
Design Considerations for Stand-alone Haptic Interfaces
Communicating via UDP Protocol

Ryan M. Traylor,1 Daniel Wilhelm,1 Bernard D. Adelstein2 and Hong Z. Tan1

1 Haptic Interface Research Laboratory, Purdue University, West Lafayette, IN 47906
{traylorr, dwilhelm, hongtan}@purdue.edu

2 Human Factors Division, NASA Ames Research Center, Moffett Field, CA 94035
bda@eos.arc.nasa.gov

Abstract

This work was motivated by the need for high-speed
communication between a stand-alone haptic interface
and an external computer running haptic rendering
algorithms. This paper describes our recent work with
User Datagram Protocol (UDP) over Ethernet as a
communication channel between a remote computer
and a custom embedded controller built for a finger-
scale 3 DOF force-feedback haptic interface (the 3-
DOF ministick). The results and observations from
three experiments are contrasted with theoretical
timing models in order to isolate potential problems
and verify predicted models. Details of the controller
hardware that enabled a haptic update rate of 3800 Hz
are provided. Information that may reduce
development time for other systems requiring Ethernet
communication is also presented.

1. Introduction

As haptics technology becomes more mature, there has
been much work in recent years toward developing
stand-alone and plug-and-play haptic interfaces.
Instead of using proprietary ISA or PCI bus cards to
interface a haptic interface to a PC, the trend is to use
the parallel or USB 2.0 port for inter-device
communication. Recently, we have experimented with
User Datagram Protocol (UDP) over Ethernet for a 3-
DOF force-feedback hardware platform, and succeeded
in a haptic update rate of 3800 Hz. We employ custom
embedded controller hardware capable of both
controlling a variety of different haptic interfaces and
communicating via Ethernet with remote computers.
Rather than focusing on the embedded controller, this
paper examines Ethernet communication and more
specifically, the pitfalls encountered while

implementing and utilizing the protocol to control
haptic interfaces.

Several different types of communication protocols
are used in COTS (commercial off-the-shelf) haptic
interfaces being marketed today. For instance, the
Delta Haptic Device [1] utilizes a proprietary PCI
interface card, the Phantom Desktop [2] a parallel port,
the Omega Haptic Device [1] USB 2.0 protocol, while
the Phantom Omni [3] uses IEEE-1394 FireWire®.
Another widely available computer communication
protocol, Ethernet, can potentially be included, even
though it is not widely used for controlling haptic
interfaces. Each of these communication protocols has
its advantages and disadvantages. Among the various
metrics for comparing and contrasting between
protocols are bandwidth, design complexity, protocol
efficiency, and scalability.

With the possible exception of the parallel port,
each protocol offers enough bandwidth to support
communication with haptic interfaces running at update
rates requiring the transfer of several thousand data
frames per second. The design complexity eliminates a
PCI interface card since developing a custom circuit
board to interface with a computer’s bus is rather
complicated and time consuming. This leaves
FireWire®, USB, and Ethernet as viable candidates. By
far the most scalable is Ethernet communication
because many haptic devices and computers can be
linked together on a single Ethernet network. Many
devices such as Ethernet switches and routers are
commercially available to link the embedded controller
with one or more remote computers locally or globally.

Of the many available Ethernet protocols, the most
commonly used are Address Resolution Protocol
(ARP), Internet Control Message Protocol (ICMP),
Transmission Control Protocol (TCP), and UDP. Of
these four, UDP and TCP are best suited to transfer
blocks of data between the embedded controller and a
remote computer due to the protocol’s structures. TCP

guarantees the delivery of each packet at the expense of
requiring that an acknowledgement packet be received
and processed within a certain amount of time after the
initial transmission. While UDP does not require this
extra acknowledgment packet, the embedded controller
would never know if a packet were lost or dropped for
any reason before reaching the remote computer.

Packet dropping associated with UDP, however,
does not present a major problem for the following
reasons. First, it is assumed that the controller will be
interfaced with a remote computer through either a
direct crossover cable connection or a switched
connection on a local area network. In this case, it is
easier to identify where and why packets might be
dropped. The computer or the embedded controller
could potentially drop packets if the communication
rate becomes too high for either to handle. If the
packets were traveling over a larger network such as
the Internet, routers and nondeterministic network
traffic increases the possibility that a packet might be
dropped or lost all together. Second, we can control
somewhat deterministically the communication
bandwidth required between the controller and
computer by adjusting the haptic update rate. The
haptic update rate is dictated by how often the haptic
device transmits position data to and receives actuator
commands from a remote computer. Thus, the
bandwidth required over an Ethernet communication
channel is directly proportional to the haptic update
rate. Assuming that the bandwidth consumed by
average traffic on a local network connection is minor
compared to the overall bandwidth required to sustain
the necessary haptic update rates, the update rate can
be tuned such that it is not overwhelming the embedded
controller or computer. Since the computer’s processor
is capable of performing operations at least two orders
of magnitude faster than the particular microcontroller
used in the current embedded controller design, it is
assumed for the purposes of this design that the
embedded controller will determine the limit on the
maximum communication bandwidth. Third, even in
the rare event that a few packets out of the many
thousands streaming over the network are lost, it may
not cause any noticeable change in the controller
behavior on the average. For instance, if a packet is
dropped, the controller will hold the last command
until the next packet arrives. As long as the force
command does not change significantly until the next
packet arrives, the user should not notice any effect.
Another advantage of using UDP is its eight byte fixed-
length header as opposed to TCP’s variable header
length (>20 Bytes). In short, sending smaller packets
saves time. For all of these reasons, UDP was chosen

as the protocol used to transfer information between the
embedded controller and remote computers.

The remainder of this paper is organized as follows.
We discuss the embedded controller and the 3-DOF
force-feedback haptic device in Section 2. Three
experiments involving different modes of utilizing
UDP are reported in Section 3. The last section offers
recommendations for using UDP communication
protocols with stand-alone haptic interfaces.

2. Hardware platform

2.1. Embedded controller specifications
The embedded controller is based on an 8-bit
ATMEGA128 [4] microcontroller running at 16 MHz.
It is wired to a Packet Whacker [5] 10 Mbps half-
duplex Ethernet controller card through the
microcontroller’s common communication bus. An
extremely streamlined UDP/IP Ethernet stack is
implemented in the firmware stored onboard the
microcontroller. The Ethernet stack is simply the
portion of the firmware that is in charge of taking a
packet from the Ethernet controller, then decoding,
managing, and processing it based on the packet’s
individual protocol. Our stack is loosely based on Fred
Eady’s full TCP/IP stack [6], with modifications made
for the use of static IP headers, but without checksum
calculations or TCP protocol management.

It is assumed for our design that the controller will
simply take raw position data from sensors, send them
to the remote computer, and then receive data in return
that contain the instantaneous commands to the
actuators. The remote computer will be in charge of the
calculations for updating the virtual environment and
for computing actuator commands based on the
predefined kinematics of the haptic interface.
Consequently, two 64-Byte Ethernet UDP
communications take place (one transmission and one
reception) during each haptic update period. With
haptic update rates potentially exceeding 1000 Hz, it is
evident why streamlining the stack is so important.
Specifically, it allows for higher haptic update rates,
higher immunity to livelock conditions even in the
presence of potential network traffic, and it leaves
sufficient time for computationally intensive
calculations taking place on the remote computer.

2.2. The 3-DOF ministick
The haptic interface housing the embedded controller is
a point-force interaction-type device (i.e., a joystick)
that couples three rotationally actuated degrees of
freedom to 3-DOF endpoint force and motion. The
joystick’s design is based on a unique fully-parallel, 10

rigid link, 12 revolute joint spatial architecture [7] that
affords the structural stiffness typically associated with
parallel mechanisms, but with the range of motion
approaching that of serial linkages. Importantly, from
a computational standpoint, both the forward and
inverse kinematics for this device can be expressed and
solved in closed form [8].

The device’s parallel linkage is composed of three
five-bar loops. Its two spherical loops include the three
brushless motor actuators and the base plate onto which
the motors are mounted. Its single planar loop is
effectively an extendable parallelogram arm that pivots
about the shared center of the two spherical loops. In
the current finger-scale implementations [9-10], the
parallelogram’s upper and lower arm links are each
50.8 mm (2 in) in length. The device’s usable,
interference-free workspace is enclosed within the
hemispherical volume bounded by singularities in the
plane of the actuator axes and the radius of maximum
arm reach [8] and occupies a region roughly 9 cm by 9
cm by 6 cm (see Figure 1).

In addition to reducing inertia and mass by
mounting its three actuators on its base plate, the
mechanism is passively balanced through individual
link shape design and alloy selection [10]. The passive
mass balance allows actuator effort to be allocated
completely to endpoint simulation force production and
not the support of individual link weight against
gravity.

Figure 1: The 3-DOF ministick.

3. Experiments with UDP

3.1. Client mode
In this experiment, the embedded controller’s firmware
is modified so that it waits to receive a packet of
actuator commands from the remote computer,

processes the commands, and then sends a packet of
position readings back to the computer. Since the
embedded controller in this case relies on the computer
to initiate and sustain communication, this mode of
operation is called the client mode. For this and all
subsequent experiments, the remote computer is
equipped with a 2.8 GHz Pentium processor and 3Com
3C940 Gigabit Ethernet card and running the Windows
XP Professional SP1 operating system.

3.1.1. Experiment configuration
With the embedded controller in client mode, the
remote computer was programmed to send off one
“initialization” packet to start off the communication,
then simply wait until receiving a reply from the
controller to transmit another packet. In this scenario,
one would expect to observe the maximum round trip
frequency (the highest haptic update rate) obtainable by
the system because both the controller and computer
simply wait for the other to respond, then immediately
reply back, thereby wasting no time.

3.1.2. Results and discussions
It is straightforward to compute the theoretical
maximum round trip frequency (RTF). One merely
needs to take the inverse of all the time spent by the
computer and controller processing, sending, and
receiving a packet, and the travel time for each packet
from source to destination. At 10 Mbits/s, the
transmission time for one 64-byte UDP packet plus 64
preamble bits and four checksum bytes is:

() µs61710

1

1

608
1 ≈×× 
















bits

s

Packet

bits
Packet

For client mode operation, the controller spends 230

µs receiving, processing, and sending a packet. The
computer spends about 155 µs doing the same.
Therefore, the maximum theoretical RTF is:

() Hz1972
µs 61 µs 230 µs 61 µs155

1
=

+++

The experimental measurements show that a RTF of

about 2000 Hz was sustained throughout the course of
each trial, validating the theoretical maximum RTF.
The RTF was computed in software by using the
Microsoft Windows high resolution performance
counter to measure the time between each round trip.
The round trip times were averaged over a group of
100 round trips.

However, when two “initialization” packets were
sent at the beginning of one of the trials, the result was
an initial update rate close to 3800 Hz which lasted for
a seemingly random period of time (on the average
around several seconds), then a sudden drop to a
sustained rate of about 2000 Hz. Further tests showed
that this occurrence was repeatable. How an update rate
exceeding the 1972 Hz theoretical maximum could be
sustained for even a short period of time is addressed
by the timing diagrams in Figures 2 and 3. Figure 2
shows a simulation of the client mode operating at the
theoretical maximum update rate of 1972 Hz. The
“high” portion of the pulses occurs when the
corresponding device is active. The “R” and “T” labels
respectively indicate from the embedded controller’s
perspective whether the packet is being received or
transmitted. The same labeling convention is used for
all subsequent timing diagrams in this paper.

One can verify from the recorded data that the
maximum update rate has been reached by observing in
the figure that there is no delay between the time the
controller transmits a packet to the computer and the
time the computer processes that packet and then
replies back to the controller. However, something
different happens when two “initialization” packets are
sent to start the communication as simulated in the
timing diagram of Figure 3.

Figure 2: Timing diagram for client mode operation
running at 1972 Hz.

Figure 3: Timing diagram for client mode operation
running at 3800 Hz.

One can see immediately that it is indeed possible to

achieve an update rate of 3800 Hz, however, there is a
tradeoff. The packet containing the actuator commands
is no longer sent by the computer in response to the
packet loaded with position data by the controller in the
previous haptic update period. Instead, it is from the
packet sent one sample period prior to the previous
update period. Essentially, the update rate is almost
twice as high as the previously computed theoretical
maximum. However, the delay between when the
positions are sent from the controller and the time when
the actuators are updated in response to those positions
is roughly the same. We conjecture that the return of
the communication pattern back to that of Figure 2
occurs when a packet is somehow lost. This is most
likely the cause for the sudden and seemingly random
drop in update rate from around 3800 Hz to around
2000 Hz as observed in the experiment. No dropped
packets were detected while the system was running at
2000 Hz based on the observation that the system did
not stall at this rate. The loss of a second packet would
mean that either the embedded controller will not
receive a packet, in which case it will never send a
reply, or the remote computer will not receive a packet,
in which case it will never send a reply. Both cases
result in stalled operation. A special version of
software was written, which commanded the remote
computer to send an extra packet to the embedded
controller if it detected that the update rate fell from
3800 Hz to 2000 Hz. The result was a system that ran
with a sustained rate of 3800 Hz, which supports the
packet dropping hypothesis.

The main conclusions from this experiment are that
it is theoretically possible to push the update rates of
the system up to ~3800 Hz under certain conditions,
and that the embedded controller is the limiting factor

in determining the maximum update rate because, as
shown in Figure 3, its processor running very close to
full time at that rate.

3.2. Server mode
In this experiment, the embedded controller’s firmware
transmits successive position data packets at a fixed
interval, then processes the actuator command packets
sent in response by the remote computer as they arrive.
Since the embedded controller initiates and sustains
communication with the remote computer in this case,
this mode of operation is called the server mode.

3.2.1. Experiment configuration
The embedded controller was set to server mode and
given a certain fixed update rate at which to transmit
position packets. The remote computer was then
programmed to simply wait until a position packet
arrived, process the data, and then immediately send
back an actuator control packet to the controller.

3.2.2. Results and discussions
Based on the results of the client mode experiments, it
was expected that the update rate in server mode
should easily approach 1972 Hz and should be able to
push well into the 3000 Hz range, assuming similar
processing times for the embedded controller and
computer in both modes. The actual observations,
however, proved otherwise.

Before discussing the results in detail, the slight
change in processing times of the controller and
computer in server mode should be noted. The
embedded controller no longer spends a single chunk
of time receiving, processing, and sending a response
to the remote computer as it did in the client mode
operation. In the server mode, data processing is split
in two, with parts associated with the transmit and
receive functions, as shown in Figure 4. The controller
spends 128 µs sending a packet and 109 µs receiving a
packet. The computer processing time is still 155 µs,
but the response packet is actually sent only 80 µs into
the 155 µs window, instead of at the end of the 155 µs
processing time. These changes have the result of
slightly increasing the theoretical maximum update
rate.

The embedded controller can potentially try to send
packets faster than it or the computer can manage. To
analyze the data traveling over the Ethernet line to
detect such problems, Ethereal [11], a “packet sniffer”
program, was employed to monitor, record, and
timestamp Ethernet packets traveling over the remote
computer-embedded controller network. If the packet
sniffer were to observe any packets out of order or

more transmissions by the embedded controller than
receptions by the remote computer, then there would be
an indication that the update rate was set to too high.

When the update rate exceeded ~2300 Hz, the
Ethereal data capture showed that packets “doubled
up” in the computer. Instead of the computer replying
back to each position packet individually, it actually
received two packets, then replied to them both at once.
This observation leads one to believe that the remote
computer may really be the bottleneck in the system,
since the evidence seems to point to the computer
falling behind while servicing incoming packets. The
same phenomenon occurred during the client mode
operation as well. However, the packet sniffer was not
used during the client-mode experiments as it was
deemed that the system would automatically limit its
update rate to meet the constraints of the slowest
device.

It is helpful to consult the timing diagrams for the
server mode operations, shown in Figure 4 for the
relatively conservative update rate of 1972 Hz. For
comparison, Figure 5 shows the server mode timing
diagram for a haptic update rate of 3800 Hz. Neither
timing diagram shows any immediate visual sign of
conflict such as an unachievable processing workload,
or missed packets.

Figure 4: Timing diagram for server mode
operation running at 1972 Hz.

Figure 5: Timing diagram for server mode
operation running at 3800 Hz.

In order to understand and resolve why the packets

seem to be buffered and serviced two at a time, one
must understand the interaction between the computer’s
network card and its operating system. The network
card lets the operating system know when a packet has
been received or transmitted by issuing an interrupt to
the processor. Upon receiving the interrupt, the
operating system makes an appropriate response to
handle the incoming or outgoing data, which consumes
a small amount of time.

As more and more packets are received and/or
transmitted, those small bits of time add up and soon
the computer starts to become sluggish. The remote
computer in all experiments used a 1 Gbps Ethernet
card. However, if that bandwidth was truly approached,
the interrupts associated with the large number of
packets being transferred would cause the system to
grind to a halt. Consequently, a feature called “interrupt
moderation” is employed with Gigabit Ethernet cards
to limit the allowable rate of interrupts per second. If
the interrupt rate limit is exceeded, the network card
simply buffers the events and presents them all during
the next single interrupt. The maximum interrupt rate
limit on the computer used in these experiments was
originally set to the default of 5000 interrupts per
second. The background interrupts that the card
produces due to random network traffic was found to
hover around 400 interrupts per second using the
Microsoft Windows Performance Monitor. Therefore,
when the haptic update rate reached 2300 Hz, there
were 4600 interrupts per second (one interrupt for each
packet transmission and reception) due to the
experiment. Those interrupts combined with the
background interrupts actually reached the interrupt
rate limit, which caused the incoming packets to be
buffered and appeared as if they were coming in too

fast for the computer to handle. Increasing the interrupt
rate limit to 10,000 interrupts per second enabled the
haptic update rate to increase to around 3800 Hz
without the problems associated with packet buffering.
Therefore, it is clear that the embedded controller again
becomes the bottleneck once the interrupt moderation
rate is increased to a sufficient level.

3.3. Distributed mode
Although the embedded controller was proved to be the
limiting factor in determining the maximum update rate
of this system, it is feasible that in the future a different
embedded system equipped with a much faster
processor and Ethernet interface could actually cause
the computer to be the limiting factor. It is also
conceivable that a very complicated virtual
environment could cause the computer to take much
longer than the 155 µs allotted in both the client-mode
and server-mode experiments thereby causing the
computer to become the limiting factor. A novel way to
alleviate these potential problems is by distributing the
workload of processing the Ethernet packets among
more than one computer using the scalability afforded
to the system by Ethernet communication protocol.
This scalability allows for the straightforward addition
of more remote computers on the network, which all
possess the ability to communicate directly with, and
thus control, the embedded controller. Due to the fact
that in this configuration the packets are distributed for
processing over more than one computer, this mode of
operation is called the distributed mode.

3.3.1. Experiment configuration
Two remote computers and one embedded controller
are linked together over Ethernet through the use of a
common Ethernet switch. The embedded controller is
programmed to send its first position packet to the first
remote computer, then one haptic update period later, a
second position packet is sent to the second remote
computer. This process repeats itself such that all odd
position packets are sent to the first computer and all
even position packets are sent to the second computer
for processing. The embedded controller receives and
processes the actuator command packets as they are
received from the remote computers. In this scheme,
the desired haptic update rate is realized, while only
requiring half of the processing power from each
remote computer as from the single computer used in
the server mode experiments. The actual configuration
of the experiment is illustrated in Figure 6.

Figure 6: Experiment configuration for distributed
mode operation.

3.3.2. Results and discussions
A timing diagram for an implementation of the
distributed mode with a haptic update rate of 3200 Hz
utilizing two computers is shown in Figure 7. Detailed
records of network traffic captured by Ethereal were
examined to verify that the real-world model behaved
as expected from the timing diagram.

Figure 7: Timing diagram for distributed mode
operation running at 3200 Hz.

4. Conclusion

UDP protocol over Ethernet has been shown to be a
viable method of communication between haptic
devices and remote computers. A haptic update rate of
3800 Hz was shown to be an approximate upper bound
for reliable operation in our system. Because this
bound was found to be dictated by the speed and
efficiency of the embedded controller used in our
design, it is by no means a global upper bound for
communication with haptic devices using UDP. Ways
to modify the embedded controller in order to

significantly increase the maximum achievable haptic
update rate include using a faster microcontroller, a
100 Mbps Ethernet controller with full-duplex
capabilities, and a more streamlined Ethernet stack.

Several points need to be considered during the
design and evaluation process. It is important that a
streamlined Ethernet stack be implemented on an
embedded controller with modest processing power as
it will tend be the limiting factor for the overall haptic
update rate. Developing a model and simulations using
expected timing parameters and comparing these with
real-world observations of the system is essential.
Using real-time packet sniffers such as Ethereal is
highly recommended to record and observe what data
are really traveling over the network, because it may
not be what is expected even if other observations
indicate otherwise. Finally, special attention must be
paid to the interrupt moderation feature and its effects
on the true haptic update rate as the use of Gigabit
Ethernet cards becomes more prevalent.

Acknowledgments
This work was supported in part by a National Science
Foundation award under Grant 0098443-IIS, and in
part by NASA under award no. NCC 2-1363. The
mechanical hardware for the 3-DOF ministick was
purchased from UC Berkeley.

References
[1] Force Dimension – Product Information. 29 Aug. 2004.

<http://www.forcedimension.com/products/index.html>
12 Nov. 2004.

[2] Products: Phantom Desktop. Sensable Technologies.
<http://www.sensable.com/products/phantom_ghost/pha
ntom-desktop.asp> 12 Nov. 2004.

[3] Products: Phantom Omni. Sensable Technologies.
<http://www.sensable.com/products/phantom_ghost/pha
ntom-omni.asp> 12 Nov. 2004.

[4] Atmel Corporation. “Atmel ATMEGA128(L).”
Datasheets. Available: <http://atmel.com/dyn/resources/
prod_documents/doc2467.pdf> Nov. 2004.

[5] Eady, Fred. Introducing the Packet Whacker, Part 1:
Hitching a Ride on the PICDEM.NET. Circuit Cellar
Online. Oct. 2001: 3-7. Available: <www.circuitcellar.c
om/echips-pdfs/1001/c1001fe pdf.pdf >

[6] Eady, Fred. Introducing the Packet Whacker, Part 2:
Setting a Course with Code. Circuit Cellar Online. Nov.
2001: 4-16. Available: <www.circuitcellar.com/
chipcenter-pdfs/1101/c1101fe. pdf>

[7] Adelstein, B.D. (1998) Three Degree of Freedom
Parallel Mechanical Linkage, US Patent 5,816,105, Oct.
6, 1998.

[8] Adelstein, B.D. Ho, P., & Kazerooni, H. (1996)
Kinematic design of a three degree of freedom parallel
hand controller mechanism. Proceedings of the 5th
International Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems, DSC-
Vol. 58, American Society of Mechanical Engineers,
New York, pp. 539-546.

[9] Chung, R., Adelstein, B.D. , & Kazerooni, H. (2001)
Electronic hardware for improved haptic interface
performance. In M. McLauglin (ed.), Touch in Virtual
Environments, Prentice-Hall, pp. 73-96.

[10] Steger, R., Lin, K., Adelstein, B.D., & Kazerooni, H.
(2004) Design of a passively balanced spatial linkage
haptic interface. Submitted to ASME J. Mech Design.

[11] Ethereal: A Network Protocol Analyzer. 21 Oct. 2004.
<http://www.ethereal.com/> 12 Nov. 2004.

