N

N

Model-based validation of CANopen systems
Alexios Lekidis, Marius Bozga, Saddek Bensalem

» To cite this version:

Alexios Lekidis, Marius Bozga, Saddek Bensalem. Model-based validation of CANopen systems. 10th
IEEE Workshop on Factory Communication Systems WFCS 2014, May 2014, Toulouse, France. pp.1-
10, 10.1109/WFCS.2014.6837602 . hal-01212300

HAL Id: hal-01212300
https://hal.science/hal-01212300
Submitted on 6 Oct 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01212300
https://hal.archives-ouvertes.fr

Model-based validation of CANopen systems *

Alexios Lekidis, Marius Bozga, Saddek Bensalem
Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
CNRS, VERIMAG, F-38000 Grenoble, France
firstname.lastname @imag.fr

Abstract

CANopen is an increasingly popular protocol for the
design of networked embedded systems. Nonetheless, the
large variety of communication and network management
functionalities supported in CANopen can increase signif-
icantly systems complexity and in turn, the needs for sys-
tem validation at design time. We present hereafter a rig-
orous method based on formal modeling and verification
techniques, allowing to provide a comprehensive analy-
sis of CANopen systems. Our method uses BIP, a formal
[framework for modeling, analysis and implementation of
real-time, heterogeneous, component-based systems and
the associated BIP tools for simulation, performance eval-
uation and statistical model-checking.

1 Introduction

Fieldbus protocols provide efficient solutions to impor-
tant issues occurring in embedded system design nowa-
days. Such issues include managing system complexity,
reducing communication cost as well as providing guar-
antees for functional and real-time requirements. A high-
level protocol included in this family is CANopen [1].
This protocol is getting increasing popularity thanks to a
vast variety of communication mechanisms, such as time
or event-driven, synchronous or asynchronous as well as
to additional support for time synchronization and net-
work management. Moreover, it provides a high-degree
of configuration flexibility, requires limited resources and
has therefore been deployed on many existing embedded
devices.

Applications using CANopen as their communication
protocol can be found in automotive systems. In this
domain, it is used as a high-level protocol on top of
Controller Area Network (CAN) [2], in order to orga-
nize and abstract its low-level communication complex-
ity. Since it offers parametrization according to predefined
standards and manufacturer-specific device specifications,
CANopen has also been deployed in distributed control
systems, maritime electronics, medical devices, railway

*The research leading to these results has been partially funded by
the French BGLE project ACOSE

applications, photovoltaic and building automation sys-
tems e.t.c.

To the best of our knowledge, the existing tools for
simulation, analysis and validation of CANopen systems
are very limited. Vector GmbH ' provides a powerful
tool for the simulation of such systems, the CANalyzer
[3]. It also contains a CANopen extension, namely the
CANalyzer.CANopen. A relevant tool can be found in
youCAN stack prototypes [4], provided by port GmbH 2.
CANopen Magic [5] is an interactive tool from Embed-
ded Systems Academy 3, providing an interface for the
development and simulation of applications using the pro-
tocol. Nonetheless, these tools are not able to perform tim-
ing analysis and validation. Furthermore, their use in the
design of correct, functional CANopen systems requires
high expertise. Likewise, they are targeting an industrial
use and therefore their evaluation versions can only be
used to familiarize with the protocol. Subsequently, they
have limitations on the network size and the protocol func-
tionalities. On the other hand, the equally powerful tools
for CAN, capable of performing both timing analysis and
performance evaluation, such as RTaW-Sim [6], are not
implementing the CANopen protocol.

The aforementioned considerations are present, be-
cause CANopen is a fairly complex protocol and the in-
teractions between the different types of communication
mechanisms are very subtle. Thus, the protocol primitives
can be easily misused, leading to poor, non-functional sys-
tems. A particular example is that even though it offers a
wide range of services and communication mechanisms,
the proper use of them is left to the device manufacturer
as well as the application developer. The default method
of setting the protocol parameters does not apply in many
cases. An efficient solution to this issue is the availability
of validation support at design time. Previous studies [7]
[8] have illustrated that conformance testing can be used
as a validation method in CANopen systems, due to its
capability of verifying system integrity as well as the pro-
tocol’s error-free functionality. However, the lack of func-
tional error detection and performance analysis in earlier
stages of the development cycle is a considerable design

Thttps://vector.com/
Zhttp://www.port.de/
3http://www.esacademy.com/

limitation for such systems.

In this work we present an alternative validation
method based on the use of formal modeling and verifi-
cation techniques. We provide a systematic way to con-
struct models of CANopen systems using the BIP com-
ponent framework [9]. These models are constructed sys-
tematically, using a structural translation principle, from
the protocol’s entities and communication mechanisms.
We show that the models obtained are faithfully compliant
with the protocol’s functional and timing aspects and can
be used for either functional verification or performance
analysis, using existing simulation and statistical model-
checking tools available for BIP. As far knowledge is con-
cerned, this method is the first attempt to obtain formal
models for the CANopen protocol.

The rest of this paper is organized as follows. Section
2 provides a brief introduction to CANopen. Section 3
presents briefly the BIP framework along with its asso-
ciated tools and discusses the techniques used for verifi-
cation. Section 4 introduces the modeling and structural
translation principles of CANopen systems in BIP. Sec-
tion 5 provides experimental results of the model-based
structural translation on existing benchmark systems and
discusses current validation issues. Finally, Section 6 pro-
vides conclusions and perspectives for future work.

2 Overview of CANopen

CANopen is based on a master/slave architecture
for management services, but concurrently uses the
client/server communication model for configuration ser-
vices as well as the producer/consumer model for real-
time communication services. A comprehensive introduc-
tion to the protocol can be found in [10]. Unlike other
Fieldbus protocols it does not require a single master con-
trolling all the network communication. A CANopen sys-
tem is specified by a set of devices (Figure 1), which in
turn use a set of profiles, in order to define the device-
specific functionality along with all the supported commu-
nication mechanisms. The communication profile defines
all the services that can be used for communication and
the device profile how the device-specific functionality is
made accessible. The communication profile is defined in
the DS-301 standard [1], whereas the device profiles pro-
viding a detailed description on CANopen’s usage for a
particular application-domain, are defined in the DS-4xx
standards 4. If CANopen systems require configurations
or data access mechanisms not covered by the standard
communication profile, profile extensions can also be de-
fined. These are called Frameworks and are found in the
DS-3xx standards .

The protocol’s communication mechanisms according
to the DS-301 are specified by standard Communication
Objects (COB). All the COBs have their own priority
and are transmitted through regular frames of the chosen

“http://www.can-cia.org/index.php?id=440

oD oD oD

Device profile Device profile Device profile

Manufacturer profile Manufacturer profile Manufacturer profile

Communication profile [<] Communication profile [< Communication profile [<

CANopen Device 1 CANopen Device 2 CANopen Device n

Network

Figure 1: Communication in a CANopen system

lower-layer protocol. They are generally divided in the
following main categories:

e Network Management objects (NMT), used for the
initialization, configuration and supervision of the
network

e Process Data Object (PDO), used for real-time criti-
cal data exchange

e Service Data Object (SDO), used for ser-
vice/configuration data exchange

e Predefined objects, found in specific entries in every
OD. The featured objects in this category are:

— Synchronization object (SYNC), broadcasted
periodically to offer synchronized communica-
tion as well as coordinate operations

— Timestamp object (TIME), broadcasted asyn-
chronously to provide accurate clock synchro-
nization using a common time reference

— Emergency object (EMCY),
interrupt-type notifications
vice errors are detected

triggering
whenever de-

All the aforementioned objects are stored in a cen-
tralized repository, called Object Dictionary (OD), which
holds all network-accessible data and is unique for ev-
ery device. Commonly used to describe the behavior of
a device, it supports up to 65536 objects. The COBs are
spread to distinct areas, defining communication, device
and manufacturer specific parameters. The latter are left
empty to be used by manufacturers, in order to provide
their own device functionalities.

The following sections provide a brief introduction to
the aforementioned COB categories. Detailed description
of their use along with sample network configuration pa-
rameters can be found in [11].

2.1 Process Data Objects (PDO)

The real-time data-oriented communication follows the
producer/consumer model. It is used for the transmission
of small amount of time critical data. PDOs can transfer
up to 8 bytes (64 bits) of data per frame and are divided in
two types: The transmit PDO (TPDO) denoting data trans-
mission and the receive PDO (RPDO) denoting data re-
ception. Therefore, a TPDO transmitted from a CANopen
device is received as an RPDO in another device (Figure
2). Additionally, the supported scheduling modes are:

e Event driven, where the transmission is asyn-
chronous and triggered by the occurrence of an
object-specific event

e Time driven, where transmission is triggered period-
ically by an elapsed timer

o Synchronous transmission, triggered by the reception
of the SYNC object, further divided in:

— Periodic transmission within an OD-defined
window (synchronous window), termed as
Cyclic PDO transmission

— Aperiodic transmission according to an appli-
cation specific event, termed as Acyclic PDO
transmission

o [ndividual polling, triggered by the reception of a re-
mote request (see [12])

CANopen Device 1 CANopen Device 2

TPDO RPDO

Network

Figure 2: PDO communication

Each PDO is described by two OD entries: The Com-
munication Parameter and Mapping Parameter. For a
TPDO the former indicates the way it is transmitted in
the network and the latter the location of the OD entry or
entries combined, in order to build the payload. On the
contrary for a RPDO the former indicates how it is re-
ceived from the network and the latter the decoding of the
received payload. The Communication Parameter entry
includes the Communication Identifier (COB-ID) of the
specific PDO, the scheduling method, termed as trans-
mission type, the inhibit time and the event timer. The
inhibit time defines the shortest and the event timer the
longest time duration between two consecutive transmis-
sions of the same PDO. The Mapping Parameter can be
re-configured statically or dynamically through an SDO.

2.2 Service Data Objects (SDO)

The service oriented communication follows the
client/server model. It supports large, non-critical data
transfers and uses three modes to allow peer-to-peer asyn-
chronous communication through the use of virtual chan-
nels:

e FExpedited transfer, where service data up to 4 bytes
are transmitted in a single request/response pair.

o Segmented transfer, where service data are transmit-
ted in a variable number of 8-byte request/response
pairs, termed as segments. The first pair is termed as
initiation request or response respectively. In partic-
ular it consists of an initiation request/response fol-
lowed by 8-byte request-response segments.

e Block transfer, optionally used for the transmission
of large amounts of data as a sequence of blocks,
where each one contains up to 127 segments.

CANopen Device 1 CANopen Device 2

Tx-SDO Tx-SDO

\ \
[

Channel Channel p

Network

Figure 3: SDO communication

A CANopen device can either receive or request an
SDO, therefore these objects are not separated as the
PDOs, instead they are distinguished by two frames: the
transmit SDO (Tx-SDO) and the receive SDO (Rx-SDO).
The communication is always initiated by a device defined
as client in the network towards the server, nonetheless in-
formation is exchanged bidirectionally with two services:
Download and Upload. The former is used when the
client is attempting service data transmission to the server,
whereas the latter when it is requesting data from the
server. In both services the use of the virtual peer-to-peer
channel (Figure 3) ensures that a Tx-SDO request is ac-
knowledged by an Rx-SDO response. For this reason ser-
vice data transmission is regarded as the only confirmed
communication mechanism of CANopen. Virtual chan-
nels can be configured dynamically by the Master device.
If transmission errors are detected during the communi-
cation either on the client or the server side, data trans-
fer is aborted through the SDO abort frame. SDOs are
used for configuration and parametrization, but also al-
low the transmission of a large quantity of asynchronous
data, consequently they are always assigned a lower pri-
ority than PDOs.

2.3 Predefined objects

These specific objects provide additional functionali-
ties to the protocol. Their transmission is following the
producer/consumer communication model. Particularly,
the SYNC and the TIME object are always transmitted
from a specific device (static OD configuration), whereas
the EMCY object can be transmitted by any device in the
network (dynamic OD configuration). The Predefined ob-
jects are always assigned with a high priority, in order to
be transmitted as soon as possible.

3 The BIP component framework

The BIP framework (Behavior-Interaction-Priority) [9]
supports a layered component construction methodology,
facilitating the hierarchical system composition. The
lower layer (Behavior) is described by finite-state au-
tomata or Petri-Nets and models the behavior of transition
systems, termed as atomic components. Each transition
is labeled by an action name, termed as port, but also as-
sociated with a guard and functions manipulating a set of
variables. Guards are Boolean expressions enabling con-
ditions in the component states. The use of ports in the
second layer (Interaction) defines strong or loose synchro-
nization upon data exchange, through the use of connec-
tors. A connector is a list of ports of atomic components
which may interact. Thus, an interaction is defined as
strong synchronization, when all the ports of a connector
are involved (graphically represented by a bullet), whereas
in the opposite case it is defined as loose (graphically rep-
resented by a triangle). The third layer (Priority) restricts
any non-determinism between simultaneously enabled in-
teractions. A set of atomic components can be composed
into a generic compound component by the successive ap-
plication of connectors and priorities.

Figure 4 illustrates an example of a BIP composite
component, comprised by two atomic components, the
Sender and the Receiver. The ports TICK, SEND and
RECYV are used for the interactions between them. Each
time both components are in the idle state the interaction
involving the SEND and RECYV ports is enabled. Its selec-
tion will lead to an update of variable r. The Sender and
Receiver will respectively move to the transmit and the re-
ceive state. Consequently, both components will interact
through the port 7ICK and increment variable 7. Never-
theless, the Receiver component is also able to interact
through the EXE port, in order to receive interruptions
from other components. This conflict is resolved deter-
ministically by priority 7; : TICK < EXE, allowing the
transition involving port EXE to be chosen, when they are
both enabled. On the contrary, port COM of the Sender
component is not enabled as long as variable 7 is less than
a specific value (here 100), due to the specified guard.
As an interrupt may trigger port EXE before this value
is reached, port TICK is evenly enabled in the idle state of
the Receiver component.

RECV
print(r)

r:=r+s

Figure 4: BIP components example

4 Modeling CANopen in BIP

CANopen systems in BIP consist of two communica-
tion layers. The top (application) layer components rep-
resent CANopen devices, responsible for frame transmis-
sion or reception, respectively called Device components.
Following the CANopen specification, the model defines
always a Device component as the Master, responsible for
the transmission of the SYNC object and all the remain-
ing Devices as Slaves. For the bottom (network) layer,
we consider that communication is handled by the Con-
troller Area Network (CAN) protocol. The CANopen De-
vice component interacts with the CAN protocol, in order
transmit or receive frames through the Bus. Therefore,
prior to the derived structural translation of the CANopen
primitives and communication mechanisms in BIP, we
provide a brief introduction to the CAN protocol model
in BIP, introduced in [13].

4.1 CAN protocol model

In our previous work [13] we developed a BIP model
for the classic CAN as well as the newly developed CAN
FD protocol [14]. The construction of the protocol model
is using a library of CAN components, which in turn al-
lows modularity and reusability. The soundness of the
model was proved by the application in benchmark auto-
motive systems, indicating similar results with RTaW-Sim
[6].

The BIP model uses two generic types of components:
the CAN station and the CAN bus. The former represents
the hardware transceivers and the acceptance filters of the
protocol and serves as an intermediary, in order to trans-
mit frame requests generated from the upper layer to the
Bus or equally deliver the received frames from the Bus to
the upper layer. Thus, it is modeled as a compound com-
ponent consisting of the Controller and the Filter atomic
components accordingly. The latter represents the Bus
functionality, preserving entirely its arbitration and broad-
cast mechanisms. Data transmission is synchronous, that
is, all stations receive synchronously the frames sent by
any of them. Furthermore, the underlying communica-

tion is a two-step process: first data are transmitted to the
CAN bus and consequently broadcasted to all the CAN
stations, including the sender. The transmission of each
CAN frame field is followed by strong synchronization
between the CAN stations and the CAN bus, through the
use of interactions between the ports.

The CAN protocol model architecture is presented in
Figure 5. It uses two groups of ports for its interactions,
consisting of:

1. The REQUEST port (frame transmission), the RECV
port (frame reception) and the TICK port used for the
interactions with the upper layer.

2. The SOF, ARBITRATION, CONTROL, DATA, ACK,
EOF ports used for the interactions between the
CAN station and the CAN bus component

3 r
4 4

\d ¢ \d \J g e

REQUEST RECV REQUEST RECV REQUESTRRECY

CAN station n

CAN station 0 CAN station 1

Controller Filter Controller Filter ||~ Controller Filter

SOF ARBITRATION CONTROLDATA ACK EOF| |SOF ARBITRATION CONTROLDATA ACK EOF|

SOF ARBITRATION CONTROLDATA ACK EOF
TICK

CAN bus

Figure 5: Generic model of a CAN/CAN FD system

The time needed for the transmission of each frame
field is fixed. It is modeled as a discrete time step advance
and denoted by the port TICK. However, the overall frame
transmission time will vary, due to the blocking time and
to the number of additional bits added as a result of bit-
stuffing. If the frame payload is known beforehand, this
number is calculated directly from the sequence of trans-
mitted bits, whereas in the opposite case it can be rather
chosen from a probabilistic distribution provided as an in-
put to the model. Additionally, the blocking time will de-
pend on the choice of the queuing policy for each CAN
station component, and on the selection or not of trans-
mission offsets as well as of abortable or non-abortable
transmission requests [15]. The considered types of queu-
ing policy in the model are: First-In-First-Out (FIFO) or
High Priority First (HPF), where the selection is based on
application-specific criteria.

4.2 CANopen model

The modeling of CANopen systems in BIP is struc-
tural. Every Device component is composed from several
subcomponents, corresponding to COBs present in the de-
vice OD. As illustrated in Figure 6, the generic CANopen

Device component is composed of three parts: a trans-
mitting part (TRANSMIT), a receiving part (RECEIVE)
and a third part involving both transmission and reception
(TR). Each part consists of a set of components, imple-
menting the protocol’s communication mechanisms. Each
atomic component is directly derived from a COB of the
device OD, such that it will belong to one of the main cate-
gories mentioned in Section 2. In particular, PDO compo-
nents can either exist exclusively only in the TRANSMIT
or the RECEIVE part, or they can also be unused for the
specific Device, meaning that they will not exist in any
part. The same policy applies to SDO components with
the difference that if they exist for the specific Device,
they are included in the TR part. Furthermore, only one of
the dashed SDO components is allowed to operate in the
system at a time, thus the interactions between them are
not maximal (loose synchronization). In the Predefined
objects component category though only one Device can
exist in the transmitting part and all the other on the re-
ceiving, meaning that they are exclusive for every Device.
Therefore, only one of the dashed SYNC objects will be
associated with the Device of Figure 6.

Each component is responsible for the handling
of a COB as a frame and consists of the tuple:
(id,length,payload), where id is the value of the COB-
ID for a particular frame. In the model it belongs to
the protocol’s default allocation scheme, termed as Pre-
defined Connection Set [1] augmented by the identifier
of the transmitting node. Thereafter, length contains the
length of data and payload the actual data of the frame.

EVENT_TRIG TICK ASYNC_TRIG | | OD_WRITE
I
! |
TRANSMIT | TR] RECEIVE
I
I
1 SYNC_TRIG .
T
|
777777 e e
_SYNC D Lo |
T-SYNC @——— ! | D-SDO ! ® R-SYNC |
,,,,,,,, o _ L
I
I
I
I
! |
. . 3y T ! I
'T EDONTESDO2 NEEROT ! ! U-spO ! R-PDOl |R-PDO2 [R-PDOm
REQUEST ! | RECV

Figure 6: Generic CANopen Device component

We accordingly detail the behavior of the generic com-
ponents used in the model, according to the COB category
they belong. Each component, except the ones belonging
to the SDO category, is atomic and described by abbrevi-
ations. These denote the part it belongs and the name of
the object derived from, i.e SYNC Transmitter (T-SYNC)
or SYNC Receiver (R-SYNC).

The generic CANopen Device component consists of
four groups of ports using strong or loose synchronization
upon interactions:

e The first implements interactions between different

CANopen objects, such as the SYNC_TRIG port

e The second implements interactions between the De-
vice component and the lower communication layer,
such as the REQUEST, RECV ports

e The third implements interactions between the De-
vice component and application-specific compo-
nents, such as the EVENT_TRIG, ASYNC_TRIG,
OD_WRITE ports

o The fourth implements specific interactions for gen-
eral synchronization and invokes all the previously
listed groups, such as the TICK port

4.2.1 Process Data Objects (PDO)

The PDO component types implement all the supported
scheduling policies, as illustrated in Section 2.1. Conse-
quently they can be of three types: SYNC-triggered, time-
triggered and event-triggered. Each type is further divided
in two categories: T-PDO and R-PDO.

Each T-PDO component is responsible for the cor-
rect initialization and generation a TPDO (REQUEST
port). In particular, the SYNC-triggered T-PDO compo-
nent following the interaction between its SYNC_TRIG
port and the R-SYNC component (Section 4.2.3), gen-
erates a synchronous PDO or performs another device-
specific action. Evenly triggered by external interrupts is
the event-triggered T-PDO component, through the port
EVENT_TRIG. Finally, the time-triggered component im-
plements a specific timer modeling the time step advance,
through the TICK port. When this timer expires a time
driven PDO is generated.

The corresponding RPDO components are responsible
for the reception of a specific COB frame, provided as a
parameter. They are triggered by lower-layer frame re-
ceptions (RECV port) and subsequently check the id of
the received frame. If it is the expected frame its pay-
load is written to the OD of the receiving Device com-
ponent, through the port OD_WRITE. The particular OD
entry is provided by the Mapping Parameter correspond-
ing to the specified COB. This process may accordingly
trigger a device-specific action.

4.2.2 Service Data Objects (SDO)

The SDO components are of two types: SDO Download
(D-SDO) and SDO Upload (U-SDO) according to the pro-
tocol’s communication mechanisms. The D-SDO and U-
SDO components are responsible for configuration data
exchange in the model, using one of the mechanisms pre-
sented in Section 2.2. They correspond respectively to the
SDO Download mechanism and the SDO Upload mech-
anism. The Device transmitting the actual data is associ-
ated with the Tx-SDO COB-ID, whereas the Device re-
ceiving them with the Rx-SDO COB-ID. The D-SDO and
U-SDO are implemented as compound components in the

model, consisting of a Client and a Server atomic compo-
nent. The SDO components do not implement any tim-
ing model, since service data transmission in CANopen
is asynchronous. The Client component is always initi-
ating data transmission, following the reception of an ex-
ternal event, through the ASYNC_TRIG port. The D-SDO
Client component is presented in Figure 7. Apart from
the ASYNC_TRIG port it interacts with the REQUEST and
RECYV ports, used for interactions with the lower commu-
nication layer. All its remaining ports are internal. Ini-
tially in the S/ state, it moves to the S2 whenever it is
triggered by an asynchronous event. Accordingly, it de-
termines if service data transmission is expedited or seg-
mented. After the data request (REQUEST port) it re-
mains in the S3 state, until it receives (RECV port) a frame
whose id is 1408+clientID and the received server com-
mand specifier (scs) is valid. ClientID is the identifier of
the specific client device. If the transmission was expe-
dited (bit e from payload byte 0O is set) it will return to
the initial state (S1), otherwise it will repeat the afore-
mentioned process for all the subsequent segments, initial-
ized according to the device OD and denoted in the model
by variable N (model parameter). The variable counter
is decremented in every successful transmission of a re-
quest/receive pair, until it is equal to 1, indicating the last
segment (bit ¢ from payload byte O is set). Afterwards,
the component moves to the initial state, otherwise it pro-
ceeds to the next segment by the transition next_segment.
The toggle variable is used to identify the sequence of suc-
cessfully received request/response segments (bit ¢ from
payload byte 0).

A

ASYNC_TRIG

length:=8
toggle:=0

RECV

ASYNC_TRIG . o
id:=1536+clientID m REQUEST
s2

N

recy_initiate

[recv.id = 1408 + clientID]
ses=calc_specifier(payload)
if (e # 0) then counter:=N

not_valid

[scs # 3]
expedited

[e=1Ascs =3|

last_segment

REQUEST
[e=1]

[e #1 Ascs = 3]
counter=counter-1
if (counter=1) then c:=1 else ¢:=0

next_segment

recv_segment
[recv-id = 1408 + clientID]

segment_valid .
ses=calc_specifier(payload)

[ses = 1]
toggle:=toggle+1
if (toggle%2) then t:=0 else t:=1

REQUEST | frame RECV |frame,

Figure 7: D-SDO Client component

4.2.3 Predefined objects

This category is focused on the SYNC object, as other
objects are not considered mandatory (described in [11]).

As for PDO, the SYNC components are divided in
two categories: T-SYNC and R-SYNC (Figure 8). The
T-SYNC component is responsible for the SYNC frame
transmission. It consists of the states idle, transmit and the
ports: TICK and REQUEST. Initially it is in the idle state,
where it interacts through the TICK port. This port de-
notes the notion of step time advance in the model, which
is calculated and stored in the variable . When ¢ is equal
to the value of the SYNC period (defined in the device
OD) the transmission is triggered by an internal move to
the state transmit. The transmitted frame is initialized
with the SYNC object parameters before the transmission
through the port REQUEST. Subsequently, the compo-
nent moves to the trigger state. The R-SYNC component
is controlling the SYNC-triggered PDO transmission. It
only triggers a frame transmission upon the successful
reception of the SYNC frame. This component consists
of the states idle, receive and the ports: SYNC_TRIG and
RECV. When a frame is received through the RECV port,
used for the interactions with the lower communication
layer, it will move to the receive state. It returns to the idle
state either by triggering the transmission of a PDO frame
(SYNC_TRIG port), or internally. The choice is controlled

by a specific guard.
TICK SYNC_TRIG
[t # period)
ti=t+1 °

SYNC_TRIG RECV

id = SYNC|
REQUEST [frame | RECV | frame |

Figure 8: T-SYNC and R-SYNC components

REQUEST

4.2.4 Timing and version issues

A constraint that has to be carefully considered in our
model is the choice of the time step advance for the TICK
interaction. Its granularity has to be relative with the baud-
rate (speed) of the CAN protocol. Therefore we consider
the time needed for the transmission of one bit to the Bus
equal to one-step advance in our model. For example a
baud-rate of 500 kbit/s, corresponds to a time step advance
of 2 microseconds (us). Subsequently, 2us of real time
will be taken as a one-step advance in our model.

The version of the CANopen protocol model represents
the functionality of the most recent communication profile
[1], which additionally implies that the SYNC object is
not anymore mapped to an empty frame, but includes an
1-byte counter as payload. Moreover, currently we don’t
consider hardware or transmission errors. Therefore, the
SDO abort frame is not included in the model.

4.2.5 Concluding remarks on the modeling

The construction of a formal model facilitated the identi-
fication of some important issues in CANopen communi-
cation. Initially, in SDO communication the data size pa-
rameter is optional and usually not indicated in CANopen
systems before as well as during the transfer. Even though
this type of objects should always be addressed with the
lowest priority, the receiver cannot perform a consistency
check, which is consequently reducing the robustness of
the protocol. Another important issue is related to the
number of unused data bytes in some SDO frames, instead
filled with padding, in order to follow the 7-byte data re-
quest/receive pair specification. The outcome is the intro-
duction of significant overhead to the lower-layer trans-
mission protocol, which might cause additional delays in
the transmission of high-priority frames, especially during
SDO block transfers.

Overall, the built component libraries contained 14
types of atomic components for CANopen and 3 types of
atomic components for CAN/CAN FD.

5 Case study: Pixel Detector Control Sys-
tem

The conducted experiments focused on the Pixel De-
tector Control System (DCS), used as the innermost part
for the ongoing ATLAS experiment at CERN’s Large
Hadron Collider (LHC) particle accelerator. For the par-
ticular case study we consider an extension to the test
beam of 2002, previously presented in [16], used for the
calibration and performance evaluation of the detector
modules used in the experiment.

The chosen test beam is presented in Figure 9 and con-
sists of two Detector systems, where each one contains
four pixel detector modules. Each pixel detector module is
equipped with a temperature sensor, used in order to mea-
sure its operating temperature and accordingly determine
its lifetime. The measurements are subsequently provided
as input to a thermal interlock system (Interlock Box) and
a plug-on I/O board manufactured in CERN, named as
ELMB (Embedded Local Monitor Board), in order to be
transmitted to a Detector Control System (DCS) Station
through the CAN Bus, using CANopen as the commu-
nication protocol. The application software as well as
the hardware configuration for the ELMB board can be
found in [17]. This manual also provides a full listing of
the Object Dictionary, defining not only the standard ob-
jects according to the DS-401 Device Profile [18], but also
manufacturer-specific objects for the ELMB.

A new scan cycle begins every 1 second and in the
course of it all the pixel detector modules are scanned. A
TPDO?2 frame is transmitted whenever a change of a mod-
ules temperature value is detected. This change is partic-
ularly termed as Change-of-State (CoS). The transmitted
frame contains the ADC readout in counts (ADC resolu-
tion). However, after a power-up or a reset of the ELMB

the ADC voltage ranges need to be re-calibrated through
a TPDO3 frame. This frame contains the input voltage in
©V and is transmitted prior to the generation of a TPDO2
frame. Since each temperature sensor is exposed to safety
risks, the Interlock Box is responsible of comparing the
input data to a reference value (threshold) as well as for
the generation of a logical signal, if the temperature is
found higher. The output of every Interlock Box module
is provided to a Logic Unit, which is also monitored by an
ELMB module. This module is used to transmit the gen-
erated signal as a TPDOI frame, informing the associated
pixel detector that it is overheated, in order to enable its
Cooling Box. The coolant flow inside each Cooling Box
is set and controlled by an expedited SDO frame. There-
fore, two additional ELMB modules are considered, each
one obtaining coolant flow data from a Regulator mod-
ule. Subsequently they establish a peer-to-peer commu-
nication channel with the corresponding ELMB of each
Detector module and transmit the data through an SDO
Download operation. Finally, although the DCS Station is
mainly used for data logging, it is also responsible for the
periodical transmission of the SYNC frame, informing the
ELMB module of every Detector to abort the current scan
cycle and accordingly start a new one.

[lmeﬂo«k Box

Detector 1

Cooling Box

[Interlock Box

Regulator 1

Logic Unit ELMB3

-

CAN Bus

DCS Station

Figure 9: Pixel Detector Control System

The bit-rate of the CAN Bus for the particular test beam
is set to 125kbit/s. An equally important remark is that,
during the initialization phase of the system, the DCS Sta-
tion initializes properly all the ELMB devices. This is
achieved by an SDO Download operation storing all the
COB-IDs correctly in their OD.

The existence of certain requirements for the DCS en-
sure the proper functionality of the system. They are di-
vided in two categories: those concerning the physics and
performance of the DCS individual subsystems, found in
the CERN Document Server 7, and those related to the
communication through CANopen. Specific requirements
belonging to the second category are:

Shttp://cds.cern.ch/record/391176

1. In case of an increased sensor temperature the Logic
Unit must inform the DCS Station rapidly, through a
TPDOI1 frame. Thus, the TPDO1 frame must have a
zero blocking time, once triggered.

2. When ELBM1 or ELMB?2 is reset a TPDO3 frame
should be transmitted before a CoS in a pixel detector
module is detected, since the generated TPDO2 will
require an ADC conversion.

3. The coolant flow must be set at least once before a
Cooling Box is required to cool an indicated pixel de-
tector module. Consequently, ELMB4 and ELMB5
should initiate the transmission of the D-SDO frame
before any other frame in the network is triggered.

We constructed the model of the Pixel Detector Con-
trol System, using the library of CANopen components
presented in Section 4.2. The resulting BIP system for
the DCS is illustrated in Figure 10. It is comprised by
39 atomic components forming the CANopen communi-
cation layer and 13 atomic components for the CAN pro-
tocol. The generated BIP model used 95 connectors (53
for the CANopen and 42 for the lower-layer communi-
cation model). The total number of transitions for this
system was 427 (174 for the CANopen and 252 for the
lower-layer communication model). Overall the model to-
tals about 2300 lines of BIP textual code.

For the conducted experiments we used real temper-
ature data provided as input to the model, thus deriving
a distribution for the temperature changes, as well as the
reference value (threshold) for the Interlock Box. More-
over, the external event triggering an SDO transmission
was modeled as an asynchronous timer generating event
interrupts, whenever it expired.

A real system time of 4 hours was simulated in 2 min-
utes and 43 seconds using the BIP simulator. The obtained
results are illustrated in terms of minimum, average and
worst-case frame response times in Figure 11. The COB-
IDs of the existing frames in the system according to the
Predefined Connection Set are represented in the horizon-
tal axis. As it is observed the response times (in millisec-
onds) are highly dependent from the choice of lower-layer
scheduling policy (here HPF). Due to the stochastic be-
havior of the system, the blocking time for each transmis-
sion varies according to the Bus load at the given instant.
This variation between the minimum (zero blocking time)
and the maximum (worst-case blocking time) depends on
the frame identifier. In particular, the SYNC frame (COB-
ID 128) has a relatively small variation compared to the D-
SDO frames of ELMB1 and ELMB2 (COB-IDs 1540 and
1541 respectively). In this analysis the response time of
the SDO frames is measured from the instantiation of the
request frame until the transmission end of the response
frame.

In order to evaluate the system requirements we de-
scribe the above requirements with stochastic temporal
properties using the Probabilistic Bounded Linear Tem-
poral Logic (PBLTL) formalism [19]. We accordingly

Detectorl

EVENT_TRIG

TICK

Detector2

TICK

EVENT_TRIG

AsyncTimerl

ASYNC_TRIG

TICK

AsyncTimer2

TICK

TRIG

ELMB2

ELMB3

ELMB4

ELMBS

TICK

DCS Station

EVENT_TRIG |

ELMB1

:
! RePDO2

Hwk .

REQUEST

R-PDO3

RECY

T-PDO2

Tr003 §
REQUEST | /

D-SDO

R-PDOL

| RECY

:

EVENT_TRIG |

REQUEST | |

ek 1

| R-SYNC

R-PDOI

1| rECY

RECY

ASYNC_TRIG

REQUEST)Y

ASYNC_TRIG

REQUEST)Y

REQUEST

REQUEST RECV

CAN Station 1

comm

REQUEST

CAN Static

comy

RECV

on 2

REQUEST

comm

RECY

CAN Station 3

REQUEST RECV

CAN Station 4

comm

REQUEST

RECY

CAN Station 5

comy

REQUEST

RECY

CAN Station 6

comy

I

T

I

T

|

I

comm

CAN Bus

TICK

Figure 10: BIP model of the Pixel Detector Control System

: ‘
I Vinimum
[Average
6" | I Maimum

Transmission time (ms)
w
:

~
T

-
T

TPDO1 TPDO2 TPDO3
COB frames of the DCS system (in decreasing order of priority)

SYNC D-SDO

Figure 11: BIP frame response times

present the results derived properties after an extensive
number of simulations using the SBIP model checker °.

Property 1: Requirement 1. This property is expressed
as ¢ = O10000000((T, 0y — Trppo1) > 0), where
10000000 indicates the number of steps for each simu-
lation, corresponding to a large number of communica-
tion cycles. Furthermore, 75,14+ 1S the inhibit time and
Trppo1 the response time of the TPDO1 frame (COB-ID
388). For the DCS system 75, 1,:pi: 1S equal to 1 sec, which
much greater than the maximum response time of TPDO1
(Trppot,,,., = 1.72 msec from Figure 11). Therefore
P(¢1) = 1 and this requirement is always satisfied.

Property 2: Requirement 2. In the second ex-
periment, we try to estimate the property oo
Q0000000 (T 59 — Trppo3) < 0), where 10000000

Shttp://www-verimag.imag.fr/Statistical-Model-Checking.html

is explained as above, Trppo2 and Trppos denote the
response time of TPDO2 and TPDO3 following an ELMB
reset. The conducted experiments have shown that if a
scan cycle is initiated through the reception of the SYNC
frame, a CoS can be detected before the generation of a
TPDO3 frame. However, a reset in ELMB1 or ELMB2
occurred in approximately 3% of the simulations, thus this
property was quantified as P(¢2) = 0.005. This proba-
bility is equal to the tool’s level of confidence, thus the
requirement is considered as satisfied.

Property 3: Requirement 3. Finally, we tested through
simulation the property ¢3 02490 ((trppos —
tp_spo) > 0), where 24000 is the number of steps
required for the initialization period as Tj,; is 2 sec,
tTppo2 is the system time at the end of the TPDO2 frame
transmission and tp_ s po is the system time at the begin-
ning of the D-SDO frame transmission. Since the D-SDO
frame was generated asynchronously, this property was
quantified as P(¢3) = 0.1. As it is observed by Figure 12,
focusing in a specific simulation, the TPDO2 frames from
ELMB1 and ELBM2 finish their transmission before a D-
SDO frame. Moreover the conducted experiments have
shown that even when the D-SDO frame was generated
before the first instance of a TPDO2 frame, it was mostly
blocked due to its lowest priority for this system.

6 Conclusion and ongoing work

We have presented a systematic method to construct
detailed functional models for CANopen systems in the
BIP component framework. The construction method is
fully structural, that is, it preserves the CANopen system
structure in BIP, meaning systems consisting of a number
of network-connected devices, which in turn, consist of a

0500

i
TPoo1

14350406 Ladses0s Lassesos l4ses0s

Figure 12: Response time graph for TPDO1, TPDO2 and
D-SDO

number of interacting communication objects, as defined
in the device and the communication profile accordingly.
The model captures both functional and extra-functional
aspects, referring to timing characteristics for periodic and
aperiodic transmission. The models are fully operational,
they can be tested, simulated and validated using statisti-
cal model checking tools available in the BIP toolset.

For the time being, our model uses the CAN protocol
for the low-layer network communication. However, its
use also raises practical limitations as with unconfirmed
services, since there is no possibility of knowing when a
frame is lost. A possible solution would be the use of
individual polling from the Master device. Nevertheless,
this method will produce additional overhead, if there is
no CoS in a number of devices. Furthermore, the two
COB-IDs defined for SDO communication allow only one
client/server channel in the network at a time. In the op-
posite case collisions or conflicts are inevitable. Addition-
ally, the growing use of extensive networks and the rising
data load are increasing the complexity of CANopen sys-
tems nowadays. One of the main reasons behind this is
the low bandwidth (1 Mbit/s) and the limitation in the net-
work length (127 nodes and 25m max bus length). CAN
FD was introduced, in order to ameliorate the former limi-
tation, nonetheless the bandwidth is only increased during
the data transmission period.

For all these reasons, we are working on further ex-
tensions, in order to support CANopen systems deployed
on other wired or wireless protocols. The two most inter-
esting protocols in this domain are the IEEE 802.3, used
for wired Ethernet communication and the IEEE 802.11,
used for wireless communication. In the scope of these ex-
tensions, we shall map the presented primitives and com-
munication mechanisms of CANopen to each aforemen-
tioned protocol.

References

[1] CAN in Automation, “Application layer and communica-
tion profile, Draft Standard 301", February 2011.

[2] R. Bosch, “CAN specification version 2.0”, Robert Bosch
GmbH, Stuttgart, 1991.

vvvvvv

10

(3]
(4]

(5]

(6]

[7]

(8]
(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

Vector Informatik GmbH, CANanalyzer User Manual,
http://vector.com/vi_manuals_en.html.

port GmbH, youCAN CANopen prototyping,
http://www.port.de/fileadmin/user_upload/Dateien_IST
_fuer_Migration/youCAN _e.pdf.

Embedded Systems Academy,
CANopen Magic User Manual,
http://www.esacademy.org/products/getfile.php?filename=
COMPDLLManual.pdf.

N. Navet, A. Monot, J. Migge, et al., “Frame latency
evaluation: when simulation and analysis alone are not
enough”, in 8th IEEE International Workshop on Fac-
tory Communication Systems (WFCS2010), Industry Day,
2010.

M. Barbosa, M. Farsi, C. Allen, and A. Carvalho, “For-
mal validation of the CANopen communication protocol”,
in Fieldbus Systems and Their Applications 2003:(FET
2003): a Proceeedings Volume from the 5th IFAC Inter-
national Conference, Aveiro, Portugal, 7-9 July 2003, vol-
ume 5, July 2003, pp. 226-238. Elsevier Science Limited,
IFAC.

T. Schumann, “CANopen Conformance Test”, in Fieldbus
Technology, pp. 152—156. Springer, 1999.

A. Basu, M. Bozga, and J. Sifakis, “Modeling heteroge-
neous real-time components in BIP”, in Software Engi-
neering and Formal Methods, 2006. SEFM 2006. Fourth
IEEE International Conference on, 2006, pp. 3—12. IEEE.
O. Pfeiffer, A. Ayre, and C. Keydel, Embedded networking
with CAN and CANopen, Copperhill Media, 2008.
Alexios Lekidis, Marius Bozga, Saddek Bensalem, “Rig-
orous Modeling and Validation of CANopen Systems”,
Technical Report TR-2014-1, Verimag Research Report,
2014.

CAN in Automation, Application Note 802, August 2005.
A. Lekidis, M. Bozga, D. Mauuary, and S. Bensalem, “A
model-based design flow for CAN-based systems”, in /4th
International CAN Conference, Eurosites République,
Paris, 2013.

R. Bosch, “CAN with Flexible Data-Rate specification”,
Robert Bosch GmbH, Stuttgart, 2012, http://www.bosch-

semiconductors.de/media/pdf_1/canliteratur/can_fd_spec.pdf.

D. A. Khan, R. I. Davis, and N. Navet, “Schedulabil-
ity analysis of CAN with non-abortable transmission re-
quests”, in Emerging Technologies & Factory Automation
(ETFA), 2011 IEEE 16th Conference, 2011, pp. 1-8. IEEE.
S. Kersten, K. Becks, M. Imhéuser, P. Kind, P. Mittig, and
J. Schultes, “Towards a Detector Control System for the
ATLAS Pixel Detector”, 2002.

Henk Boterenbrood, CANopen application
firmware for the ELMB, November 2011,
http://www.nikhef.nl/pub/departments/ct/po/html/ELMB
128/ELMB24.pdf.

CAN in Automation, “CANopen Device Profile for
Generic I/O Modules, Draft Standard 4017, June 2008.

S. Bensalem, M. Bozga, B. Delahaye, C. Jegourel,
A. Legay, and A. Nouri, “Statistical Model Checking
QoS properties of Systems with SBIP”, in Leveraging
Applications of Formal Methods, Verification and Valida-
tion. Technologies for Mastering Change, pp. 327-341.
Springer, 2012.

