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ABSTRACT 

 
Two new algorithms are derived for remotely detecting a 
material characterized only by its laboratory spectrum. The 
methods are motivated by the practical difficulties in pre-
dicting an accurate field radiance from a reflectance. The 
first algorithm associates an affine subspace with the 
material, instead of a radiance point. The second algorithm 
is designed to prevent false alarms from dark pixels, to 
which the first algorithm may be sensitive. Both algorithms 
are ideally suited for use in conjunction with a simple 
method of vicarious calibration, which is also described.  
 
Index Terms—spectrum, signature, matched filter, affine 

  
 

1. BACKGROUND 
 
The matched filter (MF) is a popular tool in hyperspectral 
remote sensing for locating objects that span several pixels. 
However, it is ideally suited for a different type of problem. 
The MF requires that: (1) uncertainty in the mean object sig-
nature be confined to a known spectral direction through the 
clutter mean, and (2) object and clutter covariances must 
agree. These conditions make the MF most suitable for the 
detection of extreme sub-pixel objects. Furthermore, the 
mean signature required in (1) must be available in radiance 
space, and this information is not readily available in many 
important applications, even if laboratory signatures are.  
 
 Here we develop an alternative affine matched filter 
(AMF), which is more appropriate for detecting extended 
targets, and which accommodates practical uncertainties in 
target signature knowledge. AMF is ideal when used in 
conjunction with another new method we describe, called 
Virtual Relative Calibration (VRC), for generating a 
radiance space representation of a laboratory reflectance 
signature. VRC is related to the QUick Atmospheric 
Correction (QuAC) [1] method but is much simpler.  
 
 References [2, 3] reported extremely low false alarm 
rate performance for the combined AMF-VRC technique, 
which was applied to materials with known laboratory 
reflectance spectra. It was noted, however, that dark pixels 
(shaded or with low reflectivity) consistently responded 

more strongly to the AMF than well-lit or highly reflective 
ones. For more difficult detection problems, such as targets 
embedded in higher clutter or with weak signatures, dark 
pixels could prove problematical. Therefore, the standard 
clutter model was extended to include dark pixels.  
 
 This enhancement expands the standard statistical 
model of hyperspectral clutter to accommodate variable 
levels of illumination. When incorporated into the affine 
target model, it generates another algorithm, the Joint Affine 
Matched Filter (JAMF). In field tests, JAMF substantially 
reduced dark pixel response with no noticeable reduction in 
target detectability. 
  
 Achieving better detection results than some straw man 
technique, for example the matched filter, is the theme of 
too many hyperspectral reports. The usual exercise consists 
of applying a new detection technique with several free 
parameters to a particular data set and adjusting the para-
meters until an optimal result can be cited. Such demon-
strations of performance potential are common, but the 
algorithms seldom find their way into practice, unless a 
convincing phenomenological or theoretical basis for them 
can be established. Anecdotal demonstrations say nothing 
about the generalizability of a new algorithm to different 
targets or to different background clutter. 
 
 The successful demonstration in [2, 3] of AMF and 
JAMF is not immune to a charge of anecdotalism. The 
algorithms were applied to a single data set, albeit one with 
a large number of pixels. The aim of this paper is to 
complement that work with a firm theoretical foundation for 
the AMF and JAMF algorithms, neither of which has any 
adjustable parameters.  
 

2. CLUTTER/TARGET STATISTICAL MODELS 
 
We use the common multivariate Gaussian model for 
hyperspectral clutter. The standard statistical estimates of 
mean and covariance matrix are assumed to have been 
derived from the data according to 
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where ri is a D-dimensional vector (D bands of data)  
representing the spectral radiance of the ith of N pixels. 
 

Based on the estimates in (1), we will carry out all cal-
culations in “whitened” space, defined by the trans-
formation: 
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 In this space, distances that naturally arise in the 
mathematical expression of detection algorithms are  usually 
Euclidean, and so afford a geometrical interpretation. This 
view was used in [2] to motivate the algorithms, which are 
derived here from established principles of detection theory.  
 
 Equation (2) implies that matrices derived from radi-
ance vectors change according to the transformation: 
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For example, the covariance matrix in Equation (1) becomes 
the identity matrix I. This simplifies the Gaussian prob-
ability model for the clutter to 
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with the whitened clutter mean defined by µ = C
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projection of x into any direction has unit variance for the 
distribution in (4), called the core clutter model. 
 
 We model the probability function for the target 
similarly as 
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the same as (4), but with target mean T. Equation (5) im-
plies that the whitened target covariance equals that of the 
clutter. This implies in turn that a target’s variability in 
radiance space is identical to that of the clutter and so is 
described by Cr (see Equation (1)). This may be a crude ap-
proximation, but it is motivated by sensor utility and atmo-
spheric phenomenology in the SWIR, as explained below. 
 
 One of the principal incentives for using short-wave 
sensors is their long slant-range atmospheric penetrability, 
which is associated with the transparency of haze in the 
SWIR. On the other hand, long slant ranges enhance adja-
cency effects, in which the sensed radiance of each pixel 
becomes corrupted by neighboring pixels through atmo-

spheric scattering [4]. We incorporate this effect approx-
imately in our model of the sensing process by ascribing to a 
target the same covariance matrix as that of its neighboring 
background pixels. To further justify this assumption, we 
note that for most rare targets: (1) No better model of the 
effect of the clutter on sensed target variability is known, 
and (2) no information about the intrinsic target variability 
exists.  
 
 The only formal difference between our target and 
clutter model distributions is in their mean values. A good 
estimate of the clutter mean µ is assumed to be derivable 
from field measurements. If a good estimate of T is also 
available, then the best detector is known to be a likelihood 
ratio (LR) test: Declare a test pixel x a target if the ratio of  
(5) to (4) exceeds some predetermined threshold.  
  
 However, in our development of the AMF, T in 
Equation (5) will not represent a known mean value, unlike 
the µ of Equation (4). Therefore, an LR test cannot be 
evaluated. Instead, T will denote a partially unknown 
parameter, necessitating a so-called Generalized Likelihood 
Ratio (GLR) test to generate the detection algorithm.  
  

3. TARGET SIGNATURE TRANSLATION 
 
As discussed in [2], most naturally occurring background 
materials, except for green vegetation, have nearly graybody 
(flat) spectra in SWIR wavelengths. Therefore, if Si is the 
solar spectrum in band i filtered through the atmosphere, 
and τi is the atmospheric transmissivity on the path from 
ground to sensor, then assuming other illumination sources 
and path radiances are negligible, a target radiance (Tr)i 
should satisfy 
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where ρT is the target reflectivity.  
 
 Similarly, if ρC is the reflectivity of a clutter pixel, then 
we can expect the clutter ensemble to satisfy 
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where < > denotes expected value, and the final relation 
invokes the gray body assumption. 

 Combining Equations (6) and (7) produces the mathe-
matical expression of our basic model for representing a 
laboratory spectrum in radiance space: 
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which we call Virtual Relative Calibration (VRC). Rela-
tion (8) defines a one-dimensional radiance subspace asso-
ciated with the target. It is a line formed by connecting the 
point described by the right-hand side of  (8) to the shade 
point. The whitened version is also a line, because the whit-
ening transformation (Equation (2)) is linear.   
 
 We remark that although our arguments refer to SWIR 
data, a claim analogous to relation (8) has been made for 
visible wavelengths as well, but with a differently formu-
lated mean radiance estimate µr (derived from the end 
members of a linear mixing model [1]). Therefore, the fol-
lowing techniques should apply to visible hyperspectral data 
as well as to SWIR, with the appropriate mean replacement 
in (8).  
 
 A modification we do not explore here, but which may 
prove necessary for non-SWIR imagery, concerns the lack 
of a haze term in Equation (6). Adding a constant, unknown 
offset term to it, to represent a uniform but unknown path 
radiance, would convert the one-dimensional target sub-
space used here into a two-dimensional space and would 
ultimately produce a different set of detection algorithms. 
However, their derivations are straightforward extensions of 
the methods discussed in the next Section. 

 

4. DETECTION ALGORITHMS 
 

4.1. The Affine Matched Filter  
 
If the target/clutter probability functions in Equation (4), (5) 
contain unknown parameters c and t, then the  GLR statistic 
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can be used as a detection algorithm. For example, suppose 
the clutter parameters c are known from Equation (1). If the 
t in Equation (9) represents the mean value T of Equa-
tion (5) and is treated as a completely unknown vector, then 
d(x) becomes a standard anomaly detector called RX.  

 If, on the other hand, the proportionality constraint rep-
resented by VRC is imposed, then the only adjustable pa-
rameter in the GLR of (9) is the proportionality factor. Con-
dition (8) fixes the direction of Tr , which in turn determines 
a direction in the whitened space, through the definition 

T = C
r

!
1

2T
r
. Equation (9) then dictates that the amplitude of 

T be selected to maximize the numerator, that is, to mini-
mize the length of (x – T) (see Equation (5)).  
 
 The choice of T that does this cancels the component of 
x parallel to the T direction. Using this with Equations (4), 
(5), (8) and (9) produces a detector based on our one-
dimensional affine subspace model of the target. It is the 
affine version of the matched filter: 
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(Note that TT t

T
2 projects any vector into the T direction.) 

AMF has a simple geometrical interpretation in the whi-
tened space. It first computes the squared Euclidean distance 
of a test pixel x from the clutter mean, and then compares 
this to the squared distance of x to the target subspace. 
 
 Four illustrative decision boundaries for AMF are plot-
ted in Figure 1. These are slices in the T, µ plane through the 
D – 1 dimensional level surfaces of Equation (10), corre-
sponding to different detection thresholds. Notice that the 
bottom form in Equation (10) shows that AMF(x) is inde-
pendent of any component of x outside the T, µ plane. 
Therefore, the decision boundaries in Figure 4 are cross-
sections of D-dimensional cylindrical surfaces.  

 
4.2. Joint Affine Matched Filter 
 
As reported in references [2, 3], AMF performed well when 
applied to hyperspectral data derived from NRL’s MX20-
SW [5] sensor. The output of Equation (10) was many times 
higher for target pixels than for any background pixel. It 
was noticed, however, that the non-target AMF response 
was largest for dark pixels. As depicted in Figure 1, they lie 
far from the bulk of the clutter and close to the target sub-
space. These could be problematical for more difficult tar-
gets. Therefore, a second detection algorithm was conceived 
to address the dark pixel problem.  
 

This Joint AMF (JAMF) invokes a model with a clutter 
subspace, in addition to the basic AMF target subspace. 
JAMF is designed to capture the advantages of AMF while 
mitigating the effects of dark pixels. It does this by extend-
ing the core clutter model of (4) to allow for darkened ver-
sions of the pixels that generated the core clutter statistics. 
This is achieved by replacing the clutter mean in Equa-
tions (4) and (9) by a vector in the same direction, but with 
unknown amplitude.  



This requires a second maximization operation (in the 
denominator of (9)), but this is the same mathematical prob-
lem solved in the AMF derivation. The net effect is to re-
place the clutter term in (10) with a projection term, result-
ing in 
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Figure 1. AMF decision boundaries (for four choices of 
threshold setting) separate the regions where pixels are 
declared either target (to the right and below) or clutter. 
All components orthogonal to the plane are ignored. 

The latter form shows that, like AMF, JAMF operates on 
only the projection of any test pixel x into the T, µ plane. In 
test data, this algorithm substantially reduced the signals 
originating in dark pixels, as documented in [2, 3]. Figure 2 
should be contrasted with Figure 1, to see how the JAMF 
decision regions can succeed in rejecting dark pixels, 
because they are near the clutter subspace. 

6. SUMMARY 

Theoretical foundations have been established for two 
detection algorithms that had been derived previously by 
heuristic arguments only. The Affine Matched Filter is 
meant to supplant the standard Matched Filter, if some 
method (such as VCR) is available for generating not a 
mean target estimate, but a spectral subspace that all targets 
are expected to be near. AMF also applies, for example, to 
target signatures that can appear with an unknown level of 
(uniform) illumination.  

 The second algorithm, the Joint Affine Matched Filter, 
was derived by extending the AMF target subspace model to 
include a clutter subspace, in order to account for the 
possible appearance of low-reflectance or shadowed pixels.

 
Figure 2. JAMF at 4 threshold settings, which can be 
chosen to classify dark pixels correctly. 

 
  The fact that AMF and JAMF can both be derived from 
first principles of detection theory is reassuring. One can 
expect that the simple physical models invoked—of 
signature uncertainty and dark pixels—can be used to 
interpret the performance of these and other algorithms on 
future data sets. 
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