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Abstract 
 

This work was motivated by the need for high-speed 
communication between a stand-alone haptic interface 
and an external computer running haptic rendering 
algorithms. This paper describes our recent work with 
User Datagram Protocol (UDP) over Ethernet as a 
communication channel between a remote computer 
and a custom embedded controller built for a finger-
scale 3 DOF force-feedback haptic interface (the 3-
DOF ministick). The results and observations from 
three experiments are contrasted with theoretical 
timing models in order to isolate potential problems 
and verify predicted models. Details of the controller 
hardware that enabled a haptic update rate of 3800 Hz 
are provided. Information that may reduce 
development time for other systems requiring Ethernet 
communication is also presented.  
 
1. Introduction 
 
As haptics technology becomes more mature, there has 
been much work in recent years toward developing 
stand-alone and plug-and-play haptic interfaces.  
Instead of using proprietary ISA or PCI bus cards to 
interface a haptic interface to a PC, the trend is to use 
the parallel or USB 2.0 port for inter-device 
communication.  Recently, we have experimented with 
User Datagram Protocol (UDP) over Ethernet for a 3-
DOF force-feedback hardware platform, and succeeded 
in a haptic update rate of 3800 Hz.  We employ custom 
embedded controller hardware capable of both 
controlling a variety of different haptic interfaces and 
communicating via Ethernet with remote computers. 
Rather than focusing on the embedded controller, this 
paper examines Ethernet communication and more 
specifically, the pitfalls encountered while 

implementing and utilizing the protocol to control 
haptic interfaces.   

Several different types of communication protocols 
are used in COTS (commercial off-the-shelf) haptic 
interfaces being marketed today. For instance, the 
Delta Haptic Device [1] utilizes a proprietary PCI 
interface card, the Phantom Desktop [2] a parallel port, 
the Omega Haptic Device [1] USB 2.0 protocol, while 
the Phantom Omni [3] uses IEEE-1394 FireWire®. 
Another widely available computer communication 
protocol, Ethernet, can potentially be included, even 
though it is not widely used for controlling haptic 
interfaces. Each of these communication protocols has 
its advantages and disadvantages. Among the various 
metrics for comparing and contrasting between 
protocols are bandwidth, design complexity, protocol 
efficiency, and scalability. 

With the possible exception of the parallel port, 
each protocol offers enough bandwidth to support 
communication with haptic interfaces running at update 
rates requiring the transfer of several thousand data 
frames per second. The design complexity eliminates a 
PCI interface card since developing a custom circuit 
board to interface with a computer’s bus is rather 
complicated and time consuming. This leaves 
FireWire®, USB, and Ethernet as viable candidates. By 
far the most scalable is Ethernet communication 
because many haptic devices and computers can be 
linked together on a single Ethernet network. Many 
devices such as Ethernet switches and routers are 
commercially available to link the embedded controller 
with one or more remote computers locally or globally.   

Of the many available Ethernet protocols, the most 
commonly used are Address Resolution Protocol 
(ARP), Internet Control Message Protocol (ICMP), 
Transmission Control Protocol (TCP), and UDP. Of 
these four, UDP and TCP are best suited to transfer 
blocks of data between the embedded controller and a 
remote computer due to the protocol’s structures. TCP 



guarantees the delivery of each packet at the expense of 
requiring that an acknowledgement packet be received 
and processed within a certain amount of time after the 
initial transmission. While UDP does not require this 
extra acknowledgment packet, the embedded controller 
would never know if a packet were lost or dropped for 
any reason before reaching the remote computer.  

Packet dropping associated with UDP, however, 
does not present a major problem for the following 
reasons. First, it is assumed that the controller will be 
interfaced with a remote computer through either a 
direct crossover cable connection or a switched 
connection on a local area network. In this case, it is 
easier to identify where and why packets might be 
dropped. The computer or the embedded controller 
could potentially drop packets if the communication 
rate becomes too high for either to handle. If the 
packets were traveling over a larger network such as 
the Internet, routers and nondeterministic network 
traffic increases the possibility that a packet might be 
dropped or lost all together.  Second, we can control 
somewhat deterministically the communication 
bandwidth required between the controller and 
computer by adjusting the haptic update rate. The 
haptic update rate is dictated by how often the haptic 
device transmits position data to and receives actuator 
commands from a remote computer. Thus, the 
bandwidth required over an Ethernet communication 
channel is directly proportional to the haptic update 
rate. Assuming that the bandwidth consumed by 
average traffic on a local network connection is minor 
compared to the overall bandwidth required to sustain 
the necessary haptic update rates, the update rate can 
be tuned such that it is not overwhelming the embedded 
controller or computer. Since the computer’s processor 
is capable of performing operations at least two orders 
of magnitude faster than the particular microcontroller 
used in the current embedded controller design, it is 
assumed for the purposes of this design that the 
embedded controller will determine the limit on the 
maximum communication bandwidth. Third, even in 
the rare event that a few packets out of the many 
thousands streaming over the network are lost, it may 
not cause any noticeable change in the controller 
behavior on the average. For instance, if a packet is 
dropped, the controller will hold the last command 
until the next packet arrives. As long as the force 
command does not change significantly until the next 
packet arrives, the user should not notice any effect. 
Another advantage of using UDP is its eight byte fixed-
length header as opposed to TCP’s variable header 
length (>20 Bytes). In short, sending smaller packets 
saves time. For all of these reasons, UDP was chosen 

as the protocol used to transfer information between the 
embedded controller and remote computers. 

The remainder of this paper is organized as follows.  
We discuss the embedded controller and the 3-DOF 
force-feedback haptic device in Section 2.  Three 
experiments involving different modes of utilizing 
UDP are reported in Section 3.  The last section offers 
recommendations for using UDP communication 
protocols with stand-alone haptic interfaces. 

 
2. Hardware platform 
 
2.1. Embedded controller specifications 
The embedded controller is based on an 8-bit 
ATMEGA128 [4] microcontroller running at 16 MHz. 
It is wired to a Packet Whacker [5] 10 Mbps half-
duplex Ethernet controller card through the 
microcontroller’s common communication bus. An 
extremely streamlined UDP/IP Ethernet stack is 
implemented in the firmware stored onboard the 
microcontroller. The Ethernet stack is simply the 
portion of the firmware that is in charge of taking a 
packet from the Ethernet controller, then decoding, 
managing, and processing it based on the packet’s 
individual protocol. Our stack is loosely based on Fred 
Eady’s full TCP/IP stack [6], with modifications made 
for the use of static IP headers, but without checksum 
calculations or TCP protocol management. 

It is assumed for our design that the controller will 
simply take raw position data from sensors, send them 
to the remote computer, and then receive data in return 
that contain the instantaneous commands to the 
actuators. The remote computer will be in charge of the 
calculations for updating the virtual environment and 
for computing actuator commands based on the 
predefined kinematics of the haptic interface. 
Consequently, two 64-Byte Ethernet UDP 
communications take place (one transmission and one 
reception) during each haptic update period. With 
haptic update rates potentially exceeding 1000 Hz, it is 
evident why streamlining the stack is so important. 
Specifically, it allows for higher haptic update rates, 
higher immunity to livelock conditions even in the 
presence of potential network traffic, and it leaves 
sufficient time for computationally intensive 
calculations taking place on the remote computer.  
 
2.2. The 3-DOF ministick 
The haptic interface housing the embedded controller is 
a point-force interaction-type device (i.e., a joystick) 
that couples three rotationally actuated degrees of 
freedom to 3-DOF endpoint force and motion.  The 
joystick’s design is based on a unique fully-parallel, 10 



rigid link, 12 revolute joint spatial architecture [7] that 
affords the structural stiffness typically associated with 
parallel mechanisms, but with the range of motion 
approaching that of serial linkages.  Importantly, from 
a computational standpoint, both the forward and 
inverse kinematics for this device can be expressed and 
solved in closed form [8].   

The device’s parallel linkage is composed of three 
five-bar loops.  Its two spherical loops include the three 
brushless motor actuators and the base plate onto which 
the motors are mounted.  Its single planar loop is 
effectively an extendable parallelogram arm that pivots 
about the shared center of the two spherical loops.  In 
the current finger-scale implementations [9-10], the 
parallelogram’s upper and lower arm links are each 
50.8 mm (2 in) in length.  The device’s usable, 
interference-free workspace is enclosed within the 
hemispherical volume bounded by singularities in the 
plane of the actuator axes and the radius of maximum 
arm reach [8] and occupies a region roughly 9 cm by 9 
cm by 6 cm (see Figure 1).  

In addition to reducing inertia and mass by 
mounting its three actuators on its base plate, the 
mechanism is passively balanced through individual 
link shape design and alloy selection [10].  The passive 
mass balance allows actuator effort to be allocated 
completely to endpoint simulation force production and 
not the support of individual link weight against 
gravity. 
 

 
 
Figure 1: The 3-DOF ministick. 
 
3. Experiments with UDP 
 
3.1. Client mode 
In this experiment, the embedded controller’s firmware 
is modified so that it waits to receive a packet of 
actuator commands from the remote computer, 

processes the commands, and then sends a packet of 
position readings back to the computer. Since the 
embedded controller in this case relies on the computer 
to initiate and sustain communication, this mode of 
operation is called the client mode. For this and all 
subsequent experiments, the remote computer is 
equipped with a 2.8 GHz Pentium processor and 3Com 
3C940 Gigabit Ethernet card and running the Windows 
XP Professional SP1 operating system. 

 
3.1.1. Experiment configuration 
With the embedded controller in client mode, the 
remote computer was programmed to send off one 
“initialization” packet to start off the communication, 
then simply wait until receiving a reply from the 
controller to transmit another packet. In this scenario, 
one would expect to observe the maximum round trip 
frequency (the highest haptic update rate) obtainable by 
the system because both the controller and computer 
simply wait for the other to respond, then immediately 
reply back, thereby wasting no time. 

 
3.1.2. Results and discussions 
It is straightforward to compute the theoretical 
maximum round trip frequency (RTF). One merely 
needs to take the inverse of all the time spent by the 
computer and controller processing, sending, and 
receiving a packet, and the travel time for each packet 
from source to destination. At 10 Mbits/s, the 
transmission time for one 64-byte UDP packet plus 64 
preamble bits and four checksum bytes is: 
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For client mode operation, the controller spends 230 

µs receiving, processing, and sending a packet. The 
computer spends about 155 µs doing the same. 
Therefore, the maximum theoretical RTF is: 
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The experimental measurements show that a RTF of 

about 2000 Hz was sustained throughout the course of 
each trial, validating the theoretical maximum RTF. 
The RTF was computed in software by using the 
Microsoft Windows high resolution performance 
counter to measure the time between each round trip. 
The round trip times were averaged over a group of 
100 round trips. 



However, when two “initialization” packets were 
sent at the beginning of one of the trials, the result was 
an initial update rate close to 3800 Hz which lasted for 
a seemingly random period of time (on the average 
around several seconds), then a sudden drop to a 
sustained rate of about 2000 Hz. Further tests showed 
that this occurrence was repeatable. How an update rate 
exceeding the 1972 Hz theoretical maximum could be 
sustained for even a short period of time is addressed 
by the timing diagrams in Figures 2 and 3. Figure 2 
shows a simulation of the client mode operating at the 
theoretical maximum update rate of 1972 Hz. The 
“high” portion of the pulses occurs when the 
corresponding device is active. The “R” and “T” labels 
respectively indicate from the embedded controller’s 
perspective whether the packet is being received or 
transmitted. The same labeling convention is used for 
all subsequent timing diagrams in this paper. 

One can verify from the recorded data that the 
maximum update rate has been reached by observing in 
the figure that there is no delay between the time the 
controller transmits a packet to the computer and the 
time the computer processes that packet and then 
replies back to the controller. However, something 
different happens when two “initialization” packets are 
sent to start the communication as simulated in the 
timing diagram of Figure 3. 

 

 
 
Figure 2: Timing diagram for client mode operation 
running at 1972 Hz. 

 

 
Figure 3: Timing diagram for client mode operation 
running at 3800 Hz. 

 
One can see immediately that it is indeed possible to 

achieve an update rate of 3800 Hz, however, there is a 
tradeoff. The packet containing the actuator commands 
is no longer sent by the computer in response to the 
packet loaded with position data by the controller in the 
previous haptic update period. Instead, it is from the 
packet sent one sample period prior to the previous 
update period. Essentially, the update rate is almost 
twice as high as the previously computed theoretical 
maximum. However, the delay between when the 
positions are sent from the controller and the time when 
the actuators are updated in response to those positions 
is roughly the same. We conjecture that the return of 
the communication pattern back to that of Figure 2 
occurs when a packet is somehow lost. This is most 
likely the cause for the sudden and seemingly random 
drop in update rate from around 3800 Hz to around 
2000 Hz as observed in the experiment. No dropped 
packets were detected while the system was running at 
2000 Hz based on the observation that the system did 
not stall at this rate. The loss of a second packet would 
mean that either the embedded controller will not 
receive a packet, in which case it will never send a 
reply, or the remote computer will not receive a packet, 
in which case it will never send a reply. Both cases 
result in stalled operation. A special version of 
software was written, which commanded the remote 
computer to send an extra packet to the embedded 
controller if it detected that the update rate fell from 
3800 Hz to 2000 Hz. The result was a system that ran 
with a sustained rate of 3800 Hz, which supports the 
packet dropping hypothesis. 

The main conclusions from this experiment are that 
it is theoretically possible to push the update rates of 
the system up to ~3800 Hz under certain conditions, 
and that the embedded controller is the limiting factor 



in determining the maximum update rate because, as 
shown in Figure 3, its processor running very close to 
full time at that rate. 

 
3.2. Server mode 
In this experiment, the embedded controller’s firmware 
transmits successive position data packets at a fixed 
interval, then processes the actuator command packets 
sent in response by the remote computer as they arrive. 
Since the embedded controller initiates and sustains 
communication with the remote computer in this case, 
this mode of operation is called the server mode. 

 
3.2.1. Experiment configuration 
The embedded controller was set to server mode and 
given a certain fixed update rate at which to transmit 
position packets. The remote computer was then 
programmed to simply wait until a position packet 
arrived, process the data, and then immediately send 
back an actuator control packet to the controller.  

 
3.2.2. Results and discussions 
Based on the results of the client mode experiments, it 
was expected that the update rate in server mode 
should easily approach 1972 Hz and should be able to 
push well into the 3000 Hz range, assuming similar 
processing times for the embedded controller and 
computer in both modes. The actual observations, 
however, proved otherwise. 

Before discussing the results in detail, the slight 
change in processing times of the controller and 
computer in server mode should be noted. The 
embedded controller no longer spends a single chunk 
of time receiving, processing, and sending a response 
to the remote computer as it did in the client mode 
operation. In the server mode, data processing is split 
in two, with parts associated with the transmit and 
receive functions, as shown in Figure 4. The controller 
spends 128 µs sending a packet and 109 µs receiving a 
packet. The computer processing time is still 155 µs, 
but the response packet is actually sent only 80 µs into 
the 155 µs window, instead of at the end of the 155 µs 
processing time. These changes have the result of 
slightly increasing the theoretical maximum update 
rate. 

The embedded controller can potentially try to send 
packets faster than it or the computer can manage. To 
analyze the data traveling over the Ethernet line to 
detect such problems, Ethereal [11], a “packet sniffer” 
program, was employed to monitor, record, and 
timestamp Ethernet packets traveling over the remote 
computer-embedded controller network. If  the packet 
sniffer were to observe any packets out of order or 

more transmissions by the embedded controller than 
receptions by the remote computer, then there would be 
an indication that the update rate was set to too high. 

When the update rate exceeded ~2300 Hz, the 
Ethereal data capture showed that packets “doubled 
up” in the computer. Instead of the computer replying 
back to each position packet individually, it actually 
received two packets, then replied to them both at once. 
This observation leads one to believe that the remote 
computer may really be the bottleneck in the system, 
since the evidence seems to point to the computer 
falling behind while servicing incoming packets. The 
same phenomenon occurred during the client mode 
operation as well. However, the packet sniffer was not 
used during the client-mode experiments as it was 
deemed that the system would automatically limit its 
update rate to meet the constraints of the slowest 
device.  

It is helpful to consult the timing diagrams for the 
server mode operations, shown in Figure 4 for the 
relatively conservative update rate of 1972 Hz. For 
comparison, Figure 5 shows the server mode timing 
diagram for a haptic update rate of 3800 Hz. Neither 
timing diagram shows any immediate visual sign of 
conflict such as an unachievable processing workload, 
or missed packets. 

 

 
Figure 4: Timing diagram for server mode 
operation running at 1972 Hz. 
 



 
Figure 5: Timing diagram for server mode 
operation running at 3800 Hz. 

 
In order to understand and resolve why the packets 

seem to be buffered and serviced two at a time, one 
must understand the interaction between the computer’s 
network card and its operating system. The network 
card lets the operating system know when a packet has 
been received or transmitted by issuing an interrupt to 
the processor. Upon receiving the interrupt, the 
operating system makes an appropriate response to 
handle the incoming or outgoing data, which consumes 
a small amount of time.  

As more and more packets are received and/or 
transmitted, those small bits of time add up and soon 
the computer starts to become sluggish. The remote 
computer in all experiments used a 1 Gbps Ethernet 
card. However, if that bandwidth was truly approached, 
the interrupts associated with the large number of 
packets being transferred would cause the system to 
grind to a halt. Consequently, a feature called “interrupt 
moderation” is employed with Gigabit Ethernet cards 
to limit the allowable rate of interrupts per second. If 
the interrupt rate limit is exceeded, the network card 
simply buffers the events and presents them all during 
the next single interrupt. The maximum interrupt rate 
limit on the computer used in these experiments was 
originally set to the default of 5000 interrupts per 
second. The background interrupts that the card 
produces due to random network traffic was found to 
hover around 400 interrupts per second using the 
Microsoft Windows Performance Monitor. Therefore, 
when the haptic update rate reached 2300 Hz, there 
were 4600 interrupts per second (one interrupt for each 
packet transmission and reception) due to the 
experiment. Those interrupts combined with the 
background interrupts actually reached the interrupt 
rate limit, which caused the incoming packets to be 
buffered and appeared as if they were coming in too 

fast for the computer to handle. Increasing the interrupt 
rate limit to 10,000 interrupts per second enabled the 
haptic update rate to increase to around 3800 Hz 
without the problems associated with packet buffering. 
Therefore, it is clear that the embedded controller again 
becomes the bottleneck once the interrupt moderation 
rate is increased to a sufficient level. 
 
3.3. Distributed mode 
Although the embedded controller was proved to be the 
limiting factor in determining the maximum update rate 
of this system, it is feasible that in the future a different 
embedded system equipped with a much faster 
processor and Ethernet interface could actually cause 
the computer to be the limiting factor. It is also 
conceivable that a very complicated virtual 
environment could cause the computer to take much 
longer than the 155 µs allotted in both the client-mode 
and server-mode experiments thereby causing the 
computer to become the limiting factor. A novel way to 
alleviate these potential problems is by distributing the 
workload of processing the Ethernet packets among 
more than one computer using the scalability afforded 
to the system by Ethernet communication protocol. 
This scalability allows for the straightforward addition 
of more remote computers on the network, which all 
possess the ability to communicate directly with, and 
thus control, the embedded controller. Due to the fact 
that in this configuration the packets are distributed for 
processing over more than one computer, this mode of 
operation is called the distributed mode. 
 
3.3.1. Experiment configuration 
Two remote computers and one embedded controller 
are linked together over Ethernet through the use of a 
common Ethernet switch. The embedded controller is 
programmed to send its first position packet to the first 
remote computer, then one haptic update period later, a 
second position packet is sent to the second remote 
computer. This process repeats itself such that all odd 
position packets are sent to the first computer and all 
even position packets are sent to the second computer 
for processing. The embedded controller receives and 
processes the actuator command packets as they are 
received from the remote computers. In this scheme, 
the desired haptic update rate is realized, while only 
requiring half of the processing power from each 
remote computer as from the single computer used in 
the server mode experiments. The actual configuration 
of the experiment is illustrated in Figure 6. 
 



 
 
Figure 6: Experiment configuration for distributed 
mode operation. 
 
3.3.2. Results and discussions 
A timing diagram for an implementation of the 
distributed mode with a haptic update rate of 3200 Hz 
utilizing two computers is shown in Figure 7. Detailed 
records of network traffic captured by Ethereal were 
examined to verify that the real-world model behaved 
as expected from the timing diagram.  
 

 
Figure 7: Timing diagram for distributed mode 
operation running at 3200 Hz. 

 
4. Conclusion 
 
UDP protocol over Ethernet has been shown to be a 
viable method of communication between haptic 
devices and remote computers. A haptic update rate of 
3800 Hz was shown to be an approximate upper bound 
for reliable operation in our system. Because this 
bound was found to be dictated by the speed and 
efficiency of the embedded controller used in our 
design, it is by no means a global upper bound for 
communication with haptic devices using UDP. Ways 
to modify the embedded controller in order to 

significantly increase the maximum achievable haptic 
update rate include using a faster microcontroller, a 
100 Mbps Ethernet controller with full-duplex 
capabilities, and a more streamlined Ethernet stack. 

Several points need to be considered during the 
design and evaluation process. It is important that a 
streamlined Ethernet stack be implemented on an 
embedded controller with modest processing power as 
it will tend be the limiting factor for the overall haptic 
update rate. Developing a model and simulations using 
expected timing parameters and comparing these with 
real-world observations of the system is essential. 
Using real-time packet sniffers such as Ethereal is 
highly recommended to record and observe what data 
are really traveling over the network, because it may 
not be what is expected even if other observations 
indicate otherwise. Finally, special attention must be 
paid to the interrupt moderation feature and its effects 
on the true haptic update rate as the use of Gigabit 
Ethernet cards becomes more prevalent. 
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