Model-Based Design Languages:
A Case Study

Ivan Cibrario Bertolotti
National Research Council of Italy — IEIIT
c.so Duca degli Abruzzi 24, 1-10129 Torino, Italy

Email: ivan.cibrario@ieiit.cnr.it

Abstract—Fast-paced innovation in the embedded systems
domain puts an ever increasing pressure on effective software de-
velopment methods, leading to the growing popularity of Model-
Based Design (MBD). In this context, a proper choice of modeling
languages and related tools—depending on design goals and
problem qualities—is crucial to make the most of MBD benefits.
In this paper, a comparison between two dissimilar approaches to
modeling is carried out, with the goal of highlighting their relative
advantages and shortcomings. It focuses on a case study involving
a well-known distributed agreement protocol, a choice motivated
by the fact that embedded systems are nowadays quickly evolving
towards distributed, fault-tolerant architectures.

Index Terms—Model-driven development, Distributed agree-
ment protocols, Embedded systems design and development.

I. INTRODUCTION AND RELATED WORK

In recent years embedded systems permeated every aspect
of life, placing software quality and the whole software
development process under scrutiny even more than in the past.
This process was once characterized by several distinct phases,
often linked by means of an informal information flow, and
was shown to be prone to errors, especially when system com-
plexity grows. By contrast, the Model-Based Design (MBD)
methodology stipulates that requirement analysis and design
shall be performed by building a model of the system by means
of a formal language. Ideally, the information contained in
this model should then flow through all software development
phases, ensuring their mutual consistency. However, as the va-
riety of MBD-oriented languages grows, it becomes important
to carefully contemplate their similarities and differences, in
order to make an informed choice, depending on the design
problem at hand. Even more importantly, the comparison must
be done not only from a language theorist’s point of view—but
also by referring to case studies of practical interest.

General purpose modeling languages such as the Unified
Modeling Language (UML) are suitable for requirement spec-
ification and generally meant for software system design alone.
As a result, they do not provide sufficient facilities to support
the modeling of hardware, which also plays an essential
role in embedded systems. Matlab/Simulink® is a successful
commercial model-based design tool. It is extremely powerful
since its development environment not only allows modeling
and simulation but also permits requirement traceability, code
generation, as well as test case generation. However, it just
focuses on the functional behavior of embedded systems.
The Architecture Analysis and Design Language (AADL) [1],

Tingting Hu, Nicolas Navet
University of Luxembourg — FSTC

6 Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg

Email: {tingting.hu, nicolas.navet}@uni.lu

TABLE I
MAIN FEATURES OF PROMELA AND CPAL COMPARED

CPAL

— Multiple processes —
State space exploration Simulation and
towards formal proof Schedulability analysis

Feature [Promela

Concurrency model
Verification technique

Scheduling All interleavings Specific algorithms
Control flow Non-deterministic Sequential

Concept of time Modeled explicitly Native

Process structure Free Format Finite State Machine
Synchronization Statement executability — Explicit
Communication — Shared memory and channels —
Model execution Translator Interpreter
Input-output — 1/O ports

Chariot [2], as well as EAST-ADL are full-fledged Archi-
tecture Description Languages (ADL) which can be used to
describe complex system architectures, covering both software
and hardware aspects, and in the meantime deal with non-
functional objectives. Furthermore, synchronous languages [3],
including Lustre, Signal, and Esterel, are designed for safety-
critical systems and generally offer adequate support for
formal proof that eases the process of verification and certifi-
cation. However, most of them share the same limitation as for
architecture description languages, namely another language is
still needed for the real implementation. In addition, most often
they impose a very specific programming style that makes the
initial learning curve unnecessarily steep for beginners. On the
contrary, both Promela [4] and CPAL [5] build around C-like
syntax, while in the meantime they provide useful constructs
for convenient illustration of concepts particular to embedded
systems. Table I summarizes their main features and more
details will be provided in the next sections.

The paper is organized as follows. Section II outlines the
Promela and CPAL languages, while Section III describes how
the communication protocol used as a case study has been
modeled in the two cases. Section IV highlights the most
important considerations emerged during model development.

II. MODEL-BASED DESIGN LANGUAGES
A. Promela and The SPIN Model Checker

SPIN [4] is one of the most prominent model checkers,
aimed at the formal verification of complex concurrent sys-
tems. Model checkers have as input a model of the system
under analysis and one or more properties to be verified, both
specified by means of a formal language. In the case of SPIN

the modeling language is Promela and properties are specified
with Linear Temporal Logic (LTL) formulas [6]. Informally
speaking, SPIN’s goal is to prove that the properties of interest
hold by exploring every possible state the system can reach
along its execution. Possible computation steps, leading from
one state to another, are specified by the model.

A large number of possible sequences of steps, and hence,
system states are usually possible, leading to the well-known
state space explosion issue. Although research in model check-
ing was able to devise fully automatic model optimization
techniques, keeping state space explosion under control may
still require designers to artificially ply the model. This activity
requires a lot of expertise and makes the model less natural
and expressive.

Since the focus of this paper is on expressiveness and
features of modeling languages, LTL will not be discussed
further. Instead, this section provides more information on
Promela, especially when it departs significantly from conven-
tional programming languages. Generally speaking, the syntax
of Promela is similar to the C programming language most
embedded system programmers are familiar with. The main
additions to its semantics, which significantly contribute to
language expressiveness, are: support for concurrent execu-
tion, statements executability, and non-deterministic choices
in the execution flow.

For what concerns concurrent execution, C-language sup-
port is left to libraries that are not part of the language proper,
like in the POSIX standard. On the contrary, processes are
first-class citizens in Promela and encompass all executable
statements of a model. A process P can be declared as follows:

active [n] proctype P (params) {
body (D

}
where params is a list of formal parameters and body is a
sequence of statements. Processes can be instantiated statically
(by prepending active [n] to their declaration, where n is
the number of instances) or dynamically (by means of the run
operator). There is no built-in support for periodic processes
or activation conditions. Both must be explicitly modeled if
needed, taking into account that Promela by itself has no
concept of time, unless it is suitably extended [7].

A significant departure from traditional programming lan-
guages is that, in Promela, statements may or may not be
executable depending on a Boolean condition that, in turn,
depends on the statement itself. For instance, an expression
(classified as a kind of statement in Promela) is executable if it
evaluates to true or, equivalently, to a non-zero value. When-
ever a process encounters a statement that is not executable at
the moment, it blocks until the statement becomes executable.
This concept, together with the atomic execution of a sequence
of statements (specified by means of the atomic keyword)
provides a very concise and effective way to represent inter-
process synchronization.

Regarding execution flow the most peculiar feature of
Promela are non-deterministic choices, better illustrated with
an example. Let us consider the following fragment of code
that resembles a conventional “if—then—else if”’ statement:

if

N =

2

[l
I
[

1
HE|

fi

The :: keyword introduces an execution alternative, while
—> separates the predicate or guard (on its left) from the list of
statements associated with it (on its right). When the execution
flow is sequential, the first guard that evaluates to true triggers
the execution of its list of statements and execution continues
after the conditional statement as a whole. Instead, when more
than one guard is true in Promela, a non-deterministic choice
exists among the corresponding lists of statements, and all
possibilities are considered upon verification. In the example
above, when both i and j are 1, k can be set to either 1
or 2, whereas it would invariably be set to 1 in a traditional
programming language.

On the other hand, inter—process communication takes place
in a more conventional way. Besides global variables, which
are still popular despite being considered questionable pro-
gramming practice [8], Promela supports multi-point commu-
nication channels. The following statement defines a channel
ch that holds up to n messages. Individual messages consists
of fields belonging to the specified list of type.

type} 3)

Messages can be sent to, and received from, channels by
means of a rich variety of operators similar to those available
in the CSP language [9]. The basic synchronous send (denoted
as !) and receive (?) operations block the invoking process
when the channel is full or empty, respectively, but polling
variants also exist. Other flavors of the receive operation can
read from the channel in a non-destructive way and/or access
it in non-FIFO order.

For what concerns model execution, besides verification
mode SPIN also implements a simulation mode, meant to help
designers understand and debug their models interactively.
However, it is unsuitable for targeting embedded real-time
systems, also because Promela does not directly support I/O
functions and networking, whereas both of them are crucial
to interface software modules with real equipment. In other
words, Promela and SPIN implement a very high-level ab-
straction of the computing platform, and cannot generate any
executable code for an actual target, like a microcontroller.
Although some attempts at translating Promela from and into
the Java and C languages have been carried out in the past [10],
[11], they may limit their scope to a subset of Promela and/or
neglect part of its semantics.

chan ch = [n] of {type, ...,

B. The CPAL Language

Cyber-Physical Action Language (CPAL) is a multi-purpose
language designed for modeling, simulating, and programming
typical embedded systems in a unified way [5]. It was partly
inspired by Promela in emphasizing language expressiveness
and simplicity, while natively supporting concurrent, real-time
programming concepts. The similarities between them become
evident when we compare, for instance, the following fragment

of CPAL code with its Promela counterpart (1). Both declare
and instantiate a process.

processdef P (params) {

body
} “)

process P: inst[period,offset][cond] (args);

The same example also shows how CPAL addresses several
key areas of interest, especially when considering embedded
or more in general Cyber-Physical Systems (CPS) with real-
time constraints. In particular, CPAL processes can be either
periodic or event-triggered. Periodic instances are scheduled
for execution with a certain period and an optional offset.
It is also possible to specify a Boolean activation condition
cond. In this case, a given process instance is scheduled for
execution only if its activation condition is true at release
time. Processes are event-triggered, when they are instantiated
with just the activation condition. In this case, the instance is
released as soon (and as long) as the condition evaluates to
true. As we can see, time is a native concept in CPAL and
enjoys full language-level support.

Moreover, unlike Promela which considers every possible
interleaving among processes during verification, CPAL offers
several predefined scheduling models and algorithms that can
be configured by means of annotations to the code. For the
time being, CPAL considers only non preemptive algorithms—
in which processes run to completion once scheduled—as they
represent the commonest case in most time-critical systems.
Annotation offers a convenient way to experiment with dif-
ferent scheduling strategies in simulation mode, possibly with
information fed back from the real execution environment, and
then enforce the same strategy when the model executes on the
target embedded system. For the First-In, First—-Out (FIFO) al-
gorithm, schedulability analysis through worst-case execution
time determination is supported [12]. It worth noting that other
execution-related timing information can be specified through
annotation as well, such as execution time and jitter, and can
be performed at different level of granularity (e.g. process-
level, state-level, or transition-level). Generally speaking, the
annotation mechanism provides a clean separation between
functional and non-functional properties of a program.

The dissimilar approaches followed by Promela and CPAL
represent a trade-off between full exploration of all possible
behaviors or being focused on a few specific, consistent
behaviors of practical interest. On one side, Promela aims at a
formal proof of code correctness across the whole state space
of the system, which may come at the expense of huge compu-
tational resources that may even make the problem intractable.
Alternatively, designers may be forced to artificially streamline
the model to make it amenable to verification, usually achieved
by abstracting away some implementation details. However,
this way of doing may easily contradict the purpose of a
formal proof. In other words, it may be possible to prove that
a model is flawless, but without knowing exactly how close
the model is to the real system it is supposed to represent.
On the contrary, in order to avoid any gap between the model
and the real system, CPAL supports direct model execution
by means of an interpretation engine (available on various

platforms such as Windows, Linux, Raspberry Pi and Freescale
FRDM-K64F), without any intervening translation. Hence, the
system model coincides with the actual executable program.

Another important aspect CPAL deviates from Promela (and
other languages as well) is the process structure. The following
fragment of code elaborates further how the process body
shown in (4) must be organized internally.

processdef P (params) {
state state_1 {

statements
; 5)
on (cond) { trans_code } to state_ 2;
after (time) { trans _code } to state 3;

}

As shown above, CPAL processes are structured as Finite
State Machines (FSM) and expressed in terms of states and
transitions. A set of transitions, which govern how a process
goes from one state to another, can be specified after the state
code and introduced by the on or the after keyword. In
particular, the latter specifies a time-triggered transition. An
execution step of a process can be summarized as follows:
upon activation, a process is assumed to be in a certain state.
According to Mealy FSM semantics, all outgoing transitions
from that state are evaluated first, according to their order
of declaration and the first one evaluated to true is taken.
After that, the process executes the (optional) transition code
(trans_code), enters the target state and executes the block
of code associated to it. With respect to the completely free
structure of Promela processes, standardizing a well-defined
and well-known implementation logic as done in CPAL im-
proves code readability and makes it easier to understand, es-
pecially when a model is shared among different programmers.

Regarding executable statements, CPAL capabilities are
remarkably close to what Promela provides. In addition, CPAL
offers a richer set of looping constructs, which not only
improves code readability, but also reduces the probability of
programming mistakes. The only looping construct provided
in Promela is do/od, with its syntax identical to the if/fi
statement shown in (2), except for keywords. Semantics are
similar, too, the main difference being that the evaluation of
execution alternatives is repeated indefinitely, until the loop is
broken by a break statement. By contrast, besides C-like for
and while loops, CPAL also provides the ability to loop over a
collection of items (e.g., an array) by means of an iterator (e.g.
it) associated with operators such as it.current (current
element) and it.index (index of the current element).

loop over array with it {
body (6)
}

Inter-process communication is another area where CPAL
and Promela take similar approaches. In CPAL processes
may exchange information through global variables—although
their use is discouraged for the same reasons as outlined in
Section II-A. CPAL natively supports the channel data type,
with two sub-types (namely, stack and queue) inherited from
it and implementing a Last-In First-Out (LIFO) and First-In

typedef buffer_t ({
bool agent [N]
}

typedef report_t {
byte i;
bool value[N-1]

}

/* Number of reports =*/
/+* Their value =/

#define nil 2

typedef result_t
byte agent [N]
}

typedef results_t {
result_t opinion([N]

}

Fig. 1. Promela Data Type Definitions.

First-Out (FIFO) insertion and extraction policy, respectively.
As is common in structured type hierarchies, either a stack or
a queue can be used whenever a channel is expected.

queue <eltype> gln];

processdef P (in channel <eltype> : c) {

(7
}

process P: p[ls](q);

The above code declares a queue g of n elements of type
eltype, which is then passed as argument to an instance
of process P. Similarities with Promela (3) are evident. One
difference worth noting is that in Promela the channel insertion
and extraction policy depends on the operator being used,
whereas in CPAL it is determined by the channel data type.
For instance, in CPAL insertion and extraction always take
place by means of the push and pop operators, but their exact
semantics depend on the data type they work upon.

One more feature of CPAL, extremely important from
the practical point of view, especially when considered in
combination with model execution, is the possibility to specify
real 1/0 operations. More specifically, on embedded targets,
global variables can be mapped to I/O registers, for instance,
General-Purpose Input-Output (GPIO) ports to read the value
of, or write values to, the hardware I/Os.

III. AN INTERACTIVE CONSISTENCY PROTOCOL
A. Protocol Description

The protocol being considered in this paper has been
originally proposed in [13] for the SIFT fault-tolerant aircraft
control computer. It enables a group of n agents A; to share a
value V; of their choice, by communicating through a perfect
network, that is, a network that never drops, alters, or dupli-
cates messages. Although up to m agents (with n > 3m + 1)
may fail and send forged messages, the remaining n —m non-
faulty agents still reach an agreement on the values all other
agents chose. More specifically, each non-faulty agent is able
to build an n-element vector. These vectors are all identical
and each element corresponding to a non-faulty agent A; is
equal to V;. In the following we focus on the case n = 4 and
m = 1, in which the protocol consists of two rounds.

Informally speaking, in the first round, each A; sends to
the others its V;. Hence, each agent gets one report about

inline second_round() {
d_step {
i=0;
do
(i<N) => {
buffer.agent[i] =
((i==id) —-> false

i++

: report[i].value[0]);

}
: else break
od
}

dest=0; skip_id(id, dest);
do
(dest<N) => {
c2[dest] ! id, buffer;
dest++; skip_id(id, dest)
}
:: else break

od;
atomic {
i=0;
do
(i<NB) => {
c2[id] ? source, buffer;
j=0;
do
(J<N) => {
if
:: (j==source || j==id) -> skip
:: else add_report (j, buffer.agent[]]
fi;
J++

}
: else break
od;

i++
}
: else break
od

Fig. 2. Second Protocol Round in Promela.

each of the other agents’ value. In the second round, each A;
forwards to the others the reports it received during the first
round. Eventually, each agent has 3 reports about each V,
i # j. As proved in [13], each A; can build its interactive
consistency vector R; according to the following procedure:
R;; =V;, and R, ;, with { # j, is obtained by majority voting
among the 3 reports about V; that A; received. If there is no
majority, I2; ; is set to the reserved unique value nil.

B. Promela Model

The Promela model of the protocol is based on previous
work [14]. The main data types relevant to the protocol are
defined are shown in Fig. 1. Namely:

e buffer_t represents a buffer of n values; it is used, for

instance, during the second round of message exchanges.

e report_t is a structure that collects reports about the

value held by a certain agent.

e result_t and results_t represent results obtained by

one agent, and all agents, respectively.

This excerpt also provides the opportunity to exemplify the
modeling trade-off discussed in Section II-A. Although the
protocol itself supports any kind of V; (as long as they can be
compared for equality), to reduce verification times only the
simplest Promela data type has been considered in the model,
that is, the Boolean (boo1l) data type. This approach has been
used when defining buffer_t and report_t. However, since

struct Value ({
uint8: value;
bi
const Value: NIL = { uint8.LAST };
struct Vector {
Value: valuel[N];
Vi

struct Reports {
uint8: n_reports;
Value: report[N-1];
bi

struct All_Reports {
Reports: agent[N];
bi

Fig. 3. CPAL Data Type Definitions.

nil is also a possible outcome of the protocol, the byte data
type has been used for results.

The second round of message exchanges has been modeled
as shown in Fig. 2. Each agent first prepares the message to be
sent (lines 3—11). These steps are enclosed within a determin-
istic step block (d_step) in an effort to reduce verification
time, again at the expense of model accuracy. In fact, this
approach forces Promela to consider all statements enclosed in
the block as non-blocking and indivisible, thus neglecting their
interleaving with other parts of the model. Messages are then
sent through the appropriate channels (lines 14-21) held in the
array c2. It is worth noting that the processing of incoming
messages (lines 24-45) requires two nested do/od loops,
which hinders readability, and is enclosed within an atomic
block for the same reasons described previously—although
atomic implies a weaker assumption with respect to d_step
and lets Promela consider interleaving upon blocking. As a
last remark, the code relies on two functions not shown in the
figure: skip_id is used by agents to skip their own identifier
and avoid sending messages to themselves, and add_report
adds a report to a report_t data structure.

C. CPAL Model

As done in Section III-B, the description of the CPAL model
starts from data type definitions shown in Fig. 3, which are
the counterpart of Fig. 1. Although a uint8 (8-bit unsigned
integer) was used as Value (the data type of V;,) in the
figure, any other data type can be used without impacting
simulation performance, unlike in Promela. In this way, it
was also possible to remove the artificial distinction between
Promela’s buffer_t and report_t data types, by reserving
the highest value of a uint8, denoted as uint8.LAST, as nil.

Coming down to the CPAL model of the second round
of message exchanges, shown in Fig. 4, besides noting the
similarity with Fig. 2, it is also important to underline the
better readability of the while and loop over constructs
with respect to their do/od counterpart, even when they
are nested to handle incoming messages (lines 29-40). It
also worth remarking how the FSM organization enforced
by CPAL (the Round_2_Tx state handles transmission, while
Round_2_Rx processes incoming messages) allows designers
to model the protocol concisely without impairing readability
in any way.

state Round_2_Tx {
var Round_2_Msg: msg;

msg.sender_id = id;

loop over msg.other_values.value with it {
if(it.index != id) {

msg.other_values.value[it.index] =
st.all_reports.agent[it.index].report[0];

}

else {
msg.other_values.value[it.index] = NIL;
}
}

loop over round_2_chan with it {
if(it.index != id) {
it.current.chan.push (msg) ;
}
}

st.received = 0;

on (true) to Round_2_Rx;
state Round_2_Rx {
var Round_2_Msg: buf;

while (round_2_chan[id].chan.not_empty ()) {
buf = round_2_chan[id].chan.pop();

loop over buf.other_values.value with it {
if (it.index != buf.sender_id) {
add_report (it.current,
st.all_reports.agent[it.index]);
}
}

st.received =
}
}

on (st.received == N-1)

st.received + 1;

to Result;

Fig. 4. Second Protocol Round in CPAL.

IV. COMPARISON AND DISCUSSION

A. Model-based verification versus model-based development
language

Promela is a language meant for model-based verification,
that is the verification on models of correctness properties.
In that regard it can perfectly be used within a model-based
design flow typically involving specifications in UML as
in [15]. But Promela is not an implementation language, i.e.
a language to develop software or systems. In particular, it
lacks important features such as input/output capabilities or
floating point support. More essentially, non-determinism is
a behavior at the core of the language, while this is most
often something to be avoided in real systems, especially in
critical systems. In addition, Promela is, in certain aspects, a
low-level programming language, that comes without libraries
or domain-specific frameworks, and thus would not be a
productive development environment for real applications.

By contrast, CPAL, as a domain-specific language for CPS,
has been conceived with productivity as a design objective and,
to that aim, provides high-level abstractions suited to express
domain-specific properties or patterns of behaviors. Although
CPAL allows some forms of verification by timing-accurate
simulation, monitoring and schedulability analysis, it is also
an implementation language, and specifically a language to
implement systems for which the timing behaviors of their
components matter. Time is indeed a central concept of the
language, with time units parts of the language, the after
transition in FSMs, process activation and scheduling features.

B. Logical versus temporal correctness verification

On the contrary to CPAL, quantified time is something
which is absent in Promela. A Promela model is for the formal
study of all possible evolutions/trajectories of the modeled sys-
tem, and perform value domain and logical-order verification
across the entire space of possible evolutions. This is made
possible by model-checking with SPIN. Although, in practice,
model-checking comes often at the price of using simplified
models because of the search space explosion problem. CPAL,
on the other hand, does not support model checking. A CPAL
program is usually about studying and enforcing specific real-
time behaviors. Indeed, in real-time systems, the goal of the
designer is in most cases not to identify all possible trajectories
of a system but only the ones possibly leading to “feasible”
systems.

Underlying CPAL, there is the idea, inspired from the design
of interlocking systems [16] in use at the French national
railway company, to decouple the execution platform (i.e., the
interpreter) from the application and verify the correctness of
both independently. Promela also abstracts away the execution
platform, it is simply assumed that it will perform correctly
(e.g., delivering messages in the right order, etc.). But it is
not possible to configure the platform, typically the real-time
QoS we expect from it through the use of scheduling policies,
while this is possible in CPAL. Although it may be possible
in Promela to, for instance, implement an EDF scheduler for
the processes, it would be cumbersome and not in the spirit
of the language which is based on non-determinism.

C. A continuum of verification from behavioral to temporal
properties

Considering the development cycle, Promela, in our opinion,
is targeted at the design stage, to build coarse-grained models
abstracting the implementation issues. CPAL, on the other
hand, covers the entire development cycle until deployment
with a more accurate modeling of the execution platform. In
terms of verification, what is the true need of the designer
at the design stage? Is it formal verification on a simplified
model (with respect to the implementation) or simulation of
the actual implementation, or, at least, of a model close to
it? We believe the two possibilities should not be opposed.
Promela appears to us best suited for the early design phase,
to decide the architecture of a system, identify and prove its
main behavioral properties. Then, the next stages can be per-
formed with CPAL, resulting in a system proven correct in its
timing dimension too and providing its implementation. This
continuum of verification, based on increasingly refined and
platform-accurate models, obeys the principle of specifying
and verifying one concern at a time, from logical and value-
domain verification to timing verification.

V. CONCLUSION

In this paper we compared two MBD languages—Promela
and CPAL—in terms of language constructs, verification ca-
pabilities, and role in the software life cycle. Both languages
are straightforward to learn, unlike many other formal lan-
guages, whose steep learning curve and complex formalism

can discourage practitioners. However, Promela aims at the
verification of behavioral properties and is not meant to
provide or directly support an implementation, leading to a
discontinuity in the design flow. On the other hand, CPAL
enables designers to write a model that can be directly used for
the implementation, thus alleviating this discontinuity while
still supporting some properties verification.

Together, these languages target complementary correctness
properties and may offer a continuum of verification from
behavioral to temporal properties, provided proper model re-
finement techniques are developed. Ideally, those refinements
could be automated and span from the Promela model down
to CPAL and C code generation, and then RTOS integration.
Even on systems for which model interpretation is not efficient
enough, this would still provide a development flow where
the properties checked at higher levels of abstraction are
guaranteed to hold at the lower levels.

REFERENCES

[1] P. H. Feiler, B. A. Lewis, and S. Vestal, “The SAE Architecture Analysis
& Design Language (AADL) a standard for engineering performance
critical systems,” in 2006 IEEE Conference on Computer Aided Control
System Design, Oct 2006, pp. 1206-1211.

[2] S. Pradhan, A. Dubey, A. Gokhale, and M. Lehofer, “CHARIOT: A
domain specific language for extensible cyber-physical systems,” in
Proc. Workshop on Domain-Specific Modeling (DSM), 2015, pp. 9-16.

[3] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic,
and R. de Simone, “The synchronous languages 12 years later,” Pro-
ceedings of the IEEE, vol. 91, no. 1, pp. 64-83, Jan. 2003.

[4] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions on
Software Engineering, vol. 23, pp. 279-295, 1997.

[5] N. Navet and L. Fejoz, “CPAL: High-level abstractions for safe embed-
ded systems,” in Proc. of the ACM International Workshop on Domain-
Specific Modeling (DSM), 2016, pp. 35-41.

[6] A. Pnueli, “The temporal logic of programs,” in Proc. 18th Annual
Symposium on Foundations of Computer Science, Nov. 1977, pp. 46-57.

[7]1 D. BosSnacki and D. Dams, “Discrete-time Promela and Spin,” in Formal
Techniques in Real-Time and Fault-Tolerant Systems, ser. Lecture Notes
in Computer Science, vol. 1486. Springer Berlin Heidelberg, 1998, pp.
307-310.

[8] W. Wulf and M. Shaw, “Global variable considered harmful,” ACM
SIGPLAN Notices, vol. 8, no. 2, pp. 28-34, Feb. 1973.

[9] C. A. R. Hoare, “Communicating sequential processes,” Communica-

tions of the ACM, vol. 21, no. 8, pp. 666-677, Aug. 1978.

K. Havelund and T. Pressburger, “Model checking JAVA programs

using JAVA PathFinder,” International Journal on Software Tools for

Technology Transfer, vol. 2, no. 4, pp. 366-381, 2000.

A. Sharma, “A refinement calculus for Promela,” Proc. 18th IEEE

International Conference on Engineering of Complex Computer Systems

(ICECCS), pp. 75-84, 2013.

S. Altmeyer, S. Manikandan Sundharam, and N. Navet, “The case for

FIFO real-time scheduling,” University of Luxembourg, Tech. Rep.,

2016. [Online]. Available: http://orbilu.uni.lu/bitstream/10993/24935/1/

FIFO_scheduling_TR.pdf

M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the

presence of faults,” J. ACM, vol. 27, no. 2, pp. 228-234, 1980.

T. Hu and I. Cibrario Bertolotti, “Model checking,” in Digital Avionics

Handbook, 3rd ed., C. R. Spitzer, U. Ferrell, and T. Ferrell, Eds. CRC

Press, Taylor & Francis Group, Sep. 2014, ch. 42.

T. Schifer, A. Knapp, and S. Merz, “Model checking UML state

machines and collaborations,” Electr. Notes Theor. Comput. Sci., vol. 55,

no. 3, pp. 357-369, 2001.

M. Antoni, “Formal validation method and tools for computerized

interlocking system,” Presentation at the 18th International Symposium

on Formal Methods (FM 2012), Industry Day, August 2012, available
at http://fm2012.cnam.fr/fm2012/ID2012-Marc- Antoni.pdf.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

