 - neither release dates nor deadlines are defined

- 3 nodes

TS FF FFP FFW FFL FFC
set1 20.2 30.9 19.0 19.0 41.4 19.0
set2 20.4 32.5 19.2 19.2 41.6 19.2
set3 20.4 32.6 19.3 19.4 41.0 19.3
set4 19.7 29.8 18.6 18.6 43.3 18.6
set5 11.8 28.8 11.3 11.3 38.2 11.1
set6 26.4 55.5 24.6 24.6 63.3 24.4
set7 28.9 47.5 28.6 28.6 49.0 28.6
1ECU500 17.6 25.9 17.0 17.0 27.7 16.9
1ECU1000 34.3 58.1 33.8 33.7 63.7 33.7
1ECU3000 23.2 120.0 22.5 22.6 134.6 22.4
Average 22.3 46.2 21.39 21.4 54.4 21.3

Table 5: Number of the slots allocated by different al-
gorithms

set2 - deadlines are not set, release dates are spread across
the first five communication cycles
- 3 nodes

set3 - each deadline is set in the last third of the signal
period, each release date is set in the first five com-
munication cycles
- 3 nodes

set4 - similar to set2
- 3 nodes

set5 - deadlines are not set, release dates are spread across
the first five communication cycles
- 6 nodes
- 64-bit payload

set6 - similar constraints as set5, but with a higher num-
ber of signals
- 6 nodes

set7 - neither release dates nor deadlines are defined, but
there are around 40 signals per node in average
- 23 nodes

All of these sets contain 500 to 1000 signals. Because
each of them was scheduled in less then 0.1 s, three
extra benchmark sets were prepared to measure the
computation time. All signals are transmitted from one
node. This results in more computational cost because
we cannot skip any already allocated slot (NMEM
is equal 0). The description of these extra sets is as
follows:
1ECU500 - deadlines are randomly defined, each re-

lease date is set in the first five communica-
tion cycles
- about 500 signals

1ECU1000 - the same as 1ECU500
- about 1000 signals



TS[s] FF[s] FFP[s] FFW[s] FFL[s] FFC[s]
1ECU500 0.202 0.032 0.059 0.060 0.039 0.068
1ECU1000 0.877 0.168 0.243 0.248 0.202 0.262
1ECU3000 16.09 1.314 1.099 1.149 1.950 1.141

Table 6: Runtime of the algorithms

1ECU3000 - the same as 1ECU500
- 128-bit payload
- about 3000 signals

The described datasets have a payload set to 32 bits
with the exception of set5 and 1ECU3000. Each set
consists of 10 test cases. In all of these test cases,
twenty variants were randomly generated such that all
signals were used. Each variant had a random number
from 0 to 0.7 assigned. The signals are then added to
the variant with the probability denoted by this number.
So we are simulating different vehicle classes (from the
cheap variant with only a few signals to the expensive
one with many signals).

We tested several algorithms for comparison. The TS
algorithm is the modified two-stage algorithm described
in [6] for the time constrained static segment schedul-
ing. It packs the signals into multiframes first and then
it schedules the already assembled multiframes. The
remaining algorithms are using the proposed first fit al-
gorithm with different ordering. The FF (FirstFit) al-
gorithm uses no ordering. It just schedules the signals
in the order in which they are read from the input in-
stance. The FFP (FirstFitPeriod) algorithm sorts signals
according to the signal period in an increasing order.
The FFW (FirstFitWindow) algorithm uses an increas-
ing order of time windows (the gaps between the release
dates and deadlines) so the signals that only have a few
cycles where they can be placed are scheduled first. The
FFL (FirstFitLength) algorithm schedules signals in a
decreasing order of the signal payload. The FFC (First-
FitCombined) algorithm is a combination of multiple
ordering. In this case, the signals are sorted by the sta-
ble sorting algorithm in sequence according to: decreas-
ing payload, increasing windows, increasing period and
increasing node number.

The experimental results are presented in Table 5. In
this table, the benchmark sets are situated in the rows
and the different algorithms are in the columns. Each
cell contains an average number of the used slots com-
puted from all test cases of the benchmark set. In the
last row there is the overall average for the particular
algorithm.

Table 6 presents the runtime of the algorithms on the

extra benchmark sets. The table is organized in the
same way as Table 5. As we can see, FFP, FFW and
FFC return good results in terms of the quality and also
in better time than FFL and FF. The TS algorithm re-
turns only a little bit worse solutions but it consumes
much more time for the test cases with a greater number
of signals per node. The FFL algorithm returns worse
results than FF. It is due to the nature of the bench-
mark set where signals with bigger payloads often have
a bigger period too. If the signals with a big period are
placed first then it is also more complicated to find a
feasible position for the other signals. The consequence
of this behavior is also a bad performance.

5 Conclusion

In this paper, we described the heuristic based on first fit
policy for solving a multi-variant time constrained static
segment scheduling problem. We introduced new data
structures for better efficiency and performance and we
showed that the idea of the first fit decreasing algorithm
from the bin packing problems area is useful for solving
a multi-variant scheduling problem.

We tested our proposed algorithm with several types
of signal ordering. The best results were obtained by the
combination of multiple ordering. But the most impor-
tant outcome is a good quality result with ordering ac-
cording to the increasing period. There is possibility to
optimize the FFP algorithm to gain better performance.
It is also possible, because of relatively low compu-
tational complexity, to use the proposed algorithm as
a basis for a genetic algorithm or other metaheuristic.
In the future, the method for incremental multi-variant
scheduling should be proposed.
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