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ABSTRACT

Spectral unmixing aims at decomposing each image ele-
ment of a hyperspectral scene in signals typically related to
pure materials. This paper gives an added value to the re-
sults of this process by proposing Unmixing-based Denois-
ing (UBD), a supervised methodology to recover bands char-
acterized by a low Signal-to-Noise Ratio in a hyperspectral
scene. In the first step of UBD, an unmixing procedure is
carried out using a set of reference spectra which are noise-
free, as they are averaged over areas for which ground truth is
available. Results are inferred into the pixelwise reconstruc-
tion of a given band, expressed as a linear combination of
the values of the reference spectra in that band, ignoring the
residual vector which is mainly characterized by undesired
atmospheric influences and sensor-induced noise. The recon-
structed images exhibit both high visual quality and reduced
spectral distortions.

Index Terms— Spectral unmixing, denoising, image
restoration, hyperspectral images.

1. INTRODUCTION

Traditional denoising techniques employed in hyperspectral
image processing exploit the strong redundancies typical of
these data. A popular choice is represented by dimensional-
ity reduction techniques, which project the data onto a sub-
space where meaningful information is preserved, removing
noise and some high frequencies in the process [1]. Among
others, ad hoc methods have been proposed which threshold
wavelet coefficients [2], or enforce regularities in noisy bands
by minimizing the Total Variation in the data and exploit-
ing interband correlations [3, 4]. In all cases, each value in
a given noisy band is reconstructed as a linear combination
of its values in neighbouring bands, or as a (often non-linear)
transformation which takes into account neighbouring image
elements in two or three dimensions.

While the experiments in the aforementioned works are
derived from a statistical analysis of the data, this paper pro-
poses to use Unmixing-based Denoising (UBD), a method-
ology resulting from considering the physical properties of
any hyperspectral image element. This is assumed to be a

mixture of a number of materials smaller than the original
data dimensionality, and can be effectively described relying
on spectral unmixing methods. The challenging process of
spectral unmixing aims at providing accurate information on
a hyperspectral signature at sub-pixel level, by quantitatively
decomposing each image element in signals typically related
to macroscopically pure materials, or endmembers. In the lin-
ear mixture model, each spectrum is approximated by a linear
combination of the endmembers plus a residual vector. The
latter is the sum of the contributions of noise, subtle variations
within the reference materials, and errors in the adopted un-
mixing model [5]. If the set of endmembers is complete and
well represents the scene at hand, and if the reference spec-
tra exhibit negligible noise influences, the residual vector will
mostly result from atmospheric interferences and instrument-
induced noise, and can be ignored in the reconstruction of
each single spectrum. Thus, spectral unmixing finds through
UBD a new field of application, as the results of unmixing are
used as prior knowledge to reconstruct each pixel in a given
band of a hyperspectral image as a linear combination of the
values of the reference spectra in that particular band. As such
values would not be reliable for a band with low Signal-to-
Noise Ratio, the reference spectra are averaged over an area
of interest to greatly reduce the noise influence in the input to
the reconstruction.

Results on real data are promising and show that the pro-
posed method would be particularly effective on bands with a
low Signal-to-Noise Ratio (SNR). This would allow exploit-
ing the spectral information contained in these bands, which
are often discarded in a preprocessing step common to most
practical applications.

The remainder of the paper is organized as follows. Sec-
tion 2 illustrates the proposed denoising methodology based
on spectral unmixing, Section 3 reports experimental results,
and Section 4 contains concluding remarks.

2. UNMIXING-BASED DENOISING

Given a hyperspectral image element m with p bands, and
a training dataset containing n samples from each of k
classes, with k < p, the Unmixing-based Denoising (UBD)
is a simple procedure which can be described as follows.



Firstly, a set of reference spectral signatures is defined as
A = {x1, . . . , xi, . . . , xk}, where xi is the average of the
n spectra belonging to class i. Considering the mean value
for a given reference spectrum reduces the presence of noise
to a minimum, if each class is spectrally homogeneous. It
must be remarked that no assumption on the purity of the
reference spectra is made. Then, any unmixing procedure can
be employed to decompose the signal in a combination of the
reference spectra. If we assume this to be linear, we have:

m =

k∑
i=1

xisi + r, (1)

where si is the fraction or abundance of the reference
spectrum i inm, and r the residual vector. The latter is mostly
composed by the contributions related to materials not present
in A, subtle variations of one or more materials in A, atmo-
spheric interferences, and instrument-induced noise. If the
spectra in A are noise-free and represent well the classes of
interest, we expect the last two terms to be predominant in the
residual vector for bands with low SNR, and we can derive a
reconstruction m̂ as:

m̂ =

k∑
i=1

xisi, (2)

ignoring r, and along with it most of the noise affecting
m. The described procedure is based on the assumption that
if the contributions to the radiation reflected from a resolution
cell are known, the value of noisy bands in that area can be
derived by a combination of the average values characterizing
each component in that spectral range. The proposed method
is supervised, as it needs as input a set of spectra that well
characterize the scene, and is carried out independently for
each pixel. As a certain homogeneity of the classes of interest
is assumed, the method is expected to perform better on nat-
ural scenes where man-made objects (usually having a higher
variability) are not prevalent.

3. EXPERIMENTS

In the following experiments we choose Non-negative Least
Squares (NNLS) as unmixing algorithm [5]. Unconstrained
Least Squares and first attempts at using sparse reconstruction
tools did not yield satisfactory results.

3.1. Cuprite dataset

We analyze the popular AVIRIS Cuprite hyperspectral scene,
of size 512× 217 pixels with 224 bands in the spectral range
0.38 - 2.5 µm. The last band centered at 2.5 µm is severely
affected by noise (Fig.1). A geological map [6] has been used
to manually select 15 reference spectra belonging to different
minerals, averaged in areas of size 5 × 5 in the image. The
results for UBD applied as in Eq. (2) using the described

Fig. 1. Cuprite band 224, from top down: original image,
UBD results, and stretched difference between the two im-
ages. It is not easy to detect in the bottom image features
denoting loss of informational content due to the UBD pro-
cess.



(a) (b) (c)

Fig. 2. From left to right: (a) laboratory spectra; (b) spectra related to the materials in (a) identified in the Cuprite dataset; (c)
spectra from (b) reconstructed through UBD.

Fig. 3. Cuprite denoising experiment, from left to right: (a) band 42 from the dataset (750 nm); (b) band 42 severely corrupted
by additive white Gaussian noise with σ2 = 106; (c) image (b) denoised through UBD.

Fig. 4. UBD results on a HyMAP subscene acquired over DLR facilities, Oberpfaffenhofen, Germany. From left to right: (a)
band 15 with regions of interest selected for the following denoising procedure; (b) band 1 from the original dataset (440 nm);
(c) band 1 denoised.

spectral library as input are reported in Fig. 1, along with the
image of the difference between original and denoised band
suggesting that most of the removed signal is random noise.

We analyze the spectral range 2-2.5 µm as in [7] to check
the spectral integrity of the image elements in this range and

their behaviour across noisy bands. Fig. 2 (a) reports the
spectral signatures of 3 materials which are known to be part
of the scene (alunite, kaolinite, and chalcedony), resampled
to match the spectra in the data. Fig. 2 (b) contains the spec-
tra related to some pixels which contain a high concentration



of the mentioned materials [6], while Fig. 2 (c) shows the
same spectra after UBD, which in the lowest frequencies are
considerably smoother and match well the laboratory spectra,
while the characteristics of single image elements are mostly
kept in the results.

In a second experiment we severely corrupt band 42 of
the dataset, centered at 750nm, with additive white gaussian
noise (AWGN) having variance σ2 = 106. The original and
noisy bands along with the results of UBD using as input
reference spectra collected from the corrupted image are re-
ported in Fig. 3. It should be remarked that results in Fig.
3 (c) are obtained pixelwise using values computed from the
noisy band in Fig. 3 (b) only, and enforcing the spectral abun-
dances computed using the full image.

3.2. HyMAP dataset

A second experiment is carried out on a HyMAP dataset ac-
quired over the DLR facilities in Oberpfaffenhofen, Germany,
of size 300 × 500 and containing 128 spectral bands. One
average reference spectrum has been collected from each of
the 18 areas marked in Fig.4 (a). We applied UBD to the
full dataset and report in Fig. 4 (b-c) the denoising results
for the first band of the dataset, centered at 440 nm. The
noise is greatly reduced, although it is still visible in some ar-
eas (specially on the runway), while relevant information is
well preserved. The algorithm introduces a low overall dis-
tortion across all bands, as the average spectral angle value
between the original and the denoised image results equal to
1.29× 10−3.

4. CONCLUSIONS

Unmixing-based Denoising (UBD) is a supervised methodol-
ogy for the recovery of bands characterized by a low Signal-
to-Noise Ratio (SNR) in a hyperspectral scene. UBD recon-
structs any pixel in a given band as a linear combination of
reference spectra belonging to materials present in the scene,
which have negligible noise influences as they are averaged
over areas for which ground truth is available. As the resi-
dual vector from the unmixing process is mostly composed
by contributions of uninteresting materials, unwanted atmo-
spheric influences and sensor-induced noise, this is ignored
in the reconstruction process. Experiments on real data sug-
gest that this method could be used to retrieve usable spectral
information from bands which are usually discarded in prac-
tical applications. An example is represented by applications
to natural waters, where the coloured Dissolved Organic Mat-
ter (CDOM) could be better estimated by employing directly
the spectral information at the edge between visible and Near
Ultraviolet frequencies, which is typically noisy [8]. A draw-
back of the method is that it requires as input a reasonably
large amount of pixels to derive each reference spectrum, in
order to have a meaningful mean value robust to noise and

local variations. The reference spectra selection step may be
completely replaced in the future by estimating the virtual di-
mensionality of a hyperspectral scene and then selecting the
centroids of a relevant number of clusters after an unsuper-
vised clustering step. Furthermore, as the proposed algorithm
operates pixelwise it could be further improved by better ex-
ploiting spatial information: the mentioned Total Variation
(TV) model could be applied not for direct denoising of the
data, but for improving the unmixing procedure which consti-
tutes the first step for UBD [9].
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