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Abstract

Rapidly changing customer demands lead to a
paradigm shift from mass production to mass customiza-
tion within the manufacturing industry. However, todays
production systems are of a very static nature. Changing
the manufacturing process requires a high amount of ex-
pensive human resources and is quite error prone. Hence,
reconfigurability will become a key factor in the manu-
facturing industry and industrial automation systems must
provide suitable solutions to support this new paradigm.

Service-oriented architectures (SOAs) are a potential
technology which can provide the requested capability of
automatic reconfiguration. Originating from the IT world,
the adaptation of SOAs to industrial automation systems
has to face several difficulties – especially real-time re-
quirements must be met. This paper proposes an innova-
tive solution approach for the integration of a SOA into
real-time systems for industrial automation.

1 Introduction

Today, the manufacturing industry faces challenges due
to the changing demands of its customers. Formerly, the
cost-effective mass production of standardized products
was a key factor for the competitiveness of a company.
Nowadays and in the future the customization of prod-
ucts will become more and more important. Furthermore,
product life cycles are about to become much shorter. This
requires new manufacturing system paradigms which en-
able the manufacturer to react fast and cost-effective on
market changes and individual customer demands [1] [2].
Two of these paradigms are flexible and reconfigurable
manufacturing.

In flexible manufacturing systems (FMS) the variabil-
ity is built-in a priori in the production process. An FMS
consists of manufacturing cells with different capabilities
and a connecting transportation system which allows vari-
ous work flows. Variants of a product can be produced by

choosing another subset of the available production tools.
Since no physical changes of the manufacturing system it-
self are possible, the flexibility of a FMS is limited to the
pre-defined boundaries of the system [2].

On the contrary a reconfigurable manufacturing system
(RMS) allows physical modifications. For example, mod-
ules and machines can be added or removed from the pro-
duction process to achieve new functionalities enabling a
response to unforeseen requests [2]. Therefore, reconfig-
urable manufacturing is considered as the main production
paradigm of the future [3]. The design of reconfigurable
systems is an ongoing research topic. It covers different
research fields, starting from the level of reconfigurable
process planning down to the level of modular machine
component design. The key challenge for industrial au-
tomation are control systems which must handle the newly
introduced high degree of complexity. Since the control
logic of today’s production processes is rather static, it
must be enabled to react with respect to the dynamic na-
ture of an RMS.

One approach to control an RMS is the introduction
of service-oriented architectures (SOAs) in industrial au-
tomation [4] [5]. A SOA consists of independent, but in-
teroperable services. Each service exposes only its func-
tionality to other services, the implementation is not visi-
ble from outside the service. Furthermore, all services are
loosely coupled: They operate independently from each
other, their interactions are stateless, asynchronous and
not context-related [4]. In a SOA, a process (i. e., the pro-
duction of a certain good) is composed as an aggregation
of these services. An orchestration engine maps the pro-
cess logic to the service level by connecting the services
and schedules in their execution order. Finally, the SOA
should offer a Plug-and-Produce (PnP) functionality, i. e.,
physical changes (e. g., removing or adding a device) lead
to an automatic reconfiguration of the automation process
on the basis of an abstract process definition.

The SOA paradigm originates from the information
technology domain, where it is mainly used to implement



business processes on distributed systems. However, the
requirements of industrial automation are contrary to the
SOA approach in many cases – especially in the field of
real-time communication. The remainder of this paper is
organized as follows. In section 2 an overview of SOA
approaches for industrial automation is given and existing
problems are highlighted. An architecture to solve these
issues is presented in section 3. To proof the feasibility
a prototypical implementation of the architecture is de-
scribed in section 4. The paper is concluded in section 5
followed by a brief outlook towards future work.

2 SOA in industrial automation systems –
an overview

The SIRENA project [6] was one of the first ap-
proaches of porting SOAs to the industrial automation
domain. SIRENA introduced a device-level SOA based
on Web Services, the Device Profile for Web Services
(DPWS), where each device offers its functionality as a
service. For example a ”Smart Motor” is given which
exposes services like RunMotor(duration). Web Services
are a technology which supports the design of distributed
systems. They consist of service providers which offer
a functionality and service consumers which utilize that
functionality. The interface of a web service is described
in a machine-readable format like the XML-based Web
Service Description Language (WSDL) [7]. The descrip-
tion contains information about the parameters the ser-
vices expects and what data it returns. Furthermore, it
determines the format in which the messages between ser-
vices are exchanged. The most common protocol used for
Web Services communication is SOAP over HTTP [8].

One advantage of web services is that basic services
can be combined to generate new higher order services.
So the production process of a product can be composed
by using the services of different productions cells and
transportation systems. This composition of services is
called orchestration. An orchestration engine must offer
possibilities to connect services, to schedule their execu-
tion order and to offer an interface of the newly composed
service to higher layers. The most common specification
to orchestrate web services is the Business Process Exe-
cution Language (BPEL) [9].

The device-level SOA approach can simplify the re-
configuration of production systems. Although the sys-
tem developer has to change the orchestration logic, there
is no need for going into details of data exchange and
network communication, for example. The SOCRADES
project introduced a framework offering the opportunity
to orchestrate services flexible on the basis of petri nets
[10]. However, every reconfiguration step results in man-
ual effort. In order to achieve the objective of PnP, the
production system must react autonomously to changes.
Languages like WSDL and BPEL offer only syntactic de-
scription methods. They do not describe the meaning of
the functionality, also called the semantics of a service,

which is necessary to automate the orchestration process.
This issue is addressed by semantic Web Services, whose
best-known examples are SAWSDL, WSMO and OWL-
S [11]. The semantics describe the meaning of a service
definition and the relationships between production com-
ponents and their services. To combine services to a fully
functional production process the orchestration manager
further requires a knowledge base in form of an ontol-
ogy. The ontology could contain information about the
available devices, their location and their dependencies
[11] [12]. For example, in [13] a systematic procedure
to define device profiles is shown. A proof-of-concept of
a SOA-based production process is presented in [11] and
[14].

Even though the SOA in automation approach has been
discussed in the scientific community for more than eight
years now and despite of its advantages, it is not estab-
lished in industrial practice yet. In [15], technology- and
human-related adoption barriers are identified. From a
technology point of view, the resource constraint devices
used in industrial automation have insufficient computing
power for SOA communication protocols. Although this
can be resolved in the future by the continuously increas-
ing performance of hardware components, other problems
regarding robustness, engineering tool support, safety and
standardization must be addressed. On the human side, a
conservative attitude towards new technologies in the in-
dustrial automation is stated. To convince engineers and
managers of production sites, examples of SOA-based au-
tomation systems in comprehensive real scenarios must be
successfully implemented.

From our perspective, there is another fundamental ar-
chitectural problem when trying to realize SOA on a de-
vice level in industrial automation. To visualize this is-
sue a SOA-based automation system, as defined by the
SOCRADES project, is outlined in Figure 1 [10].

Figure 1. SOA-based automation system

As already mentioned a main premise of SOAs is the
loose coupling of services. However, the resulting loose
coupling of devices does not necessarily reflect the reality
in the industrial automation. On the contrary, there are of-



ten close links between automation functions and devices
like the need for real-time communication. For example,
in a motion control application process data values must
be sent every 100 µs with a latency jitter of less than 1 µs
[16]. These demands cannot be met by current SOA im-
plementations. Indeed, the SOA concept is not intended
to fulfill such critical temporal constraints.

However, there are several approaches to introduce
real-time capabilities to SOAs. The SOAP4IPC engine
[17] analyzes the timing behavior of Web Services and de-
termines the maximum execution time of a service. The
Time-Constrained Services (TiCS) framework [18] offers
tools to model the time dependencies of composed ser-
vices. Based on the SOAP4IPC results, the framework
checks if the dependencies can be met. Methods for im-
proving the performance of SOA communication stacks
are described in [19]. The authors suggest to replace the
SOAP communication protocol by Efficient XML Inter-
change (EXI) [20], which is a binary XML representation.

All these solutions use SOA-inherent communication
approaches based on the Internet Protocol (IP), in most
cases based on standard Ethernet networks. Both tech-
nologies are not able to provide deterministic communi-
cation with low latency and jitter which is an essential re-
quirement for many automation applications. Therefore
real-time capable networks such as Real-time Ethernet
(RTE) are used in the industrial automation. RTE is a gen-
eral term for different communication network standards
like Profinet IO, EtherNet/IP or EtherCAT. They all are
based on standard Ethernet and use some modifications
to provide real-time guarantees. One feature of RTEs is
the backward compatibility to standard Ethernet (in most
cases) which allows an easy integration into existing net-
works. The advantage of real-time communication is at
the expense of an increased manual configuration effort.

In the iLAND project [21] methods for supporting
time-bounded service operations have been developed.
A middleware manages the communication between ser-
vices considering temporal constraints. The middleware
contains a placeholder for custom protocol stacks which
could be replaced – in principle – by an RTE. However,
no examples are provided on how to implement an RTE
practically. Especially, the specific requirements concern-
ing the complex configuration of RTEs are not considered.

In the next sections an architecture for reconfigurable
automation systems is presented which integrates RTE
into existing SOA concepts.

3 A reconfigurable architecture for the field
level

In this section, the challenging implementation of real-
time communication in SOAs is again addressed. After a
short description of current industrial automation systems,
a promising approach to extend these systems is proposed
in order to enable SOAs to provide real-time guarantees.

3.1 Basic idea: Encapsulation of real-time communi-
cation

As stated in section 2 the SOA paradigm is limited
whenever real-time communication is needed in industrial
automation systems. However, real-time relationships ex-
ist only among a small group of devices in a clearly de-
limited part of the whole automation process. To distin-
guish between parts with and without real-time require-
ments we propose to introduce a module level in the au-
tomation process. Here, a module is characterized as a
mechatronic unit which provides a certain functionality to
the outside world. To realize this functionality it internally
consists of several devices like sensors, actuators and typ-
ically one control device. Within a module there can be
real-time communication between the devices, whereas
there is none between the modules. This concept is de-
picted in Figure 2.

Figure 2. Segmentation of a automation pro-
cess into modules

Instead of a device-level SOA, this approach introduces
a module-level SOA where the services are not exposed
by devices but by modules. All SOA principles like loose
coupling, service composition and orchestration are still
applicable to the module level. The critical real-time com-
munication is shifted to the field level where it is encapsu-
lated by the modules. The devices on the field level gen-
erally form the interface to the mechanic components of
the automation process. In our opinion, this segmentation
reflects the reality of the industrial automation in a bet-
ter way. A similar approach is presented in [22] where a
procedure for the dynamic orchestration of module-based
services is presented. The author assumes that real-time
communication exists only inside a module. The recon-
figuration of module-internal communication is explicitly
excluded in that work.

In [23] a SOA-based architecture for reconfigurable
manufacturing processes is presented. Although the fo-
cus of that paper is on the computation of optimized pro-
duction schedules, it also covers the integration of field



devices. The proposed architecture turns away from the
device-level SOA concept, as well. Instead, on the field
level the production process is divided into cells con-
trolled by standard automation devices. OPC UA servers
collect data from their allocated cells and form the inter-
face to the service level by exposing basic services.

However, modules or cells in RMS cannot be consid-
ered as static units. Therefore, subsection 3.3 shows a field
level architecture allowing the dynamic reconfiguration of
a module.

3.2 Current industrial automation control systems
The architecture of a reconfigurable module will be ori-

ented towards state-of-the-art industrial control systems.
In this section an introduction to such a system is pro-
vided. A typical control system structure is shown in Fig-
ure 3.

Figure 3. Current industrial automation con-
trol system

The sensors and actuators are connected to IO-Devices,
which offer an electrical interface for them (i. e., supply
voltage, digital/analog conversion and vice versa). The
IO-Devices send process data from sensors to the pro-
grammable logic controller (PLC) or receive process data
for actuators from the PLC. The software with the con-
trol logic is executed on the PLC. The process data be-
tween PLC and IO-Devices is transferred over an RTE.
Setting-up such a control system requires several configu-
ration steps, which are listed in the following.

1. The control logic has to be defined. This is usually
done in a programming language according to IEC
61131-3. This program contains variables which rep-
resent the process data.

2. The RTE must be configured. Usually, the user has to
define which IO-Devices are present in the network
and an RTE-dependent addresses must be assigned.

3. The binding between a variable of the control logic
and a concrete sensor/actuator signal must be de-
fined.

The result of these steps is a very static automation pro-
cess. After every reconfiguration the steps two and three
have to be at least repeated. The aim of the architecture

described in section 3.3 is to automate the reconfiguration
procedure.

3.3 Module architecture
The starting point for the suggested module architec-

ture is the standard automation control system described
in subsection 3.2. At the end, that system and the mod-
ule will execute the same functionality. The difference is
that the module architecture supports automatic reconfig-
uration and has an interface to the upper level SOA.

Before the reconfiguration process of the module can
start its control logic must be defined. Thereby the logic
can be formulated independent of the module’s hardware
design. This allows the definition of abstract and reusable
logic modules. The selection of the concrete devices, the
used communication network, etc. is up to the user –
as long as the hardware complies with the specifications
within the logic module. A possible work flow could look
like this:

1. The overall process logic is formulated or generated
in a process description language like BPEL.

2. An orchestration engine analyzes the BPEL defini-
tion and derives the module-level services needed to
execute the process.

3. The identified services including interface and logic
definitions are chosen from a service directory.

In [24] an app-based approach for automation devices
is shown. In that concept a function specific control soft-
ware can be loaded onto generalized field devices - de-
pending on the requested automation functionality. On
this basis, the user could select the appropriate ”control
apps” matching to identified services. Another possibility
to define the control logic is a model-driven development
process. In [25] the automatic generation of IEC 61131-3
code from graphical UML and SysML models is evalu-
ated. A method for control code generation by integration
of knowledge from existing engineered artifacts like pip-
ing and instrumentation diagrams is presented in [26].

Besides choosing or defining the appropriate control
logic, the engineer should be relieved from all other tasks.
Especially, all tasks related to configuration which mainly
includes the configuration of the RTE and the mapping be-
tween logic variables and device signals. As a result, there
is no knowledge required about the used network technol-
ogy during control logic definition. This abstraction be-
tween logic and technology facilitates the reconfiguration
process – the control logic does not define which concrete
physical devices must be used. Instead, it only specifies
which information must be provided or consumed by the
devices. The proposed architecture and its function blocks
are depicted in Figure 4.

Like in a current automation control system, the archi-
tecture consists of one PLC where most of the new func-
tion blocks reside. The individual blocks are described in
the next subsection.



Figure 4. Architecture of a reconfigurable
module

3.3.1 Control Logic

As mentioned before the control logic must be still defined
manually. A part of this logic are the external variables,
which represent the process data of the sensors and actu-
ators. Normally, the engineer must map the variables to
the corresponding devices manually. Here, the logic is in-
dependent from the underlying physical devices, and the
mapping is done by another function block of the module
architecture. The user only has to define the semantics of
the variables, which describe the content and meaning of
them. Therefore it is necessary to define an information
model and a description language, which formalizes the
model in a machine-readable way. Semantic description
is also used in SOAs to describe the functionality of ser-
vices [27].

In comparison, the challenge of defining an infor-
mation model for variables respectively signals existing
within a module is less complex. In this approach, only

the content of a variable or signal must be described,
whereas a service description also includes the functional-
ity. With a simple information model the physical quantity
(e. g., temperature, pressure, torque), which is expressed
by a signal, could be assigned as semantic information,
for example.

However, this model reaches its limits when one phys-
ical entity exists multiple times within a module. As
fall-back strategy in such a case the user could be asked
to manually choose the correct mapping. The informa-
tion model which is included in the description language
mINA-DL [28] includes additional attributes like neigh-
bourhood information to solve the signal identification is-
sue. In [29] the sorting of typical signals existing in an
automation system in specific signal classes is proposed.
The analysis of existing information models and the def-
inition of a specific information model for the proposed
architecture is part of future work.

At the configuration phase, the control logic sends
its variable names and their semantic descriptions to the
”Variable & Signal Discovery” block. At runtime, the
variables with their corresponding data are exchanged
with the ”Mapping” block.

3.3.2 Web-Services interface

This function block forms the interface between the con-
trol logic and the external SOA. Therefore, it describes
the functionality of the module as well as its input and
output parameters. The interface could be formalized
by using WSDL, for example. The nature of the data
exchanged over the Web-Services interface is normally
status-oriented since time-critical data resides inside the
module.

3.3.3 Mapping

This architectural component has to perform two func-
tions. At the configuration phase it gets the semantic vari-
able descriptions from the discovery block. When using
the information model mentioned above, an example de-
scription could look like this: ”Variable X is of type tem-
perature.” Furthermore, the discovery block provides the
semantic descriptions from the IO-Devices and a corre-
sponding RTE-independent address for each signal. On
this basis, the mapping block merges the variables from
the control logic and the signals from the IO-Devices
and inserts the corresponding mappings to a mapping ta-
ble. After the mapping process, this information is avail-
able: ”Variable X of type temperature is connected to the
temperature-type signal at the RTE-independent address
0x0001”. As long as an ambiguous assignment between
variables and signals exists, the user has to be informed.

At runtime the mapping block routes the process data
between the control logic and the RTE interface. For ex-
ample, the mapping block could receive this data from the
control logic: ”Variable X has the value 0x1a”. It will



route the data to the RTE-independent process data inter-
face of the RTE manager as follows: ”Send data 0x1a to
RTE-independent address 0x0001”.

3.3.4 Variable and signal discovery

The function of this block is the discovery of all IO-
Devices available in the network and the retrieval of
the semantic information of their signals and the vari-
ables of the control logic. For each signal also an RTE-
independent and an RTE-dependent address is provided
by the IO-Devices. Therefore, corresponding function
blocks at the IO-Device are needed and it must be consid-
ered that these devices are generally very constrained in
their resources. A possible solution to fulfil these tasks are
current SOA implementations like DPWS and the Nano
Embedded Device Server Profile of the OPC Unified Ar-
chitecture (OPC UA) [30] which are designed for low-
resource embedded devices. In this context SOAs are not
used to define services of an IO-Device. Instead, the in-
tegrated mechanisms of both SOAs for device discovery
and description are a suitable technical solution and there-
fore they are utilized to realize this function block. DPWS
offers the WS-Discovery standard [31] to discover devices
in a network without any pre-configuration by using mul-
ticast addresses. The signals of the IO-Devices can be de-
scribed by WS-MetadataExchange [32] which is also part
of DPWS. In the OPC UA discovery process the devices
have to register themselves at dedicated discovery servers.
The disadvantage of this procedure is that these servers
have to be pre-configured at the IO-Devices. In OPC UA
the used information model can be integrated directly into
the address space of an OPC UA server. A comparison of
OPC UA and DPWS is given in [33] and [34]. The latter
also describes a lightweight OPC UA server implementa-
tion, the same is done in [35] for DPWS.

Both OPC UA and DPWS are using standard TCP/IP
communication. For this purpose, the architecture con-
sists of two separated logical channels: an ad-hoc channel
for device and signal discovery and a real-time channel
for process data exchange. The ad-hoc channel transports
TCP/IP data and must offer its functionality without any
manual pre-configuration needs. Therefore it is necessary
that the used RTE allows zero-configuration TCP/IP traf-
fic in parallel to the real-time process data. This is the
case for Profinet IO (but not for the isochronous variant
Profinet IRT), Ethernet/IP and Ethernet Powerlink, for ex-
ample. Here, the RTE forms a common physical channel
for both logical channels.

3.3.5 RTE manager

The RTE manager is one of the core components of the ar-
chitecture. It offers an RTE-independent process data in-
terface to the upper layer mapping block for process data
exchange. The RTE manager converts the data and the ad-
dressing scheme according to the underlying RTE layer.
The RTE stack of the PLC is then used to send the process

data over the RTE. Traditionally, the RTE must configured
manually before the process data exchange can start. For
example, this step includes address allocation, configur-
ing the format and length of the process data and several
other important RTE parameters. To automate these steps
the RTE manager provides an RTE autoconfiguration and
discovery service. This service detects all available IO-
Devices, explores their RTE dependent properties and fi-
nally configures the RTE stack of the PLC device. This
procedure repeats every time when a device is connected
to or disconnected from the network. The functioning of
the RTE autoconfiguration is explained in detail in [36]
and [37]. A very similar concept has been presented in
[38] afterwards.

3.3.6 IO-Device

In this architecture the sensor/actuator is integrated into
the IO-Device. Today, this is not always the case due
to economical reasons, especially for very cheap sensors
with a high quantity in the system, such as proximity sen-
sors. Often both elements are separated, so that the cost-
intensive interface to the RTE does not have to be inte-
grated into each sensor/actuator. The decreasing costs of
computing power could make it possible to generally in-
clude the RTE interface on the sensor level.

In addition, the combination of IO-Device and sensor
in the described architecture contains a TCP/IP stack and
provides the semantic description of the offered/requested
signals and the corresponding addresses. This can be re-
alized by DPWS or OPC UA, as stated in section 3.3.4.
Adding more intelligence to this kind of devices is also a
central point in the vision of the Internet of Things [39].

4 Implementation

In the following, a prototypical implementation of the
architecture described in section 3.3 is given. To illustrate
the implementation more clearly, its description is divided
into two parts. First, the components and operations in-
volved during the configuration phase are shown in Fig-
ure 5. Afterwards the behaviour during the process data
exchange is explained.

4.1 Configuration phase
In this proof-of-concept the control logic is statically

implemented according to IEC 61131-3. The control logic
contains all variables which should be mapped to the sen-
sor/actuators signals at a later stage. First of all, the se-
mantic description has to be added to the variables. There-
fore the program is exported from the IEC 61131-3 de-
velopment environment to the PLCopen [40] format (step
1 in Figure 5). The resulting file contains all external
variables and their data types in a human-readable XML-
format. In step 2, the semantic description of each variable
is inserted directly to the XML-file by the user. This is
possible here, since in the used simple information model



Figure 5. Implementation at configuration
phase

every variable is described by a string only. When a more
complex model is used, tool support for adding the seman-
tic descriptions would be necessary. After the descriptions
have been added, the XML-file is converted to an OPC UA
information model description file.

When the automation system goes online after a re-
configuration, the OPC UA server of the PLC reads its
model description file which defines the address space
enriched with the variable names and their semantic de-
scriptions. At the same time the OPC UA server of all
IO-Devices start. In each server instance the description
of the sensor/actuator signal has been included at man-
ufacturing time. Also the supported RTE type of the
IO-Device, the RTE-specific address and a unique RTE-
independent identifier (UUID) of each sensor/actuator is
pre-configured. Figure 6 shows a screenshot of the OPC
UA information model of an IO-Device. The basis for
this model is formed by the OPC UA For Devices (DI)
specification [41] which is expanded by the signal descrip-
tions. It is also possible that an IO-Device contains more
than one sensor/actuator signal. In this case, the OPC UA
server contains the corresponding number of signal de-
scriptions.

When the OPC UA servers are running, they are dis-
covered by the central OPC UA client (see [34] for the de-
tails of the discovery process). The client browses through

Figure 6. OPC UA information model

the address space of the PLC’s server and collects infor-
mation about the available variable names and their de-
scriptions (step 3). From the servers at the IO-Devices the
client gets the description, the supported RTE, the RTE-
independent address and the UUID of each signal (step
4). In step 5 the information of all OPC UA servers are
sent to a mapping service which maps the variables to the
corresponding signals. In this implementation, a very sim-
ple matching algorithm is used: the strings which form the
variable and the signal descriptions are compared. If they
match, a new entry in a mapping table is generated. An
user has to define the mapping for all variables and signals
which have not been assigned to a counterpart. The com-
plexity of the matching procedure grows with the com-
plexity of the information model used for describing the
variables and signals. One possible extension could be the
integration of expert systems into the mapping algorithm.

Parallel to the semantic configuration process, the RTE
manager starts in step 6 the RTE autoconfiguration proce-
dure, so that after the configuration phase the process data
exchange can start.

4.2 Operational phase
The function blocks involved in the process data ex-

change are depicted in Figure 7. The control logic is ex-
ecuted in a standard industrial IEC 61131-3 runtime en-
vironment. In this implementation sockets are used to
enable data exchange between the environment and the
mapping function block. This block replaces the variable
names by the used RTE and the UUID retrieved from the
mapping table and forwards the data to the process data
interface of the RTE manager. The latter translate the up-
per layer write and read-calls to RTE-dependent functions.



Figure 7. Implementation at runtime

In the presented implementation the data is exchanged via
Named Pipes between the RTE manager and a commercial
RTE stack.

4.3 Physical setup
The setup of the evaluation system for the implemen-

tation is shown in Figure 8. All PLC components are re-
alized on a Windows PC. The RTE functionality is pro-
vided by a Profinet IO software stack from KW software
[42]. On the IO-Device side, two alternative approaches
were chosen. On the one hand, the needed OPC UA server
functionality was implemented directly in the firmware of
a Profinet IO-Device. Therefore an OPC UA server has
been developed which has extreme small requirements in
terms of memory (see also [34]). This is enclose to future
solutions, where sensor, RTE interface and OPC UA form
one single device.

On the other side, also standard IO-Devices are in-
cluded in the evaluation system where no additional fea-
tures can be added. Here, the OPC UA server is imple-
mented on a small additional device like the Linux-based
Raspberry Pi [43]. From an outside point of view, the
Raspberry Pi and the standard IO-Device are considered
as one logical device.

5 Conclusion and future work

This paper proposes an approach towards enabling re-
configurable production systems. Today, reconfigurabil-
ity is not supported by industrial automation systems.
Service-oriented architectures (SOAs) are generally con-
sidered as an enabling technology for reconfiguration in
automation systems. Thus, this paper starts with an intro-
duction to SOAs. Subsequently, technical difficulties are

Figure 8. Physical setup of the evaluation
system

discussed which arise from transferring the SOA approach
to the industrial automation domain – especially the real-
ization of real-time process data exchange is a challenging
task. Therefore, this paper proposes to divide an automa-
tion system into a module and a field level. Here, the real-
time traffic takes place at the field level. All devices with
real-time communication relations are encapsulated into a
module. On the module level existing SOA solutions can
remain unchanged. To enable the automatic reconfigura-
tion on field level, an appropriate architecture is proposed.
The main components of this architecture are a mapping
service based on the semantic description of variables and
sensors/actuators as well as an autoconfiguration service
for the underlying real-time Ethernet (RTE) network. The
proposed solution facilitates a configuration-less startup
of an automation module. The real-time data exchange is
configured automatically according to the identified rela-
tions between the control logic and the field devices.

Since a few parts of the proposed architecture are still
in the conceptional phase, future work will further inves-
tigate information models which are able to model signals
appearing in an automation system. As a step towards
such a model the communication relations in existing au-
tomation systems should be thoroughly examined. Based
on these analyses a structured model could be designed.
The implementation of this architecture in application sce-
narios with high temporal requirements on the communi-
cation system shall prove the feasibility of the presented
approach.
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