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ABSTRACT

This paper deals with the linear unmixing problem in hy-

perspectral data processing, and in particular the estima-

tion of the fractional abundances under sum-to-one and non-

negativity constraints. For this purpose, we propose to adapt

the reflect-then-combine iterative technique, initially derived

by Cimmino. Several strategies are studied in order to handle

the constraints, and experimental results are analyzed.

Index Terms— Constrained optimization, hyperspec-

tral data, unmixing problem, parallel projection, Cimmino’s

method

1. INTRODUCTION

In hyperspectral data processing, spectral unmixing is one of

the most fundamental and challenging problems. The spectral

unmixing problem consists of breaking down a spectrum into

a set of pure spectra, a.k.a. endmembers, and their fractional

abundances. Assuming that the endmembers were extracted

using any off-the-shelf technique (see [1] for a survey), the

estimation of the abundances brings new opportunities and

challenges to both linear [6] as well as non-linear unmixing

problems [3]. To adopt a physical interpretation, the estima-

tion problem requires the fulfillment of two constraints: the

fractional abundances must add up to 100% (a.k.a. sum-to-

one constraint), and must be additive (a.k.a. non-negativity

constraint). See for instance [5]. This paper deals with con-

strained fractional abundances estimation, by suitably adapt-

ing parallel orthogonal projections/reflections.

Methods of orthogonal projections onto subspaces have

been bridging the words of geometry and algebra, success-

fully applied in solving optimization problems. While the al-

ternating projection algorithm goes back at least to Hermann

A. Schwarz in the 1870’s, it was revisited in the late 1930’s by

Kaczmarz’s cyclic projections [7] and Cimmino’s parallel re-

flections [4]. More recently, there has been a modern revival
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of projection algorithms, namely with projections onto con-

vex sets within adaptive filtering and machine learning [9, 8].

These methods open tremendous opportunities in various do-

mains in signal and image processing.

Hyperspectral data processing still do not take advantage

of this increasing research activity, even in the fundamental

linear spectral unmixing problem. In this paper, we propose to

tackle the major obstacle, which is the fulfillment of the phys-

ical interpretation, namely by enforcing non-negativity and

sum-to-one constraints within an iterative projection scheme.

To this end, we revisit the parallel reflect then combine up-

date rule, initially proposed by Cimmino [4]. We consider

two strategies to handle the sum-to-one constraint, either by

normalization or by an asymptotic convergence. The non-

negativity constraint is enforced by two different strategies,

either by relaxing the reflection or by projecting onto the non-

negative orthant.

2. THE LINEAR (UN-)MIXING MODEL

Given a spectrum with L wavelength x = [x1 x2 · · · xL]
⊤

(e.g. a pixel in a hyperspectral image), the linear mixing

model takes the form

x =

K∑

k=1

αk mk + ǫ,

where mk is the spectral signature of a pure material, i.e.,

endmember, and ǫ is the vector of fitness error. In matrix

form, we get

x = Mα+ ǫ, (1)

where M = [m1 m2 · · · mK ], and α = [α1 α2 · · · αK ]⊤

is the vector of abundances to be determined. In this work, it

is assumed that the endmembers have been identified, using

any off-the-shelf endmember extraction technique. See for

instance [1, 6] and references therein. The (unconstrained)

optimization problem, i.e., argminα ‖x − Mα‖2, leads to

the optimal solution α = M
⊤(MM

⊤)−1
x, with optimality

in the least-squares sense.



In order to adopt a physical interpretation in the unmix-

ing model, the above linear combination must be convex,

namely by satisfying the sum-to-one and the non-negativity

constraints, respectively 1
⊤
α = 1 and α ≥ 0, where 1 de-

notes the unit column-vector of K entries, and the inequality

is taken component-wise. An iterative scheme is required to

solve this constrained optimization problem, with essentially

two steps at each iteration: an approximation step that de-

termines an intermediate solution by minimizing the fitness

error; and a step that constrains the solution. The latter step

sets to zero the negative values in order to impose the non-

negativity constraint, and normalizes to one to enforce the

sum-to-one constraint.

Due to its nature, the sum-to-one constraint can be easily

handled in the least-squares optimization problem. To this

end, the following augmented model is substituted for (1):

[
1
x

]
=

[
1
⊤

M

]
α+

[
ǫ
ǫ

]
. (2)

This model has been recently investigated in the literature for

unmixing hyperspectral data, as studied for instance in [6] us-

ing a simplex-based approach. The solution is given by anal-

ogy to the above unconstrained problem. Still, the solution

is optimal in the least-squares sense, thus leading to a fitness

error ǫ within the sum-to-one, as opposed to the explicit con-

straint enforced in the above iterative scheme. The distinction

between these two strategies (explicitly imposed vs. accept-

ing fitness error) is explored in this work in order to derive

several constrained reflect-then-combine methods.

3. CONSTRAINED REFLECT-THEN-COMBINE

METHODS

3.1. Unconstrained reflect-then-combine method

Back to the unconstrained problem defined in (1), we consider

the set of L equations:

xℓ = m̃
⊤

ℓ α, for ℓ = 1, 2, . . . , L (3)

where m̃
⊤

ℓ denotes the vector of the K endmember spectral

signatures at the ℓ-th wavelength band. In other words, the

ℓ-th row of M is denoted by m̃
⊤

ℓ . The solution of the un-

mixing problem is the unique1 intersection of the L (affine)

hyperplanes defined by the above equations.

Cimmino’s method consists of two steps to refine the ap-

proximate solution α
(t) at iteration t, as described by the fol-

1The intersection is not unique, due to the presence of noise as given by ǫ

in (1). However, nothing prevents us from applying the reflection principle,

since the affine hyperplane defined by xℓ = m̃
⊤

ℓ α + ǫℓ is parallel to the

one given in the noiseless expression (3).

lowing update equations:

α
(t)
/ℓ = α

(t) + 2
xℓ − m̃

⊤

ℓ α
(t)

‖m̃ℓ‖2
m̃ℓ (4)

α
(t+1) =

L∑

ℓ=1

γ
(t)
ℓ α

(t)
/ℓ (5)

The first step involves intermediate solutions, by taking the

reflection (i.e., mirror image) of α
(t) with respect to each

of the hyperplanes defined by (3). The second step com-

bines the resulting reflections through weights γ
(t)
ℓ that sat-

isfy the the convexity constraints, i.e.,
∑L

ℓ=1 γ
(t)
ℓ = 1 and

γ
(t)
1 , γ

(t)
2 , . . . , γ

(t)
L ≥ 0 at each iteration t.

The motivation of this “reflect-then-combine” rule is il-

lustrated in Figure 1. In fact, any convex combination of the

reflections provides a better solution that the initial one. In

particular, as often applied by Cimmino, one may take the

center of gravity of the intermediate solutions, namely by set-

ting γ
(t)
ℓ = 1/L for all ℓ = 1, 2, . . . , L. It is worth noting that

this strategy converges faster than a “project-then-combine”

strategy, as shown in Figure 1 (dotted red line vs blue line).

By merging the reflection and combination steps into a

single expression, one can write the following update rule:

α
(t+1) = α

(t) + 2M⊤
Γ (x−M α

(t)), (6)

where Γ is a L-by-L diagonal matrix with entries γ1/‖m̃1‖
2,

γ2/‖m̃2‖
2, . . . , γL/‖m̃L‖

2. This method has several desir-

able properties, such as parallelization as given by the update

rule (4) which can be processed separately on a L-core ma-

chine, as well as multiple pixel processing. For the latter case,

by collecting the x and the corresponding α
(t) of each pixel

into X and A
(t) respectively, we get the following update

rule:

A
(t+1) = A

(t) + 2M⊤
Γ (X −M A

(t)).

3.2. Sum-to-one constraint

Next, we explore two strategies to handle the sum-to-one con-

straint, namely
∑K

k=1 α
(t+1)
k = 1 at each iteration t. In the

first strategy, the system converges to this constraint by using

the augmented model, while in the second one its is verified

by normalization each iteration.

In the first strategy, we consider the augmented model

(2), which can be easily investigated using the “reflect-then-

combine” update rule. The resulting rule can be written as

α
(t+1)= α

(t) + 2
[
1 M

⊤
]
Γ

([
1
x

]
−

[
1
⊤

M

]
α

(t)

)
,

[Saugment]

where Γ is here a (L+1)-by-(L+1) diagonal matrix. In this

paper, the augmented model extends naturally the “reflect-

then-combine” update rule. This strategy can be viewed as



x
ℓ
=

m̃
⊤ ℓ
α

xℓ′
=
m̃

⊤

ℓ′
α

α
(t)

α
(t)
/ℓ

α
(t)
/ℓ′

α
(t+1)

←optimal solution

Fig. 1. Illustration in two-dimensions of the “reflect-then-combine”

update rule, with two hyperplanes (black lines). The final solution

α
(t+1) (⋆) is obtained by a convex combination of the reflections

(◦) of the initial solution α
(t) (⋆). As shown, any combination of

the reflections (—) is a better solution that every combination of the

projections (· · · ).

including a new reflection at each iteration, with respect to

the (affine) hyperplane defined by the equation 1 = 1
⊤
α

(t).

In the second strategy, we propose to operate a normaliza-

tion after every adaptation, namely by applying successively

the following rules at each iteration t:

α
(∗) = α

(t) + 2M⊤
Γ (x−M α

(t)),

α
(t+1) =

α
(∗)

1
⊤
α(∗)

, [Snormalize]

where α
(∗) is the intermediate (unnormalized) solution. One

can also view the above normalization step as a projection,

onto the (affine) hyperplane defined by the equation 1 =
1
⊤
α

(t). But this is not an orthogonal projection, and there-

fore it does no longer satisfy the non-expansivity property.

This means that the distances between two projected entries

are not guarantied to be less than the distances of the original

ones. While this may affect the convergence, the combina-

tion of the reflection and projection seems fortunately to work

well.

There exists two major differences between these two

strategies: On the one hand, the normalization is a non-

orthogonal projection onto the hyperplane, as opposed to the

orthogonal reflection with the augmented model. On the other

hand, normalization guarantees the sum-to-one constraint at

each iteration, as opposed to an asymptotic convergence with

the previous approach.

3.3. Non-negativity constraint

Next, we derive two strategies to enforce the non-negativity

constraint, namely α
(t+1)
1 , α

(t+1)
2 , . . . , α

(t+1)
K ≥ 0 at each it-

eration t. The first one relaxes the reflections to prevent get-

ting out of the non-negative orthant, while the second one op-

erates projection onto it.

In the first strategy, we revisit the reflection step given in

the update rule (4), by including a relaxation with

α
(t)
/ℓ = α

(t) + 2 ηℓ
xℓ − m̃

⊤

ℓ α
(t)

‖m̃ℓ‖2
m̃ℓ, [Srelax]

where the relaxation weight ηℓ ∈ [0 ; 1] is chosen in order to

impose the non-negativity of entries in α
(t)
/ℓ . In practice, it

is either set to 1 when the reflection satisfies the constraint;

otherwise it is chosen on the boundary, namely when one of

the entries of α
(t)
/ℓ goes to zero. In other words,

ηℓ = min
k

−‖m̃ℓ‖
2

xℓ − m̃
⊤

ℓ α(t)

[α(t)]k
[m̃ℓ]k

when the right-hand-side is within [0 ; 1]; otherwise ηℓ = 1.

The second strategy consists of setting to zero all negative

values after each reflect-and-combine. This corresponds to

apply the following rules at each iteration t:

α
(∗) =α

(t) + 2M⊤
Γ (x−M α

(t)),

α
(t+1) =[α

(t+1)
1 · · · α

(t+1)
K ]⊤with α

(t+1)
k = max{α

(∗)
k ; 0}

[Sset-to-0]

where α(∗) is the intermediate (unconstrained) solution.

A major difference between these two strategies is that the

latter enforces null values to prevent negative ones. The for-

mer strategy leads to non-null values, due to the combination

process.

3.4. Fully-constrained optimization

In the previous sections, we have proposed 2 strategies to han-

dle the sum-to-one constraint, and 2 strategies to enforce the

non-negativity constraint. This leads to 4 variants for the

fully-constrained optimization problem. The following ta-

ble summarizes the properties of these fully-constrained al-

gorithms:

sum-to-one non-negativity

Saugment & relax 1
⊤
α → 1 α > 0

Saugment & set-to-0 1
⊤
α → 1 α ≥ 0

Snormalize & relax 1
⊤
α = 1 α > 0

Snormalize & set-to-0 1
⊤
α = 1 α ≥ 0

This table illustrates that the hard constraints of sum-to-

one and non-negativity are replaced by soft constraints, i.e.,

convergence. The price to pay for fulfilling the hard con-

straints, as given by the Snormalize & set-to-0 strategy, is a slower

slower convergence rate. This is essentially due to the normal-

ization in Snormalize, which corresponds to a non-orthogonal

projection and therefore loosing the non-expansivity property.
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Fig. 2. Convergence of the fully-constrained optimization

methods: Saugment & relax (“—”), Saugment & set-to-0 (“—”) and

Snormalize & relax (“- -”) strategies. The dotted lines correspond

to the real abundances α = [0.4 0.6 − 0.05]⊤. The es-

timates using non-negative least-squares (+) and the fully-

constrained least-squares (∗) are also given.

In this paper, we consider also the soft constraints. It is worth

noting that most of the work on hyperspectral unmixing prob-

lem consider relaxing the constraints. See for instance [5].

4. EXPERIMENTATIONS

To avoid the dilemma of the lack of ground truth information

for comparing unmixing methods, and due to space limita-

tion, we considered the linear combination of real hyperspec-

tral signatures extracted from the USGC library: grass, cedar

and asphalt. These spectra consist of 2151 bands covering

wavelengths ranging from 0.35 to 2.5 µm. A spectral mixture

was generated by a linear combination of three pure spectral

signatures with fractional abundancesα = [0.4 0.6 −0.05]⊤.

The data were corrupted by an additive Gaussian noise with a

SNR ≈ 35 dB.

The convergence of the fully-constrained optimization

methods is illustrated in Figure 2 for 100 iterations. As ex-

pected, the augmented model as in Saugment is preferred to the

normalization Snormalize. Both the Saugment & relax strategy (“—

”) and the Saugment & set-to-0 strategy (“—”) converge faster than

the Snormalize & relax strategy (“- -”). The Snormalize & set-to-0 strat-

egy was discarded due to its poor (and bad) convergence prop-

erties. For a comparative study, we also included in the figure

the estimates obtained from the non-negative least-squares

method (“+”) and the fully-constrained least-squares method

(“∗”). See for instance [5].

5. CONCLUSION AND PERSPECTIVES

This work shows that conventional Cimmino’s reflect-then-

combine iterative scheme can be adapted for solving the con-

strained unmixing problem. Several strategies are studied

in order to handle the sum-to-one and non-negativity con-

straints, and experimental results are analyzed.

As for future work, we are studying the optimal choice

of the weights in the combination stage. We seek also to op-

timize its selection in order to satisfy both sum-to-one and

non-negativity constraints. In the latter case for instance, one

may allow negative values in reflections as long as there exists

a non-negative convex combination. We are also conducting

an analysis of the algorithm, in the same spirit as in [2]. It

is also interesting to study Kaczmarz’s cyclic projections, as

well as random projections/reflections. It is clear that this first

work opens the way to a new class of algorithms in adaptive

filtering and machine learning [9, 8].
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