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ABSTRACT

Spectral unmixing is an important technique for remotely
sensed hyperspectral data exploitation. When hyperspectral
unmixing relies on the use of spectral libraries (dictionaries
of pure spectra), the sparse regression problem to be solved
is severely ill-conditioned and time-consuming. This is due,
on the one hand, to the presence of very similar signatures in
the library and, on the other, to the existence in the library
of spectral signatures that do not contribute to the observed
mixtures. In practice, spectral libraries are highly coherent,
which adds yet another complication. In this regard, the
identification of a subset of signatures from the library which
truly contribute to the observed mixtures has the potential to
improve the conditioning of the problem and to considerably
decrease the running time of the sparse unmixing algorithm.
This paper proposes a methodology for obtaining such a dic-
tionary pruning. The efficiency of the method is assessed
using both simulated and real hyperspectral data.

1. INTRODUCTION

Linear spectral unmixing has been recently addressed under a
sparse regression framework [1], [2]. The core assumption in
this framework is that the observed (generally mixed) spec-
tral signatures are well modeled by a linear combination of a
small subset of spectral signatures selected from a large (usu-
ally overcomplete) library or dictionary. Inferring this sub-
set is a hard inverse problem which calls for efficient linear
sparse regression techniques based on sparsity-inducing regu-
larizers, such as the basis pursuit, the basis pursuit denoising,
and the matching pursuit [3]. Sparse unmixing has attracted
much attention, as it sidesteps well known obstacles met in
classical endmember extraction methods such as the stopping
criteria for the extraction process (represented by the number
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of endmembers needed to explain the observed scene) and the
fact that the scene might not contain any pure pixels at all. It
happens, however, that in many applications the spectral li-
braries contain highly correlated signatures, which limits the
success of sparse regression applied to mixtures with a very
small number of materials. This limitation has been mitigated
by adding further regularization terms to the original problem,
besides sparsity-inducing ones. Works [4], and [5, Ch. 5] are
two recent examples of this line of attack exploiting, respec-
tively, the spatial contextual information (via total variation
regularization) and the fact that only a small set of dictionary
signatures are active in the complete data set, via collabora-
tive sparse regression [6].

In this paper, we propose a new technique to select a sub-
set of the dictionary signatures that contains the regression
supports for all image pixels. We exploit the fact that most of
hyperspectral data sets live in a lower dimensional subspace.
The identification of this subspace is the key element in the
selection of the library subset. Because the size of the subset
is, usually, much smaller than the size of the original library
available, the conditioning of resulting sparse regression is
improved, with strong impact on the quality of the unmixing
results. The remainder of the paper is structured as follows.
Section 2 describes the proposed methodology. Section 3 an-
alyzes the performance of the proposed approach with sim-
ulated data. Section 4 discusses the performance with real
hyperspectral data. Section 5 concludes the paper with some
remarks and hints at plausible future research lines.

2. PROPOSED METHODOLOGY

2.1. Sparse unmixing under linear mixture model (LMM)

Sparse unmixing formulates the LMM, assuming the avail-
ability of a library A containing m spectral signatures, as fol-
lows:

y = Ax+ n, (1)

where y is the observed vector and x is the fractional abun-
dance vector compatible with library A ∈ RL×m, L being
the number of spectral bands, and n is a vector collecting the



errors affecting the measurements. Due to the fact that only a
few of the signatures contained in A will likely contribute to
the observed mixed spectrum, x contains many zero values,
which means that it is sparse. An important indicator regard-
ing the difficulty to infer correct solutions for a linear system
of equations is the so-called mutual coherence, defined as the
largest cosine between any two columns of A. It has been
shown that the quality of the solution of a linear system of
equations decreases when the mutual coherence increases. As
shown in [1], the mutual coherence of hyperspectral libraries
tend to be close to one.

In (1), two constraints are generally imposed arising from
the physical meaning of the fractional abundances: i) they
should be non-negative (ANC): x ≥ 0 and ii) they should
sum to one (ASC): 1Tx = 1 (where 1T is a line vector of
1’s compatible with x). In this paper, we will use only the
ANC. Under the LMM, the sparse unmixing problem can be
attacked by solving the ℓ2 − ℓ1 optimization problem:

min
x

1

2
∥Ax− y∥22 + λ∥x∥1 subject to x ≥ 0, (2)

where the first term accounts for data fidelity and the second
term imposes the sparsity, while λ is a regularization param-
eter which weights the two terms of the objective function.

In this paper, we will use the sparse unmixing via vari-
able splitting augmented Lagrangian (SUnSAL) [7] to solve
the optimization problem (2), which was shown in [1] to per-
form better than the algorithms which do not impose sparsity
explicitly. Note that, by setting λ = 0, we obtain the so-called
non-negative constrained least-squares (NCLS) solution. We
will test the impact of the proposed methodology also when
this solution is computed.

2.2. Proposed Methodology for Dictionary Pruning

The methodology that we propose for pruning a (potentially
very large) spectral library exploits the relatively low dimen-
sionality of the subspace in which the observed data lives. The
identification of this subspace is an active research topic and
many efforts are dedicated to it. The steps of our proposed
methodology are the following ones: (1) estimate the data
subspace; (2) project the library members onto the estimated
subspace; (3) compute the projection error from each library
member to the estimated subspace; (4) build a new spectral
library by retaining those spectra with small projection error.

In this work, step (1) is performed by using the well-
known hyperspectral subspace identification by minimum
error (HySime) [8] in order to estimate the data subspace,
jointly with the number of endmembers. Step (2) is the stan-
dard orthogonal projection. In step (3), the projection error
is the normalized Euclidean distance between one member of
the library and the estimated subspace in which the data lives.
This step results in a vector of dimension m. In step (4),
we retain, from the spectral library, only the members which

have the projection error below a preset threshold t. This
collection of spectra will be the new spectral library which
will be used in the subsequent unmixing process.

In an ideal scenario, the subspace identification algorithm
should provide the exact subspace in which the data lies, and
the exact number of endmembers that generate it. Also, the
projection errors should be zero for the actual endmembers
and larger than zero for the other materials, this showing
clearly which of the library members contribute to the ob-
served data. However, the use of a non-zero threshold t is
justified by the fact that real scenarios are affected by noise
and there might be mismatches between the true endmembers
and the library members due to data acquisition conditions.

3. RESULTS WITH SIMULATED DATA

In order to test the proposed methodology in a simulated en-
vironment, we generated a dataset of 100 × 100 pixels us-
ing nine randomly selected signatures from a spectral library
containing a random selection of 240 spectra (minerals) from
the USGS library, denoted splib061 and released in Septem-
ber 2007. The library comprises spectral signatures with re-
flectance values given in 224 spectral bands and distributed
uniformly in the interval 0.4–2.5 µm. The datacube was then
contaminated with spectrally correlated noise resulting from
low-pass filtering i.i.d. Gaussian noise, using a normalized
cut-off frequency of 5π/L, for two levels of the signal-to-
noise ratio (SNR ≡ E ∥Ax∥2 /E ∥n∥22), i.e., 30dB and 40dB,
which are common in hyperspectral applications.

NCLS and SUnSAL algorithms were used to unmix the
data, before and after dictionary pruning. We considered dif-
ferent sizes of the pruned library: the number of estimated
endmembers (in this case, 9), 20 (1/12 of the original size)
and 40 (1/6 of the original size). We exemplify the method-
ology not only using the exact number of estimated endmem-
bers, but using a less strict pruning strategy, as there are many
practical applications in which the data subspace is hard to
infer. In this case, retaining more signatures brings the advan-
tage of using smaller libraries, but it might be also important
in order not to miss one or more endmembers.

The performance discriminator adopted in this work
to measure the quality of the reconstruction of spectral
mixtures is the signal to reconstruction error [1]: SRE ≡
E[∥x∥22]/E[∥x− x̂∥22], measured in SRE(dB) ≡ 10 log10(SRE).
We use this measure instead of the classical root mean square
error (RMSE) [9] as it gives more information regarding the
power of the error in relation with the power of the signal.
The higher the SRE(dB), the better the unmixing perfor-
mance. We are reporting also the running time of the algo-
rithms, in all cases (on a PC equipped with an Intel Core Duo
processor @2.56GHz and 4GB of RAM memory) for the full
image, when SNR=30dB. In addition, when we retain only

1Available online: http://speclab.cr.usgs.gov/spectral.lib06
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Fig. 1. Projection errors in simulated data (SNR=30dB).

a number of spectra equal to the one estimated by HySime,
we give a measure of the distance between the estimated sub-
space underlying the data and the new subspace defined by
the retained members. We will call this measure “subspace
error” and assume that it represents the Euclidean norm of the
vector collecting the projection errors of the selected spectra.

We should mention that, in our experiments, HySime
identified the correct number of endmembers (nine) for both
noise levels. Moreover, after applying the pruning methodol-
ogy for the exact number of endmembers, we obtained exactly
the set of signatures used to generate the data. This is already
a very interesting indicator of the performance, as the spectral
library used in the experiments contains, for each endmem-
ber, various spectrally similar signatures which might have
been identified as endmembers instead of the true ones. For
illustrative purposes, we plot in Fig. 1 the projection errors
obtained for the library members when SNR=30dB. The
true endmember signatures are highlighted with red circles.
Note the very small projection errors correponding to these
materials.

Table 1 shows the SRE(dB) achieved by the two algo-
rithms in all simulated instances, while Table 2 shows the
processing times needed by each of them to solve the prob-
lem when SNR=30dB (full image considered). From both
tables, it can be seen that the dictionary pruning methodol-
ogy that we proposed not only improves considerably the ac-
curacy of the unmixing results (see Table 1), but also leads
to a significant decrease in the processing times (see Table
2). Finally the subspace errors for the two considered noise
levels were: 0.411 for noise with SNR=30dB and 0.412 for
SNR=40dB. The method identified correctly the data sub-
space in both cases, as only the true endmembers were re-
tained from the library, but mismatches arise from the inexact
estimation of the subspace in noisy data. Although the results
obtained by the proposed method in simulated environments
are encouraging, further experiments with real data sets are
necessary. These will be conducted in the next section.

Table 1. SRE(dB) in simulated data experiments.
Library size SNR(dB)=30 SNR(dB)=40

240 (Full size) 5.18 12.19

NCLS

40 (1/6 × full size) 7.95 16.09

20 (1/12 × full size) 10.45 19.04

9 (exact number) 20.90 30.58

240 (Full size) 7.51 14.39
λ = 0.01 λ = 0.001

SUnSAL

40 (1/6 × full size) 11.15 18.60
λ = 0.01 λ = 0.001

20 (1/12 × full size) 13.09 21.31
λ = 0.005 λ = 0.001

9 (exact number) 21.01 30.68
λ = 0.005 λ = 0.001

Table 2. Processing times [seconds] in simulated data af-
fected by noise with SNR=30dB.

Number of endmembers 240 40 20 9
NCLS 52.45 4.57 2.09 0.65
SUnSAL 23.57 2.64 1.98 0.62

4. EXPERIMENTS WITH REAL DATA

The scene used in our real data experiments is the well-
known AVIRIS Cuprite data set, available online in re-
flectance units2. The portion used in experiments corre-
sponds to a 250 × 191-pixel subset of the sector labeled as
f970619t01p02 r02 sc03.a.rfl in the online data. The scene
comprises 224 spectral bands between 0.4 and 2.5 µm, with
nominal spectral resolution of 10 nm. Prior to the analysis,
bands 1–2, 105–115, 150–170, and 223–224 were removed
due to water absorption and low SNR in those bands, leav-
ing a total of 188 spectral bands. The Cuprite site is well
understood mineralogically, and has several exposed miner-
als of interest, all included in the USGS library considered
in experiments, denoted splib063 and released in September
2007. In our experiments, we use 302 spectra obtained from

2http://aviris.jpl.nasa.gov/html/aviris.freedata.html
3http://speclab.cr.usgs.gov/spectral.lib06
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Fig. 2. Projection errors in real data.
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Fig. 3. USGS reference maps and fractional abundance maps
derived by the proposed method for the dominant endmem-
bers in the real scene

.

this library as input to the unmixing methods described in
section 2.1. A USGS Tetracorder map is available for hyper-
spectral data collected in 1995, while the publicly available
AVIRIS Cuprite data was collected in 1997. Therefore, a
direct comparison between the 1995 USGS map and the 1997
AVIRIS data is not possible. However, the USGS map serves
as a good indicator for qualitative assessment of the frac-
tional abundance maps produced by the unmixing algorithms
discussed in section 2.1.

Fig. 2 shows the projection errors of the members in-
cluded in the spectral library. In experiments, the subspace
dimension inferred by HySime was 18. After inspecting the
ground–truth signatures included in the USGS map, there are
only a few dominant endmembers in the scene which are con-
sidered in our analysis. Previously, we ran a calibration pre-
processing step similar to the one in [1]. Note that, even after
pre-calibrating the data using the actual library, there is still
a gap between the library members and the data subspace.

Given this mismatch due to calibration issues we did not re-
tain the exact number of endmembers (18), but a larger one
(40), to ensure the presence in the retained dictionary of all
the endmember signatures.

Fig. 3 shows a qualitative comparison between the refer-
ence classification maps extracted from the USGS map and
the abundance fractions infered by SUnSAL after building a
library composed of 40 members, using the methodology de-
scribed in section 2.1. The parameter λ was set empirically to
0.001. Note the distribution of the materials of interest, which
follows closely the reference maps. Also, the average running
time per pixel was significantly reduced, from 2.6 millisec-
onds using the original library to 0.22 milliseconds using the
pruned one (average over 20000 pixels and using the same
computing environment, as in the simulated experiments).

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new methodology for dic-
tionary pruning in sparse hyperspectral unmixing. Our exper-
iments with simulated data show that the methodology leads
to more accurate performances of the algorithms and reduces
significantly the running time. Our experiments with real data
show that unmixing methods obtain good results with a dra-
matically reduced running time. Despite the encouraging re-
sults, additional experiments should be conducted to mitigate
the calibration issues that might occur during the process.
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