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ABSTRACT

This paper is an elaboration of the DECA algorithm [1] to
blindly unmix hyperspectral data. The underlying mixing
model is linear, meaning that each pixel is a linear mixture
of the endmembers signatures weighted by the correspondent
abundance fractions. The proposed method, as DECA, is tai-
lored to highly mixed mixtures in which the geometric based
approaches fail to identify the simplex of minimum volume
enclosing the observed spectral vectors. We resort then to
a statitistical framework, where the abundance fractions are
modeled as mixtures of Dirichlet densities, thus enforcing the
constraints on abundance fractions imposed by the acquisition
process, namely non-negativity and constant sum.

With respect to DECA, we introduce two improvements:
1) the number of Dirichlet modes are inferred based on the
minimum description length (MDL) principle; 2) The gener-
alized expectation maximization (GEM) algorithm we adopt
to infer the model parameters is improved by using alternating
minimization and augmented Lagrangian methods to com-
pute the mixing matrix. The effectiveness of the proposed
algorithm is illustrated with simulated and read data.

Index Terms— Blind Hyperspectral Unmixing, Mini-
mum Description Length (MDL), Mixtures of Dirichlet Den-
sities, Augmented Lagrangian Methods, Dependent Sources.

1. INTRODUCTION

Hyperspectral imaging sensors collect two dimensional spa-
tial images from the Earth’s surface over many contigu-
ous bands of high spectral resolution covering the visible,
near-infrared, and shortwave infrared (wavelengths between
0.3 pm and 2.5 pm), in hundreds of narrow (on the order of
10 nm) contiguous spectral bands. These radiances, collected
in spectral vectors, are mixtures of spectra from the sub-
stances (also called endmembers) present in the respective
pixel coverage. The linear mixing assumption is widely used
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to describe the observed hyperspectral vectors. According
to this assumption, a mixed pixel is a linear combination of
endmember signatures (endmember spectra) weighted by the
correspondent abundance fractions. Under this model, the
observations from a scene are in a simplex whose vertices
correspond to the endmembers [2].

The geometric perspective just referred to has been ex-
ploited by many algorithms which we classify into two
classes:

1. Pure pixel- The data set contains at least one pure pixel
of each endmember. The vertex component analysis
(VCA), [3], the automated morphological endmember
extraction (AMEE) [4], the pixel purity index (PP]), [5],
and the N-FINDR [6] are representative algorithms of
this class.

2. Non-pure pixel- The data set does not contain pure
pixels for some (or for none) endmembers. The iter-
ated constrained endmembers (ICE), [7], the minimum
volume simplex (MVSA) [8], and the simplex identifi-
cation by variable splitting and augmented Lagrangian
tools (SISAL) are representative algorithms of this
class.

Non-pure pixel based algorithms are conceived for non-
pure pixel scenarios. For a correct identification of the mixing
matrix, there must be at least p — 1 (p stands for the number
of endmembers) spectral vectors on each facet of the simplex.
However, in highly mixed data sets, this assumption is not
realistic, what has fostered research in the statistical front [1,
9].

Hyperspectral unmixing is a blind source separation prob-
lem, where abundance fractions can be interpreted as sources.
Independent component analysis (ICA) comes naturally to
mind and have, in fact, been used in hyperspectral applica-
tions. However, as shown in [10], the applicability of canoni-
cal ICA to hyperspectral data is compromised by the statisti-
cal dependence existing among abundances.

The dependent component analysis (DECA) algorithm
[1] was introduced to unmix highly mixed hyperspectral data
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sets, which places the unmixing problem beyond the reach
of the geometrical based methods. In DECA, the abundance
fractions are modeled as mixtures of Dirichlet densities, thus
automatically enforcing source nonnegativity and constant
sum constraints. The resulting algorithm implements a gener-
alized expectation-maximization (GEM) iterative scheme to,
simultaneously, estimate the endmember signatures (mixing
matrix), density parameters, and the abundance fractions.

In this paper, we introduce two improvements in DECA:
1) the number of Dirichlet modes are inferred based on the
minimum description length (MDL) principle as proposed in
[11]; 2) The generalized expectation maximization (GEM) al-
gorithm we adopt to infer the model parameters is improved
by using alternating minimization and augmented Lagrangian
methods to compute the mixing matrix, similarly to those
used in [12].

This paper is organized as follows. Section 2 describes
the fundamentals of the proposed method. Section 3 presents
the method to infer the number of components modes of the
Dirichlet mixtures. Sections 4 and 5 illustrate aspects of the
performance of the proposed approach with experimental data
based on U.S.G.S. laboratory spectra and with real hyperspec-
tral data collected by the AVIRIS sensor, respectively. Section
6 concludes with some remarks.

2. STATISTICAL MODELLING

Assuming the linear observation model, each pixel y of an
hyperspectral image can be represented as a spectral vector
in R” (L is the number of bands) and is given by y = Ms,
where M = [my,my,...,m,] is an L X p mixing ma-
trix (m; denotes the jth endmember signature), p is the
number of endmembers present in the covered area, and
s = [s1,82,..., sp]T is the abundance vector containing the
fractions of each endmember (notation (-)7 stands for vector
transposed).

To be physically meaningful, abundance fractions are sub-
ject to nonnegativity and constant sum constraints, i.e., {s €
RP :s; >0, Z?:l sj = 1}. Note that only p—1 components
of s are free, i.e., s, = 1 — f 1
vectors are in a (p — 1)-dimensional simplex in R”.

Usually, the number of endmembers is much lower than
the number of bands (p < L) and, thus, its is advantageous, in
terms of SNR, memory usage, and computational complexity,
to represent the spectral vectors in a signal subspace basis
[13].

Let E, be a matrix, with orthonormal columns, spanning
the signal subspace. The coordinates of the spectral vector y
with respect to E,, are

s;. Therefore the spectral

X = Egy
As, 1

where A = EZ:,FM is a p X p square mixing matrix and x =

[#1,...,2,]T isap x 1 vector. Let’s assume that W = A~!
exists. Then, we have s = Wx.

We assume that the abundance fractions follow a k-
component Dirichlet finite mixture given by

p
Zeq H e

j= 1

D(s|64)

where the complete set of parameters 6 needed to specify the
mixture contains the mixing probabilities €1,...,€; and the
g-component Dirichlet parameters 8, = {01, ...,0,,}, for
g=1,... .k ie, 0 = {e,... ek,91,.. ,0x}. Since the
observed data are the spectral vectors x, we must base our
inferences on the density px(x), which, in terms of pg is
given by

px (%)

Consider that each vector s represents one particular out-
come of a p-dimensional random variable S =[Sy, ..., S,]T.
Given a set of N i.i.d. samples S = {s(l), ce s(N)}, then,
we may write the log-likelihood of the set of parameters 6 as

= ps(s = Wx]0) |det (W)].

L£(6) = logps(S|0)

N

= 3 foens (570)
i=1

= ZN: [logiqu (s(i)|0q>] . 3)
i=1 g=1

The maximum likelihood estimate 8 ML= argmaxg £(0)
can not be found analytically [11]. The usual choice for ob-
taining the ML estimates of the parameters is the EM frame-
work [14], which relies on the so-called incomplete data and
missing data. In our setup, S denotes the incomplete data
and Z = {zW,...,z™M}, a set of N k-dimensional vec-
tors representing which component has produced each sam-

ple, the missing data: each vector z() = [zgi), e z,(f)] is

a binary k- )

ry k-vector, where only one component z;’ is set to
one indicating which mode produced the ¢-sample. Defining
X = {xW, ..., x(M}, the complete log-likelihood is then

Lo(O, W) = logpx.z(X,Z]0)] + N log |det (W)]

> 3w 0 (1)

i=1 Lg=1

+ Nlog|det (W)]. 4)

The EM algorithm iterates between the E-step and the M-step:

e E-step: Computes the conditional expectation of the
complete log-likelihood, given the samples and the
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). The result is the so-called Q-

Q6. w;8" W)

S lnin)] o

— N log |det (W)

i=1Lg=1
(6)
where
o s
it = -0
kLD <s<z‘,t> el(t))
and s®) = Wx(® and s("Y) = W x(0)

o M-step: Updates the parameter estimates according to

(5(t+1), W(t+1)) =arg max {Q <0, W; b\(t), \/R\f(t))} .

®)

Optimization (8) is still a hard problem. Instead of solving it
exactly, we implement alternate minimization with respect to
6 and to W. In the same vein, instead of computing 0(t+1),
we maximize () with respect to 8, for j =1, ..., p, resulting
in the following learning rules for the mixing probabilities
and for the mixture of Dirichlet source parameters:

N
1 .
6((]t+1) — N E ﬂél,t)’ (9)
=1

Zz . {ﬂ((ll it) 1og4t)}

S (807)
(10

forg=1...,Kandj = 1...,p, where ¥(-) and U1(-)
denote the psi function and its inverse, respectively.

The resulting algorithm is of the generalized expectation-
maximization class (GEM) [14]: the learning rule (9) max-

p
1 —
iy v o (3200) +

=1

imizes @-function with respect to eff), whereas expres-
sion (10) assures that the Q-function does not decrease.
Noting that S = WX = [s(1), ... s(M)], the optimiza-
tion with respect to W amounts to compute
WD = arg max ¢(WA) + log |det (W)
sub. to: WX >0, 1LIWxX =17, (11)

where the constraints WX > 0 and 17WX = 1% enforces
non-negativity and sum-to-one on each fractional abundance
vector (1, stands for p-dimensional column vector of ones)

and N
=3 " log(si”)

i=1 =1

with

('L) zt 9[71

||M»

Problem (11) is very hard to solve owing to the term
log |det (W)]. The recently introduced SISAL algorithm [12]
is a quite effective tool to solve a problem similar to (11).
Therefore, we apply here the same same concepts: variable
splitting and augmented Lagrangian methods. See [12] for
details. The resulting algorithm is given in Algorithm 3 of
[12], with the function ||z||, replaced with ¢(z). The opti-
mization problem in line 5 of Algorithm 3 is decoupled and
thus very easy to solve. For each component of z, it amounts
to find the larger root of a second order polynomial.

3. NUMBER OF DIRICHLET MODES

The estimation of the number of modes £ is a model order se-
lection problem. It is well known that the ML criterium alone
cannot be used to do such an inference because of the nested
nature of model parameters for increasing model orders.

To estimate the number of mixture components the we
adopt the model selection criterium

k = arg mkin {—L(6(k))+P(k)}, (12)

where £(6(k)) is given by expression (3), for k¥ modes, and
P(k) is a penalizing term that increases with & [11]. Herein,
we adopt the the minimum description length (MDL) [15, 16]
which amount to compute

~

0 = arg mein {— log ps (S]0) — logp(0)

+ 1o (Z6)) + 5(1 - log(12)) .13

962
matrix, and ¢ = k(p + 1) the dimension of 6.

For mixtures, the Fisher information matrix, cannot be
obtained analytically. Herein, we follow [11], where Z(8)
is replaced by the complete-data information matrix Z¢x(8).
Assuming a priori independence of the parameters and adopt-
ing a noninformative Jeffreys’ prior for each 6, the objective
function in (13) is given by

where Z(0) = E [ & logp(8|9)} is the Fisher information

kE(p+1)
2

+ klog( ) Zl . (14)

The model order and the respective parameters are given by

L(0(F), k) —logps(510) +

/é = arg mein {L(O(k), k) ok = kmin, -, k'max} . (15)
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Table 1: Parameters of the Dirichlet densities, their statistics,
and its estimates for each region of the scene.

Region A B
Number of pixels 2000 1000
Parameters values 6,9, 25 7,8, 23

Mean (x10~1) 1.50, 2.25, 5.25 | 1.84, 2.10, 6.05
Variance (x1073) 3.10, 4.30, 5.70 | 3.90, 4.30, 6.10
Parameters estimates 5.5, 9.1, 25.9 6.5, 6.9, 23.0

Since, we do not know the fractions S, we implement the
GEM algorithm described in the previous section where the
objective function is as in (4) plus the MDL terms and the
optimization with respect 0 is replaced with the optimization
with respect to 8 (k) and k.

The resulting optimization algorithm is an iterative scheme
that requires to compute the objective function and to estimate
the parameters 6 for each value of k.

4. EVALUATION WITH SIMULATED DATA

In this section the proposed method is tested on simulated
scenes. The data is generated according to expression (1),
where three signatures were selected from the USGS digi-
tal spectral library. The scene is composed by 3 x 10% pix-
els partitioned into two regions; The size of region A and B
is 66% and 33%, respectively. The abundance fractions fol-
low a Dirichlet distribution with 84 = [6, 9, 25] and O =
[7, 8, 23] for regions A and B of the scene, respectively. Ta-
ble 1 presents these parameters and their statistics, e.g., mean
and variance, for each region. Notice that for this setting, the
spectral vectors are highly mixed. Fig. 1 presents a scatter-
plot of the simulated scene, where dots represent the observed
spectral vectors and stars represent the true endmembers. The
two clouds corresponds to the two regions in the scene.

In this experiment the number of modes varies from

kmaz = D to ki, = 1, the Dirichlet parameters are ran-
domly initialized, and the mixing probabilities are set to
€q = 1/k,for g =1,..., k. This setting reflects a situation in

which no knowledge of the size and the number of regions in
the scene exists.

For this data set the minimum of the cost function (14) is
reached when the estimated number of modes is k£ = 2 which
is the number of regions on the scene. The estimated param-
eters at this iteration are presented on the last line of Table 1.
Note that the estimated values are close to the true parame-
ter values. The Dirichlet mixing probabilities (¢,) values are
0.664 and 0.336, which correspond to the area in the scene
occupied by region A and B respectively.

Fig. 1 presents the true endmembers (stars), the endmem-
bers estimation by the proposed method (circles), and for
comparison purposes the VCA endmembers estimation (tri-
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Fig. 1: Scatterplot of the three endmembers mixture: true
endmembers (stars); MVSA estimate (squares); VCA esti-
mate (triangles); Proposed method (circles).

angles) and the MVSA estimation (squares). Since the end-
members are highly mixed the proposed method gives better
estimates than the others methods. Note that the endmember
estimates are closer to the true endmembers, whereas, esti-
mates provided by the MVSA algorithm fits the minimum
volume simplex to the data set and VCA finds the most pure
pixels in data.

5. EVALUATION WITH REAL DATA

In this section, the proposed method is applied to real hyper-
spectral data collected by the AVIRIS sensor. A subset of the
Cuprite data set ! is considered. This site has been extensively
used for remote sensing experiments over the past years and
its geology was previously mapped in detail [17].

The data set is composed of 187 spectral bands with 10nm
bandwidth acquired in the 0.4 — 2.5 um region (noisy and
water absorption bands were removed). The subset contains
50 x 90 pixels with a ground resolution of 17 meters.

Fig. 2 presents a scatterplot of the Cuprite data set, where
dots represent the pixels and circles represent the endmem-
bers estimated by the proposed method. For comparison pur-
poses it is also plotted the Montmorillonite (square), Desert
Varnish (Diamond), and Alunite (triangle) signature projec-
tions, extracted from the USGS library.

Fig. 3 presents the endmembers signatures and their esti-
mates and Fig. 4 presents the estimated abundance maps. A
visual comparison between these maps and the ground truth
presented in [17] shows that first, second, and third extracted
endmembers are predominantly Montmorillonite, Desert Var-
nish, and Alunite, respectively (see Fig. 4 (a)-(c)).

! Available at http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Fig. 2: Scatterplot of Cuprite data set (dots); estimated
endmembers (circles); USGS signatures: Montmorillonite
(square); Desert Varnish (Diamond), and Alunite (triangle).
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Fig. 3: Endmembers signatures (solid line) and their estimates
(dashed line): (a) Montmorillonite; (b) Desert Varnish ; (c¢)

Alunite.
()
w
ey e
' ‘Tr
- f 2
v .i_'

(b)

Fig. 4: Abundance maps estimates: (a) Montmorillonite; (b)
Desert Varnish ; (c) Alunite.

6. CONCLUSIONS

In this paper, an elaboration of DECA [1] algorithm is pro-
posed to blindly unmix highly mixed hyperspectral data.
Modeling the abundance fractions statistical dependence is
a central issue in this framework. Abundance fractions are
modeled as mixtures of Dirichlet densities, enforcing the
so-called nonnegative and constant sum constraint.

The method herein presented introduces two improve-
ments on DECA: 1) the number of Dirichlet modes are in-
ferred based on the minimum description length (MDL) prin-
ciple; 2) The generalized expectation maximization (GEM)
algorithm we adopt to infer the model parameters is improved
by using alternating minimization and augmented Lagrangian
methods to compute the mixing matrix.

The experimental results achieved shows the potential of
the proposed method to unmix hyperspectral data when the
pure pixel assumption is not fulfilled.
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