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ABSTRACT
Convex optimization problems are common in hyperspectral unmix-
ing. Examples include: the constrained least squares (CLS)and the
fully constrained least squares (FCLS) problems, which areused to
compute the fractional abundances in linear mixtures of known spec-
tra; the constrained basis pursuit (CBP) problem, which is used to
find sparse (i.e.,with a small number of non-zero terms) linear mix-
tures of spectra from large libraries; the constrained basis pursuit
denoising (CBPDN) problem, which is a generalization of BP that
admits modeling errors. In this paper, we introduce two new al-
gorithms to efficiently solve these optimization problems,based on
the alternating direction method of multipliers, a method from the
augmented Lagrangian family. The algorithms are termed SUnSAL
(sparse unmixing by variable splitting and augmented Lagrangian)
and C-SUnSAL (constrained SUnSAL). C-SUnSAL solves the CBP
and CBPDN problems, while SUnSAL solves CLS and FCLS, as
well as a more general version thereof, calledconstrained sparse re-
gression(CSR). C-SUnSAL and SUnSAL are shown to outperform
off-the-shelf methods in terms of speed and accuracy.

1. INTRODUCTION

Hyperspectral unmixing(HU) is a source separation problemwith
applications in remote sensing, analytical chemistry, andother areas
[2, 11, 12, 13]. Given a set of observed mixed hyperspectral vectors,
HU aims at estimating the number of reference spectra (theend-
members), their spectral signatures, and their fractional abundances,
usually under the assumption that the mixing is linear [11, 13].

Unlike in a canonical source separation problem, thesourcesin
HU (i.e., the fractional abundances of the spectra/materials present
in the data) exhibit statistical dependency [16]. This characteristic,
together with the high dimensionality of the data, places HUbeyond
the reach of most standard source separation algorithms, thus foster-
ing active research in the field.

Most HU methods can be classified as statistical or geometrical
[2]. In the (statistical) Bayesian framework, all inference relies on
the posterior probability density of the unknowns, given the observa-
tions. According to Bayes’ law, the posterior probability density re-
sults from two factors: the observation model (the likelihood), which
formalizes the assumed data generation model, possibly including
random perturbations such as additive noise; the prior, which may
impose natural constraints on the endmembers (e.g.,nonnegativity)
and on the fractional abundances (e.g.,belonging to the probability
simplex, since they are relative abundances), as well as model spec-
tral variability [6, 15, 17].

Geometrical approaches exploit the fact that, under the linear
mixing model, the observed hyperspectral vectors belong toa sim-
plex set whose vertices correspond to the endmembers. Therefore,
finding the endmembers amounts to identifying the vertices of that
simplex [1, 2, 19, 17, 4, 14, 21].

Sparse regression is another direction recently explored for HU
[2, 10], which has connections with both the statistical andthe geo-
metrical frameworks. In this approach, the problem is formulated as
that of fitting the observed (mixed) hyperspectral vectors with sparse
(i.e., containing a small number of terms) linear mixtures of spec-
tral signatures from a large dictionary availablea priori. Estimating
the endmembers is thus not necessary in this type of methods.No-
tice that the sparse regression problems in this context arenot stan-
dard, as the unknown coefficients (the fractional abundances) sum to
one (the so-calledabundance sum constraint– ASC) and are non-
negative (abundance non-negativity constraint– ANC). These prob-
lems are thus referred to asconstrained sparse regression(CSR).

Several variants of the CSR problem can be used for HU; some
examples follow. In the classicalconstrained least squares(CLS) the
fractional abundances in a linear mixture of known spectra are esti-
mated by minimizing the total squared error, under the ANC. The
fully constrained least squares(FCLS) adds the ASC to the CLS
problem. Although no sparseness is explicitly encouraged in CLS
and FCLS, under some conditions (namely positivity of the spectra)
it can be shown that the solutions are indeed sparse [3].Constrained
basis pursuit(CBP) is a variant of the well-knownbasis pursuit(BP)
criterion [5] under the ANC; as in BP, CBP uses theℓ1 norm to ex-
plicitly encourage sparseness of the fractional abundancevectors.
Finally, constrained basis pursuit denoising(CBPDN) is a general-
ization of CBP that admits modeling errors (e.g., observation noise).

1.1. Contribution

In this paper, we introduce a class of alternating directionalgo-
rithms to solve several CSR problems (namely CLS, FCLS, CBP,
and CBPDN). The proposed algorithms are based on thealternating
direction method of multipliers(ADMM) [9, 8, 7], which decom-
poses a difficult problem into a sequence of simpler ones. Since
ADMM can be derived as a variable splitting procedure followed
by the adoption of an augmented Lagrangian method to solve the
resulting constrained problem, we term our algorithms as SUnSAL
(spectral unmixing by splitting and augmented Lagrangian) and C-
SUnSAL (constrained SUnSAL).

The paper is organized as follows. Section 2 introduces notation
and formulates the optimization problems. Section 3 reviews the
ADMM and the associated convergence theorem. Section 4 intro-
duces the SUnSAL and C-SUnSAL algorithms. Section 5 presents
experimental results, and Section 6 ends the paper by presenting a
few concluding remarks.

2. PROBLEM FORMULATION: CLS, FCLS, CRS, CBP,
CBPDN

Let A ∈ R
k×n denote a matrix containing then spectral signatures

of the endmembers,x ∈ R
n denote the (unknown) fractional abun-
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dance vector, andy ∈ R
k be an (observed) mixed spectral vector.

In this paper, we assume thatA is known; this is the case the CSR
approach [10], whereA is a library with a large number of spectral
signatures, thus usuallyn > k. Matrix A can also be the output of
an endmember extraction algorithm, in which case usuallyn ≪ k.
The key advantage of the CSR approach is that it avoids the estima-
tion of endmembers, quite often a very hard problem.

The CLS, FCLS, and CSR problems are, respectively, defined as

(PCLS): min
x

(1/2)‖Ax − y‖22 (1)

subject to: x ≥ 0;

(PFCLS): min
x

(1/2)‖Ax − y‖22 (2)

subject to: x ≥ 0, 1
T
x = 1;

(PCSR): min
x

(1/2)‖Ax − y‖22 + λ‖x‖1 (3)

subject to: x ≥ 0,

where‖x‖2 and‖x‖1 denote theℓ2 andℓ1 norms ofx, respectively,
λ ≥ 0 is a parameter controlling the relative weight between theℓ2
andℓ1 terms,1 denotes a column vector of 1’s, and the inequality
x ≥ 0 is to be understood in the componentwise sense. The con-
straintsx ≥ 0 and1Tx = 1 correspond to the ANC and ASC,
respectively.

The CLS problem corresponds to PCSR with λ = 0. The FCLS
problem would also be equivalent to PCSR if the ASC was enforced
in (3), since theℓ1 norm would be constant in the feasible set. The
CBP and CBPDN problems are also equivalent to particular cases of
PCSR, as stated next.

The CBP optimization problem is

(PCBP): min
x
‖x‖1 (4)

subject to:Ax = y, x ≥ 0.

Notice that PCBP corresponds to PCSR with λ → 0. The CBPDN
optimization problem is

(PCBPDN): min
x
‖x‖1 (5)

subject to:‖Ax− y‖2 ≤ δ, x ≥ 0.

Problem PCSR is equivalent to PCBPDN in the sense that for any
choice ofδ for which PCBPDN is feasible, there is a choice ofλ for
which the solutions of the two problems coincide [20]. Finally, no-
tice that PCBP corresponds to PCBPDN with δ = 0.

As in (3), we do not enforce the ASC in (4) and (5), as this would
convert those optimization problems into feasibility ones, since the
objective function would be constant in the feasible set.

3. THE ADMM

Consider an unconstrained problem of the form

min
x∈Rn

f1(x) + f2(Gx), (6)

wheref1 : Rn → R̄, f2 : Rp → R̄, andG ∈ R
p×n. The ADMM

[7, 8, 9], the key tool in this paper, is as shown in Fig. 1. The follow-
ing is a simplified version of a theorem of Eckstein and Bertsekas
stating convergence of ADMM.

Algorithm ADMM
1. Setk = 0, chooseµ > 0, u0, andd0.
2. repeat
3. xk+1 ∈ argminx f1(x) +

µ
2
‖Gx− uk − dk‖

2
2

4. uk+1 ∈ argminu f2(u) +
µ
2
‖Gxk+1 − u− dk‖

2
2

5. dk+1 ← dk − (Gxk+1 − uk+1)
6. k ← k + 1
7. until stopping criterion is satisfied.

Fig. 1. The alternating direction method of multipliers (ADMM).

Theorem 1 ([7]) LetG have full column rank andf1, f2 be closed,
proper, and convex. Consider arbitraryµ > 0 andu0,d0 ∈ R

p.
Consider three sequences{xk ∈ R

n, k = 0, 1, ...}, {uk ∈
R

p, k = 0, 1, ...}, and{dk ∈ R
p, k = 0, 1, ...} that satisfy

xk+1 = argmin
x
f1(x) +

µ

2
‖Gx−uk−dk‖

2
2 (7)

uk+1 = argmin
u
f2(u) +

µ

2
‖Gxk+1−u−dk‖

2
2 (8)

dk+1 = dk − (Gxk+1 − uk+1). (9)

Then, if (6) has a solution, the sequence{xk} converges to it; other-
wise, at least one of the sequences{uk} or {dk} diverges.

4. APPLICATION OF ADMM

In this section, we specialize the ADMM to each of the optimization
problems stated in Section 2.

4.1. ADMM CSR: the SUnSAL Algorithm

We start by writing the optimization PCSR in the equivalent form

min
x

(1/2)‖Ax− y‖22 + λ‖x‖1 + ιRn
+
(x), (10)

whereιS is the indicator function of the setS (i.e., ιS(x) = 0 if
x ∈ S andιS(x) = ∞ if x /∈ S). We now apply the ADMM using
the following translation table:

f1(x) ≡
1

2
‖Ax− y‖22 (11)

f2(x) ≡ λ‖x‖1 + ιRn
+
(x) (12)

G ≡ I. (13)

With the current setting, step 3 of the ADMM (see Fig. 1) re-
quires solving a quadratic problem, the solution of which is

xk+1 ← B
−1

w (14)

where

B ≡ A
T
A+ µI (15)

w ≡ A
T
y + µ(uk + dk). (16)

Step 4 of the ADMM (Fig. 1) is simply

uk+1 ← argmin
u

(1/2)‖u− νk‖
2
2 + (λ/µ)‖u‖1 + ιRn

+
(u) (17)

whereνk ≡ xk+1 − dk. Without the termιRn
+

, the solution of (17)
would be the well-known soft threshold [5]:

uk+1 ← soft(νk, λ/µ). (18)



Algorithm SUnSAL
1. Setk = 0, chooseµ > 0, u0, andd0.
2. repeat
3. w ← ATy + µ(uk + dk)
4. xk+1 ← B−1w

5. νk ← xk+1 − dk

6. uk+1 ← max{0, soft(νk, λ/µ)}
7. dk+1 ← dk − (xk+1 − uk+1)
8. k ← k + 1
9. until stopping criterion is satisfied.

Fig. 2. Spectral unmixing by variable slitting and augmented La-
grangian (SUnSAL).

A straightforward reasoning leads to the conclusion that the effect of
the ANC termιRn

+
is to project onto the first orthant, thus

uk+1 ← max{0, soft(νk, λ/µ)}, (19)

where the maximum is to be understood in the componentwise sense.
Fig. 2 shows the SUnSAL algorithm, which solves the CSR

problem (3). SUnSAL is obtained by replacing lines 3 and 4 of
ADMM by (14) and (19), respectively.

The objective function (10) is proper, convex, lower semi-
continuous, and coercive, thus it has a non-empty set of minimizers
(see [20], for definitions of these convex analysis concepts). Func-
tionsf1 andf2 in (11) and (12) are closed andG ≡ I is obviously
of full column rank, thus Theorem 1 can be invoked to ensure
convergence of SUnSAL.

Concerning the computational complexity, we refer that, inhy-
perspectral applications, the rank of matrixB is no larger that the
number of bands, often of the order of a few hundred, thusB−1 can
be easily precomputed. The complexity of the algorithm per itera-
tion is thusO(n2), corresponding to the matrix-vector products.

4.2. ADMM CLS and FCLS

To solve the CLS problem, we simply run SUnSAL withλ = 0.
The algorithm to solve FCLS problem is also very similar to SUn-
SAL, with a modification in step 4 linked to the ASC. To derive the
ADMM algorithm to solve the FCLS problem, let us write the opti-
mization (2) in the equivalent form

min
x

(1/2)‖Ax − y‖22 + ι{1}(1
T
x) + ιRn

+
(x), (20)

whereι{1}(1
Tx) enforces the ASC. We now apply the ADMM us-

ing the following translation table:

f1(x) ≡
1

2
‖Ax− y‖22 + ι{1}(1

T
x) (21)

f2(x) ≡ ιRn
+
(x) (22)

G ≡ I. (23)

The resulting ADMM algorithm is similar SUnSAL withλ = 0,
with one difference: step 3 of the ADMM (see Fig. 1) requires solv-
ing a quadratic problem with linear equality constraint, the solution
of which is

xk+1 ← B
−1

w −C(1T
B

−1
w − 1) (24)

where

B ≡ A
T
A+ µI (25)

C ≡ B
−1

1(1T
B

−1
1)−1 (26)

w ≡ A
T
y + µ(uk + dk). (27)

Algorithm SUnSAL (FCLS version)
1. Setk = 0, chooseµ > 0, u0, andd0.
2. repeat
3. w← ATy + µ(uk + dk)
4. xk+1 ← B−1w−C(1TB−1w− 1)
5. νk ← xk+1 − dk

6. uk+1 ← max{0,νk)
7. dk+1 ← dk − (xk+1 − uk+1)
8. k ← k + 1
9. until stopping criterion is satisfied.

Fig. 3. SUnSAL for the FCLS problem.

Fig. 3 shows the FCLS version of the SUnSAL algorithm, which
solves the FCLS problem (2). We note that, in any SUnSAL version,
the ANC can be deactivated trivially.

4.3. ADMM for CBP and CBPDN: the C-SUnSAL Algorithm

Given that the CBP problem corresponds to CBPDN withδ = 0, we
address only the latter. Problem PCBPDN is equivalent to

min
x
‖x‖1 + ιB(y,δ)(Ax) + ιR+

(x), (28)

whereB(y, δ) = {z : ‖z− y‖2 ≤ δ} is a radius-δ closed ball
aroundy. To apply the ADMM we use the following definitions:

f1(x) = 0 (29)

f2(u) = ιB(y,δ)(u1) + λ‖u2‖1 + ιRn
+
(u2) (30)

G =
[
A

T
I
]T
. (31)

whereu =
[
u1

T uT
2

]T
. With the above definitions, the solution of

line 3 of ADMM (see Fig. 1), a quadratic problem, is

xk+1 ← B
−1

w, (32)

where

B ≡ A
T
A+ I (33)

w ≡ A
T (u1,k + d1,k) + (u2,k + d2,k). (34)

Because the variablesu1 and u2 are decoupled, line 4 of
ADMM (Fig. 1) consists in solving two separate problems,

u1,k+1 ∈ argmin
u

(1/2)‖u− ν1,k‖
2
2 + ιB(y,δ)(u) (35)

u2,k+1 ∈ argmin
u

(1/2)‖u− ν2,k‖
2
2 + (λ/µ)‖u‖1 + ιRn

+
(u)

(36)

where

ν1,k = Axk+1 − d1,k (37)

ν2,k = xk+1 − d2,k. (38)

The solution of (35) is the projection onto the ballB(y, δ), given by

u1,k+1← ψB(y, δ)(ν1k) ≡

{
ν1k, ‖ν1,k − y‖2 ≤ δ

y +
ν1,k−y

‖ν1,k−y‖2
δ, ‖ν1,k − y‖2 > δ.

(39)
Similarly to (19), the solution of (36) is given by

u2,k+1 ← max{0, soft(ν2,k, λ/µ)}. (40)



Algorithm C-SUnSAL
1. Setk ← 0, chooseµ > 0, u1,0, d1,0, u2,0, andd2,0.
2. repeat
3. w ← AT (u1,k + d1,k) + (u2,k + d2,k)

4. xk+1 ← B−1w

5. ν1,k ← Axk+1 − d1,k

6. u1,k+1 ← ψB(y, δ)(ν1,k)
7. ν2,k ← xk+1 − d2,k

8. u2,k+1 ← max{0, soft(ν2,k, λ/µ)}
9. d1,k+1 ← d1,k − (Axk+1 − u1,k+1)
10. d2,k+1 ← d2,k − (xk+1 − u2,k+1)
11. k ← k + 1
12. until stopping criterion is satisfied.

Fig. 4. Constrained spectal unmixing by variable slitting and aug-
mented Lagrangian (C-SUnSAL).

Fig. 4 shows the C-SUnSAL algorithm for CBPDN, which re-
sults from replacing line 3 of ADMM (Fig. 1) by (32) and line 4 of
ADMM by (39)–(40). As mentioned above, C-SUnSAL can be used
to solve the CBP problem simply by settingδ = 0. As in SUnSAL,
the ANC can be deactivated trivially.

The objective function (28) is proper, convex, lower semi-
continuous, and coercive, thus it has a non-empty set of minimizers.
Functionsf1 and f2 in (29) and (30) are closed andG in (31)
is obviously of full column rank, thus Theorem 1 can be invoked
to ensure convergence of C-SUnSAL. Concerning the computa-
tional complexity, the scenario is similar to that of SUnSAL, thus
complexity of C-SUnSAL isO(n2) per iteration.

At this point, we make reference to the work [22], which has also
addressed the CSR problem (3) aiming at hyperspectral applications.
The algorithm therein proposed, although different from SUnSAL,
has some similarities that result from the strong connections between
thesplit Bregman framework adopted in [22] and the ADMM (for
these connections see,e.g., [23]).

5. EXPERIMENTS

We now report experimental results obtained with simulateddata
generated according toy = Ax+ n, wheren ∈ R

k models addi-
tive perturbations. In hyperspectral applications, theseperturbations
are mostly model errors dominated by low-pass components. For
this reason, we generate the noise by low-pass filtering samples of
zero-mean i.i.d. Gaussian sequences of random variables. We define
the signal-to-noise ratio (SNR) as

SNR≡ 10 log10

(
E[‖Ax‖22]

E[‖n‖22]

)
.

The expectations in the above definition are approximated with sam-
ple means over 10 runs. The original fractional abundance vectors
x are generated in the following way: givens, the number of non-
zero components inx, we generate random samples uniformly in the
(s− 1)−simplex and distribute randomly theses values among the
components ofx. We considered two libraries (i.e., matricesA):
a 200 × 400 matrix with zero-mean unit variance i.i.d. Gaussian
entries and a224 × 498 matrix with a selection of 498 materials
(different mineral types) from the USGS library denoted splib061.

As far as we know, there are no special purpose algorithms for
solving the CSR, CBP, and CBPDN problems. Of course these

1http://speclab.cr.usgs.gov/spectral.lib06

Table 1. RSNR values and execution times for the Gaussian library
defined in the text (average over 10 runs).

SUnSAL C-SUnSAL lsqnonneg
SNR RSNR time RSNR time RSNR time
(dB) (dB) (sec) (dB) (sec) (sec)

20 10 0.12 3 0.12 3 31
30 32 0.12 27 0.12 25 32
40 37 0.12 30 0.12 27 48
50 48 0.12 47 0.12 42 57

Table 2. RSNR values and execution times for the USGS library
(average over 10 runs).

SUnSAL C-SUnSAL lsqnonneg
SNR RSNR time RSNR time RSNR time
(dB) (dB) (sec) (dB) (sec) (sec)

30 6 0.13 1.5 0.13 -7 22
40 17 0.13 12.2 0.13 10 32
50 23 0.13 14.5 0.13 15 47

are canonical convex problems, thus they can be tackled withstan-
dard convex optimization techniques. Namely, the CLS, which is a
particular case of CSR, can be solved with the MATLAB function
lsqnonneg, which we use as baseline in our comparisons.

Tables 1 and 2 report reconstruction SNR (RSNR), defined as

RSNR= 10 log10

(
E[‖x‖22]

E[‖x− x̂‖22]

)
,

wherex̂ is the estimated fractional abundance vector, and execution
times, for the two libraries referred above. Thelsqnonneg is run
with its default options. SUnSAL and C-SUnSAL run 200 iterations,
which was found to be more than enough to achieve convergence.

We highlight the following conclusions: (a) the proposed algo-
rithms achieve higher accuracy in about two orders of magnitude
shorter time. This is a critical issue in imaging application where an
instance of the problem has to be solved for each pixel; (b) the lower
accuracy obtained with the USGS matrix is due to the fact thatthe
spectral signatures are highly correlated resulting in a much harder
problem than with the Gaussian matrix.

6. CONCLUDING REMARKS

In this paper, we introduced new algorithms to solve a class of opti-
mization problems arising in spectral unmixing. The proposed algo-
rithms are based on thealternating direction method of multipliers,
which decomposes a difficult problem into a sequence of simpler
ones. We showed that sufficient conditions for convergence are sat-
isfied. In limited set of experiments, the proposed algorithms were
shown to clearly outperform an off-the-shelf optimizationtool. On-
going work includes a comprehensive experimental evaluation of the
proposed algorithms.
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