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Abstract—Programmable logic controllers (PLCs) are the core
element of industrial plants in todays deployments. They read
sensor values, execute control algorithms, and write output values.
Furthermore, industrial plants have lifetimes of one or more
decades. Thus, in a realistic Industry 4.0 scenario, these devices
have to be integrated in novel systems. In order to apply ad-
vanced concepts and technologies, such as computation offloading,
which requires data exchange between PLCs and edge cloud, we
investigate open communication interfaces of two typical PLCs
of Siemens S7 series. Hence, each of the interfaces is analyzed
based on plug & play capability, if metadata is provided, protocol
efficiency, and performance. For the latter, the smallest possible
update time for each of the interfaces will be measured.

Index Terms—PLC, smart manufacturing, Industry 4.0, indus-
trial communication, communication protocols

I . INTRODUCTION

The convergence of information technology (IT) and opera-
tional technology (OT) is one important enabler for realizing
Industry 4.0 use cases [1], whereby 5th generation wireless
communication system (5G) is seen as key technology for
realizing mobile use cases [2]. In addition, mobile devices, such
as automated guided vehicles (AGVs) or drones, can profit by
the so-called computation offloading, e.g., to save energy [3].
Thus, if these devices provide a high mobility, e.g. movement
between factory halls, the offloaded algorithms also have to be
mobile [4], [5]. However, there are reasons for not only using
computation offloading for mobile devices. Since algorithms
are getting more and more complex, the computational power
of resource constrained devices, such as PLCs may be exceeded.
Furthermore, Industry 4.0 describes “lot size one” what requires
a reconfiguration of process controllers at very short time
intervals. Since legacy devices do not provide this flexibility
but are required as interface to sensors and actuators due to
life-cycle-times of industrial plants of ten years or more [6],
offloading of algorithms to edge clouds is a suitable approach.

In order to realize data exchange between PLCs and devices
that are located in the area of the OT and applying novel
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technologies, such as virtualization [7], open interfaces and
protocols are required. Therefore, we investigate communica-
tion protocols of PLCs that are natively compatible with OT
hardware and thus using standard Ethernet and Internet Protocol
(IP) layer.

II . ACCESSING DATA FROM PLCS

In this section the possibilities for accessing data of two PLCs
are examined, which are part of the S7 series. Therefore, the
individual interfaces are described in detail and a comparison is
carried out (see Tab. I). Besides the specification of the protocol,
qualitative aspects, such as plug & play capability and the
availability of metadata is investigated. In addition, the protocol
efficiency, which can be expressed by the payload divided by
the total number of bytes sent, is determined for 1, 10, and 100
data values, where each data value is assumed to be 4 bytes.
Furthermore, the update time plays a major role as it indicates
the frequency with which data packets can be sent. It is defined
as the “[...] time interval between any two consecutive messages
delivered to the application.” [8]. Therefore, we examine the
minimum update time that the device can use to send a new data
packet for 1, 10, and 100 data values. This value is characteristic
for the investigated PLC and network independent.

A. Open User Communication (OUC)

The OUC was originally developed with the intention to allow
multiple PLCs to exchange data using the following IP-based
protocols:

• User Datagram Protocol (UDP) (RFC 768),
• Transmission Control Protocol (TCP) (RFC 793), and
• ISO-on-TCP (RFC 1006).

Since it cannot exclusively used by PLCs, this interface is well
suited for offloading data to edge devices. As ISO-on-TCP,
which is also referred to as “S7 Protocol”, does not bring an
advantage compared to standard TCP, it is not discussed in the
OUC section.

1) UDP: For sending data from the PLC to a mini PC
using UDP-based OUC, two function blocks (FBs) (TCON,
TUSEND) must be configured in the PLC. Among other things,
the IP address and the port number must be specified there.
For this reason the PLC must be stopped to be able to use the
new software module. Therefore, the OUC does not allow plug
& play mechanisms to avoid downtime of the PLC. Also, the
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Table I
COMPARISON OF THE INTERFACES OF THE INVESTIGATED PLCS USING STANDARD ETHERNET.

Interface Protocol Plug & Meta- Protocol Efficiency & Min. Update Time
Configuration Play data 1 10 100

Data Value Data Values Data Values
314 1512 314 1512 314 1512

[%] [ms] [%] [ms] [%] [ms]
Open User UDP - - 5.6 1.00 3.61 42.6 1.00 3.60 88.1 1.00 3.63

Communication TCP - - 2.8 1.01 3.77 22.5 1.04 3.78 74.4 1.02 3.83
LIBNODAVE ISO on TCP + - 1.2 2.00 1.32 10.8 2.00 1.32 54.62 4.00 1.40

OPC Write UATCP - + 0.9 n/a 6.83 6.3 n/a 7.36 14.5 n/a 16.56
UA Service

Server Read UATCP + + 0.8 n/a 9.11 3.7 n/a 30.35 5.4 n/a 246.1
Client Service
OPC UA PubSub UADP - ◦ 5.5 n/a 1.02 33.9 n/a 1.26 70.41 n/a 2.301

1As the current firmware of the PLC allows a maximum of 20 data values to be transferred, but it can be assumed that this
restriction will be removed in a newer version, the value was estimated.

2For the S7-314 series this value is halved, because two requests have to be sent.

Table II
OVERVIEW ABOUT NAME AND SIZE OF THE DIFFERENT DATA

MESSAGES .

Message Specification Message Size [byte]
Data Values

Interface Name 1 10 100
Open User UDP Data 72 94 454

Communication TCP Data 144 178 538
LIBNODAVE Job 169 169 169

Ack Data 167 203 563
OPC WriteRequest 234 396 2154
UA WriteResponse 202 238 598

Server ReadRequest 270 756 5778
Cient ReadResponse 212 338 1598

OPC UA DataSetMessage 73 118 568
PubSub

data to be sent is packed directly into the payload of the UDP
packet, without any additional information. This means that no
metadata is provided and the receiver must know exactly how the
data is structured, such as the byte order and data type. Due to
this fact, the payload is very heterogeneous, but a very efficient
data transmission can be realized, since only the UDP, IP and
Ethernet II headers of 8, 20, and 26 bytes have to be added. This
results in a protocol efficiency of 5.6% for 1 data value, 42.6%
for 10 data values, and 88.1% for 100 data values. One of the
drawbacks is that the PLCs is not able to send a packet in each
cycle. This results in a update time of ≈ 3.6 ms for S7-1512 PLC.
However, the udpate time for the S7-314 PLC is significantly
lower, compared to S7-1512 PLC. Here, update times of 1 ms
are possible. Furthermore, the update times of both PLCs are
almost independent of the payload size.

2) TCP: The use of TCP in OUC is comparable to UDP.
Besides the configuration of a different FB (TSEND), the only
difference lies in the transport protocol, as the name implies.

Here the characteristic is that each of the packets is acknowl-
edged and thus no packet loss can occur, since lost packets are
automatically retransmitted. This results in a higher reliability,
but also a higher overhead, compared to UDP. Thus, in addition
to the larger header of TCP, which is 20 bytes, the 72 bytes per
acknowledge reduce the protocol efficiency, which is almost
half for 1 and 10 data values and about 15% lower for 100
data values compared to UDP. In addition, the larger header
and acknowledgment generation increases the minimum update
time slightly.

B. LIBNODAVE

LIBNODAVE is a free and open source library for using the
ISO-on-TCP protocol communicating on TCP/IP port 102 for
data exchange with Siemens S7 PLCs [9]. If the RJ-45 port
where the cable is connected is not explicitly disabled, any
device supporting the S7 protocol can communicate directly
with the PLC. This enables plug & play capability, but is also the
reason why this protocol has already been used for cyber attacks
such as Stuxnet [10]. This means that appropriate security
measures must be taken if there is a connection to the Internet or
if there is a possibility that malware can be placed on a device
that communicates with the PLC, because on some series not
only can data values be read and written, but the complete PLC
can also be stopped. This is especially true for older models
like the 300 and 400 series. In the 1500 series, the function has
been severely restricted so that critical functions such as start
and stop can no longer be executed by any device. However,
read and write access is still possible. This makes it a suitable
protocol for accessing data of the PLCs studied in this paper.

Since in this communication method the S7 protocol is built
on top of TCP, the protocol overhead is larger compared to OUC.
In addition, the data exchange must be triggered by the edge
device. Since all network traffic required for the data exchange
should be considered, the messages required to query the data
and its acknowledgements must also be considered. To request
data, the so-called Job message is sent. As shown in Tab. II,
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this remains the same size for both 1, 10, and 100 data values.
This is because the data is requested over its memory area and
the length of the data chunk. The response of the PLCs, called
Ack Data message, contains the data and consequently becomes
larger, with increasing the number of data values. Considering
both messages results in low protocol efficiencies of 1.2%,
10.8% and 54.6% without any meta information about the sent
data. In addition, the protocol data unit (PDU) size of the S7-
314 PLC is limited to 240 bytes. Therefore, only ≈ 50 data
values can be read within one request. In order to obtain 100 data
values, two requests have to be send. This results in twice the
update time, protocol overhead, and thus, in a halved protocol
efficiency. However, until a maximum of polling 50 data values,
the update time of the S7-314 PLC is constantly 2 ms. Regarding
the S7-1512 PLC, the aforementioned restriction is not given.
Furthermore, it is able to send a new data packet every 1.2, 1.32,
and 1.4 ms.

C. Open Platform Communications Unified Architecture (OPC
UA)

To close the gap between IT and OT, OPC UA [11] was
introduced. It aims at a secure, simple and platform-independent
exchange of information between industrial applications [12].
For this purpose, it provides both a self-describing information
model and various communication protocols. Even though the
information model in conjunction with the data exchange is a
major milestone in industrial automation, we will focus on the
communication protocols in the following. Since OPC UA is
not supported for the S7-300 series, no values can be measured
for this interface for the S7-314 PLC. If computation offloading
using OPC UA server client or Publish/Subscribe (PubSub) is
explicitly required, a gateway has to be connected next to the
PLC, as proposed in [13]. To offload data from the S7-314 PLC
to the gateway, the investigated interfaces can also be used. Then
the data can be offloaded to an edge device.

1) OPC UA Server Client: The OPC UA server client pat-
tern supports the binary TCP-based communication protocol
(UATCP) as well as a solution that is well suited for web services
based on Simple Object Access Protocol (SOAP)/Hypertext
Transfer Protocol (HTTP). Due to lower resource consumption
and less overhead, which is important for embedded devices like
PLCs, we focus on the UATCP protocol running on port 4840.

Two different services are possible for data exchange between
PLC and the edge node, depending on the role of each device in
the specific scenario, since the client and server roles are strictly
defined. The client sends requests to the server that are answered
with a response. Thus, if the PLC is the client and wants to
send data to the mini PC, it must send so-called WriteRequests
containing the data values to be written to the server’s address
space. Then, this message is replied with the WriteResponse to
give the client a response with some information, such as a status
code. Also, both messages contain a lot of metadata, such as the
timestamp of the device, the unique identifier of the variable in
the address space, and the data type, just to name some of the
information. This makes the protocol very powerful, but comes
with a larger overhead. Therefore, the WriteRequests have the
sizes of 234 bytes, 396 bytes, and 2154 bytes for 1, 10, and 100

data values, respectively. In addition, the WriteResponses add
another 202 bytes, 238 bytes, and 598 bytes. This results in a low
protocol efficiency that is, for example, < 1% for 1 data value.

If the roles are swapped, so the PLC being the server and the
remote application running on the edge node being the client, the
data must be exchanged via the ReadService. This means that
the edge node is the client and must poll the data from the server.
To do this, a ReadRequest containing the variables to be read
is sent to the server running on the PLC. The message is then
responded with the ReadResponse, which contains the current
data values. Similar to the WriteService, the data also contains
a lot of metadata. Therefore, the protocol efficiency is also low
for 1, 10, and 100 data values. Due to the protocol overhead
and meta information, the efficiency for 100 data values does
not improve much compared to 1 or 10 data values because
the message must be split into multiple TCP segments and thus
multiple Ethernet packets. These issues are also responsible for
the low performance in terms of update times. However, what
is an advantage for this interface is the direct access to the data
without reconfiguration of the PLC.

2) OPC UA PubSub: Due to the drawbacks of the server
client model concerning protocol overhead and the descresed
protocol efficiency of exchanging requests and responses, part
14 of the OPC UA specifications adds the PubSub pattern.
This allows many subscribes to register for a specific content
[14]. For the message distribution both broker-based protocols,
in particular message queuing telemetry transport (MQTT)
and advanced message queuing protocol (AMQP), and UADP,
a custom UDP-based distribution based on the IP standard
for multicasting has been defined. Due to the advantages to
send real-time messages on the field level directly on the data
link layer, part 14 defines the transport of PubSub messages
based on Ethernet frames. Until now, the PLCs of the S7
family only support the data exchange with UADP. Therefore,
only this protocol is discussed. As shown in Fig. 1, there are
several possibilites regarding structure of the packet. Since this
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DataSetField1

DataSetField2

DataSetField10
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Float

Float
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Figure 1. Structure of OPC UA PubSub network messages.

interface requires reconfiguration of the PLC, it is not plug &
play capable. First a WriterGroup must be defined. Under the
WriterGroup are logically grouped the so-called DataSetWriters,
which are associated with a PublishedDataSet. Furthermore, the
PublishedDataSet contains the DataSetFields where the specific
data value is placed. Additionally, the OPC UA data type of
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the data is added as meta information so that the subscriber
can interpret the data correctly. We decided to configure only
one DataSetWriter and one PublishedDataSet containing 1
to 10 data values for our measurements. So far, it is only
possible to use 10 DataSetFields per PublishedDataSet and two
DataSetWriters per WriterGroup. Therefore, the maximum data
values that can be sent per WriterGroup is 20. For this reason, we
can only estimate the protocol efficiency and update time for 100
data values. Independently, OPC UA PubSub performs best in
terms of update times for 1 and 10 data values of ≈ 1ms and 1.26
ms, respectively. Moreover, the achievable protocol efficiency is
comparable to that of OUC. This is the result of the low overhead
given by the metadata. If this is even better for 1 and 10 data
values, the additional overhead of 1 byte per data value for 100
data values compared to the TCP-based OUC is slightly higher
than the TCP protocol overhead including acknowledgements.

D. Summary

Looking deeper into the different interfaces, it can be seen that
each of the interfaces has strengths in one of the categories. If
a low overhead is the most important requirement, OUC is best
suited. If the focus is on plug & play functionality to integrate
brownfield devices without having to reconfigure the PLC,
LIBNODAVE or the ReadService of the OPC UA server client
model can be used. Here, a decision must be made between good
performance and the need of meta information. Last but not least,
UDP-based OPC UA PubSub provides a very good trade-off
in terms of update time, protocol efficiency, and the presence
of at least some meta information of the data values plus a
standardized communication protocol. This is very important for
the required interoperability of devices and applications on the
way to Industry 4.0. Here also the combination of time-sensitive
networking (TSN) and the Ethernet-based OPC UA PubSub has
already been discussed [15]. The use of raw Ethernet frames can
save both the overhead and processing of the UDP/IP protocol
headers. Therefore, increased performance of this interface can
be assumed.

III . CONCLUSION

In this paper, we investigated open interfaces of two PLCs
of Siemens S7 series. Therefore, we assessed all available
interfaces using standard Ethernet according to qualitative as-
pects such as the protocol used, plug & play capability, and
the availability of metadata. Furthermore, quantitative criteria,
such as protocol efficiency and update time, were evaluated for
each of the interfaces of both PLCs. It turned out, that all of
the interfaces, that were taken into account have their strengths
and weaknesses. Concluding, the interface and protocol used
must be carefully selected according to the requirements of the
particular application.

IV. FUTURE WORK

Even though our research mainly focused on the best per-
formance in terms of lowest overhead, least update time, most
metadata, and plug & play capability, other protocols may be
attractive for various industrial Internet of Things (IIoT) appli-
cations. Examples include application layer protocols such as

MQTT, Constrained Application Protocol (CoAP), and HTTP.
Especially when dealing with 1-to-n relationships and latency or
minimal update time are not the main concern, these protocols
can be a good solution.

In addition, it would be interesting to examine break-even
points for a realistic computing offloading scenario, based on
the chosen interface, network design, and complexity of the
algorithm. For the latter, different levels of complexity are possi-
ble, such as classical proportional–integral–derivative (PID) con-
trollers, more complex ones, such as linear–quadratic regulators
(LQRs) in combination with Kalman filters or state observers
for multiple states, or ones that solve nonlinear equations.
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