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Abstract

In this paper, we analyze different preconditionings designed to enhance robustness of pure-pixel
search algorithms, which are used for blind hyperspectral unmixing and which are equivalent to
near-separable nonnegative matrix factorization algorithms. Our analysis focuses on the successive
projection algorithm (SPA), a simple, efficient and provably robust algorithm in the pure-pixel
algorithm class. Recently, a provably robust preconditioning was proposed by Gillis and Vavasis
(arXiv:1310.2273) which requires the resolution of a semidefinite program (SDP) to find a data
points-enclosing minimum volume ellipsoid. Since solving the SDP in high precisions can be time
consuming, we generalize the robustness analysis to approximate solutions of the SDP, that is,
solutions whose objective function values are some multiplicative factors away from the optimal
value. It is shown that a high accuracy solution is not crucial for robustness, which paves the way for
faster preconditionings (e.g., based on first-order optimization methods). This first contribution
also allows us to provide a robustness analysis for two other preconditionings. The first one is
pre-whitening, which can be interpreted as an optimal solution of the same SDP with additional
constraints. We analyze robustness of pre-whitening which allows us to characterize situations in
which it performs competitively with the SDP-based preconditioning. The second one is based on
SPA itself and can be interpreted as an optimal solution of a relaxation of the SDP. It is extremely
fast while competing with the SDP-based preconditioning on several synthetic data sets.

Keywords. hyperspectral unmixing, pure-pixel search, preconditioning, pre-whitening, successive
projection algorithm, near-separable NMF, robustness to noise, semidefinite programming

1 Introduction

Given a hyperspectral image, blind hyperspectral unmixing (blind HU) aims at recovering the spectral
signatures of the constitutive materials present in the image, called endmembers, along with their
abundances in each pixel. Under the linear mixing model, the spectral signature of a pixel is equal to
a linear combination of the spectral signatures of the endmembers where the weights correspond to the
abundances. More formally, letting X ∈ R

m×n
+ represent a hyperspectral image with m wavelengths

1

http://arxiv.org/abs/1406.5286v1
http://arxiv.org/abs/1310.2273


and n pixels, we have, in the noiseless case,

X(:, j) =

r∑

k=1

W (:, k)H(k, j) for all j,

where X(:, j) is the spectral signature of the jth pixel, W (:, k) the spectral signature of the kth
endmember, and H(k, j) is the abundance of the kth endmember in the jth pixel so that H ≥ 0
and ||H(:, j)||1 =

∑r
i=1 |H(i, j)| = 1 for all j (abundance sum-to-one constraint). Note that blind

HU is equivalent to nonnegative matrix factorization (NMF) which aims at finding the best possible
factorization of a nonnegative matrix X ≈WH where W and H are nonnegative matrices.

In blind HU, the so-called pure-pixel assumption plays a significant role. It is defined as follows. If
for each endmember there exists a pixel containing only that endmember, that is, if for all 1 ≤ k ≤ r
there exists j such that M(:, j) = W (:, k), then the pure-pixel assumption holds. In that case, the
matrix X has the following form

X = W [Ir,H
′]Π, with H ′ ≥ 0, ||H ′(:, j)||1 = 1∀j,

and Π being a permutation. This implies that the columns of X are convex combinations of the
columns of W , and hence blind HU under the linear mixing model and the pure-pixel assumption
reduces to identifying the vertices of the convex hull of the columns of X; see, e.g., [5, 18] and the
references therein. This problem is known to be efficiently solvable [3]. In the presence of noise, the
problem becomes more difficult and several provably robust algorithms have been proposed recently;
for example the successive projection algorithm to be described in Section 1.1. Note that, in the NMF
literature, the pure-pixel assumption is referred to as the separability assumption [3] and NMF under
the separability assumption in the presence of noise is referred to as near-separable NMF; see, e.g.,
[10] and the references therein. Therefore, in this paper, we will assume that the matrix corresponding
to the hyperspectral image has the following form (in the noiseless case):

Assumption 1 (Separable Matrix). The matrix X is separable if X = WH ∈ R
m×n where W ∈ R

m×r,
H = [Ir,H

′]Π ∈ R
r×n
+ with the sum of the entries of each column of H ′ being at most one, that is,

||H(:, j)||1 ≤ 1 for all j, and Π is a permutation.

Note that we have relaxed the assumption ||H(:, j)||1 = 1 for all j to ||H(:, j)||1 ≤ 1 for all j; this
allows for example different illumination conditions among the pixels in the image.

1.1 Successive Projection Algorithm

The successive projection algorithm (SPA) is a simple but fast and robust pure-pixel search algorithm;
see Alg. SPA. At each step of the algorithm, the column of the input matrix X̃ with maximum ℓ2 norm
is selected, and then X̃ is updated by projecting each column onto the orthogonal complement of the
columns selected so far. SPA is extremely fast as it can be implemented in 2mnr+O(mr2) operations
[13]. SPA was first introduced in [1], and is closely related to other algorithms such as automatic
target generation process (ATGP), successive simplex volume maximization (SVMAX) and vertex
component analysis (VCA); see the discussion in [18]. What makes SPA distinguishingly interesting
is that it is provably robust against noise [13]:
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Algorithm SPA – Successive Projection Algorithm [1]

Input: Matrix X̃ = X +N with X satisfying Assumption 1, rank r.
Output: Set of r indices K such that X̃(:,K) ≈W .

1: Let R = X̃ , K = {}, k = 1.
2: while k ≤ r and R 6= 0 do

3: p = argmaxj ||R:j||2.
4: R =

(

I − R:pRT
:p

||R:p||22

)

R.

5: K = K ∪ {p}.
6: k = k + 1.
7: end while

Theorem 1 ([13], Th. 3). Let X̃ = X +N where X satisfies Assumption 1, W has full column rank

and N is noise with maxj ||N(:, j)||2 ≤ ǫ. If ǫ ≤ O
(

σmin(W )√
rκ2(W )

)

, then SPA identifies the columns of W

up to error O
(
ǫ κ2(W )

)
, that is, the index set K identified by SPA satisfies

max
1≤j≤r

min
k∈K

∥
∥
∥W (:, j)− X̃(:, k)

∥
∥
∥
2
≤ O

(
ǫ κ2(W )

)
,

where κ(W ) = σmax(W )
σmin(W ) is the condition number of W , and ||x||2 =

√
∑n

i=1 x
2
i for x ∈ R

n.

1.2 Preconditioning

If a matrix X satisfying Assumption 1 is premultiplied by a matrix Q, it still satisfies Assumption 1
where W is replaced with QW . Since pure-pixel search algorithms are sensitive to the conditioning of
matrix W , it would be beneficial to find a matrix Q that reduces the conditioning of W . In particular,
the robustness result of SPA (Th. 1) can be adapted when the input matrix is premultiplied by a
matrix Q:

Corollary 1. Let X̃ = X + N where X satisfies Assumption 1, W has full column rank and N is
noise with maxj ||N(:, j)||2 ≤ ǫ; and let Q ∈ R

p×m (p ≥ r). If QW has full column rank, and

ǫ ≤ O
(

σmin(W )√
rκ3(QW )

)

,

then SPA applied on matrix QX̃ identifies indices corresponding to the columns of W up to error
O
(
ǫ κ(W )κ(QW )3

)
.

Proof. This result follows directly from [12, Cor. 1 ]. In fact, in [12, Cor. 1 ], the result is proved for

ǫ ≤ O
(

σmin(QW )√
rσmax(Q)κ2(QW )

)

with error up to O
(
ǫ κ(Q)κ(QW )2

)
. Since,

σmin(QW )

σmax(Q)
≥ σmin(QW )

σmax(QW )σmax(W−1)
=

σmin(W )

κ(QW )
,
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and
κ(Q) = κ(QWW−1) ≤ κ(QW )κ(W−1) = κ(QW )κ(W ),

the proof is complete.

Note that Corollary 1 does not simply amount to replacing W by QW in Theorem 1 because the
noise N is also premultiplied by Q. Note also that, in view of Theorem 1 , preconditioning is beneficial
for any Q such that κ(QW )3 ≤ κ(W ).

1.2.1 SDP-based Preconditioning

Assume that m = r (the problem can be reduced to this case using noise filtering; see Section 3).
An optimal preconditioning would be Q = W−1 so that QW = Ir would be perfectly conditioned,
that is, κ(QW ) = 1. In particular, applying Corollary 1 with Q = W−1 gives the following result: if

ǫ ≤ O
(
σmin(W )√

r

)

, then SPA applied on matrix QX̃ identifies indices corresponding to the columns of

W up to error O (ǫκ(W )). This is a significant improvement compared to Theorem 1, especially for the
upper bound on the noise level: the term κ(W )2 disappears from the denominator. For hyperspectral
images, κ(W ) can be rather large as spectral signatures often share similar patterns. Note that the
bound on the noise level is essentially optimal for SPA since ǫ ≥ Ω(σmin(W )) would allow the noise to
make the matrix W rank deficient [12].

Of course, W−1 is unknown otherwise the problem would be solved. However, it turns out that it
is possible to compute W−1 approximately (up to orthogonal transformations, which do not influence
the conditioning) even in the presence of noise using the minimum volume ellipsoid centered at the
origin containing all columns of X̃ [12]. An ellipsoid E centered at the origin in R

r is described via a
positive definite matrix A ∈ S

r
++: E = {x ∈ R

r|xTAx ≤ 1}. The volume of E is equal to det(A)−1/2

times the volume of the unit ball in dimension r. Therefore, given a matrix X̃ ∈ R
r×n of rank r, we

can formulate the minimum volume ellipsoid centered at the origin and containing the columns x̃j ∀j
of matrix X̃ as follows

A∗ = argmaxA∈Sr
+

det(A) such that x̃j
TAx̃j ≤ 1 ∀j. (1)

This problem is SDP representable [6, p.222]. It was shown in [12] that (i) in the noiseless case (that
is, N = 0), the optimal solution A∗ of (1) is given by (WW T )−1 and hence factoring A∗ allows to
recover W−1 (up to orthogonal transformations); and that (ii) in the noisy case, the optimal solution
of (1) is close to (WW T )−1 and hence leads to a good preconditioning for SPA. More precisely, the
following robustness result was proved:

Theorem 2 ([12], Th. 3). Let X̃ = X + N where X satisfies Assumption 1 with m = r, W has

full column rank and N is noise with maxj ||N(:, j)||2 ≤ ǫ. If ǫ ≤ O
(

σmin(W )
r
√
r

)

, then SDP-based

preconditioned SPA identifies a subset K so that X̃(:,K) approximates the columns of W up to error
O (ǫ κ(W )).

In case m > r, it was proposed to first replace the data points by their projections onto the
r-dimensional linear subspace obtained with the SVD (that is, use a linear dimensionality reduction
technique for noise filtering; see also Section 3); see Alg. SDP-Prec.

Alg. SDP-Prec first requires the truncated SVD which can be computed in O(mnr) operations. It
then requires the solution of the SDP with O(r2) variables and n constraints, which takes O(r6 + n3)
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Algorithm SDP-Prec – SDP-based Preconditioning [12]

Input: Matrix X̃ = X +N with X satisfying Assumption 1, rank r.
Output: Preconditioner Q.

1: [Ur,Σr, Vr] = rank-r truncated SVD(X̃).
2: Let X̃ ← ΣrV

T
r and solve (1) to get A∗.

3: Factorize A∗ = P TP (e.g., Cholesky decomposition).
4: Q = PUT

r .

operations per iteration to compute if standard interior point methods are used. However, effective
active set methods can be used to solve large-scale problems (see [12]): in fact, one can keep only
r(r+1)

2 constraints from (1) to obtain an equivalent problem [15].

Note that Mizutani [19] solves the same SDP, but for another purpose, namely to preprocess
the input matrix by removing the columns which are not on the boundary of the minimum volume
ellipsoid.

1.3 Motivation and Contribution of the Paper

The SDP-based preconditioning described in Section 1.2 is appealing in the sense that it builds an
approximation of W−1 whose error is provably bounded by the noise level. This is a somewhat ideal
solution but can be computationally expensive to obtain since it requires the resolution of an SDP.
Hence, a natural move is to consider computationally cheaper preconditioning alternatives.

The focus of this paper is on a theoretical analysis of the robustness to noise of several precondi-
tionings. The contribution of this paper is threefold:

1. In Section 2, we analyze robustness of preconditionings obtained using approximate solutions
of (1) and prove the following (see Theorem 4):

Let X̃ = X + N where X satisfies Assumption 1 with m = r, W has full rank, and
N is the noise and satisfies maxj ||N(:, j)||2 ≤ ǫ. Let also A = QQT be a feasible
solution of (1) whose objective function value is some multiplicative factor away from
the optimal value; that is, det(A) ≥ α det(A∗) for some 0 < α ≤ 1, where A∗ is an

optimal solution to (1). If ǫ ≤ O
(

min
(
1
r , α

3/2
) σmin(W )√

r

)

, then SPA applied on matrix

QX̃ identifies indices corresponding to the columns of W up to error O
(

ǫκ(W )α−3/2
)

.

The above stated result suggests that any good approximate solution of (1) provides a reasonable
preconditioning. This gives a theoretical motivation for developing less accurate but faster solvers
for (1); for example, one could use the proximal point algorithm proposed in [23]. We should
mention that this paper focuses on theoretical analysis only, and developing fast solvers is a
different subject and is considered a future research topic.

2. In Section 3, we analyze robustness of pre-whitening, a standard preconditioning technique in
blind source separation. We try to understand under which conditions pre-whitening can be
as good as the SDP-based preconditioning; in fact, pre-whitening was shown to perform very
similarly as the SDP-based preconditioning on some synthetic data sets [12]. Pre-whitening
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corresponds to a solution of (1) with additional constraints, and hence robustness of pre-whitened
SPA follows from the result above (Section 3.2). However, this result is not tight and we provide
a tight robustness analysis of pre-whitening (Section 3.3). We also provide a robustness analysis
of pre-whitening under a standard generative model (Section 3.4).

3. In Section 4, we analyzed a preconditioning based on SPA itself. The idea was proposed in [11],
where the resulting method was found to be extremely fast, and, as opposed to pre-whitening,
perform perfectly in the noiseless case and is not affected by the abundances of the different
endmembers. Moreover, we are able to improve the theoretical bound on the noise level allowed
by SPA by a factor κ(W ) using this preconditioning.

Finally, in Section 5, we illustrate these results on synthetic data sets. In particular, we show
that pre-whitening and the SPA-based preconditioning performs competitively with the SDP-based
preconditioning while showing much better runtime performance in practice.

2 Analysis of Approximate SDP Preconditioning

In this section, we analyze the effect of using an approximate solution A of (1) instead of the optimal
one A∗ for preconditioning matrix X̃ . We will say that A is an α-approximate solution of (1) for some
0 < α ≤ 1 if A is a feasible solution of (1), that is, A ∈ S

r
+ and x̃Tj Ax̃j ≤ 1 for all j, and

det(A) ≥ α det(A∗),

where A∗ is the optimal solution of (1). Letting A = QQT , analyzing the effect of Q as a precondition-
ing reduces to show that QW is well-conditioned, that is, to upper bound κ(QW ), which is equivalent
to bounding κ(W TAW ) since κ(W TAW ) = κ(QW )2. In fact, if κ(QW ) can be bounded, robustness
of preconditioned SPA follows from Corollary 1.

In [12], a change of variable is performed on the SDP (1) using A = W−TCW−1 to obtain the
following equivalent problem

C∗ = argmaxC∈Sr
+

det(C) det(W )−2 such that x̃Tj
(
W−TCW−1

)
x̃j ≤ 1 ∀ j. (2)

Since our goal is to bound κ(W TAW ) and W TAW = C, it is equivalent to bound κ(C). It was shown
in [12] that, for sufficiently small noise level ǫ, κ(W TA∗W ) = κ(C∗) = O(1) which implies robustness
of SDP-preconditioned SPA; see Theorem 2. In this section, we analyze (2) directly and will use the
following assumption:

Definition 1. The matrix C is an α-approximate solution of (2) for some 0 < α ≤ 1, that is, C is a
feasible solution of (2) and

det(C) ≥ α det(C∗).

Note that C is an α-approximate solution of (2) if and only if A = W−TCW−1 is an α-approximate
solution of (1). In fact, det(W−TCW−1) = det(W−T ) det(C) det(W−1).

The main result of this section is therefore to show that any α-approximate solution of (2) is
well-conditioned. More precisely, we show in Theorem 3 that, for a sufficiently small noise level ǫ,

κ(C) ≤ 12

α
.

This will imply, by Corollary 1, that preconditioned SPA using an approximate solution of (1) is
robust to noise, given that α is sufficiently close to one; see Theorem 4.
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2.1 Bounding κ(C)

It is interesting to notice that the case r = 1 is trivial since C∗ is a scalar thus has κ(C) = 1 (In fact,
all columns of X̃ are multiple of the unique column of W ∈ R

m×1). Otherwise, since κ(C) ≥ 1, we
only need to provide an upper bound for κ(C). The steps of the proof are the following:

• Derive a lower bound for det(C) (Lemma 1).

• Provide an upper bound of tr(C) (Lemma 2).

• Combine the two bounds above to bound κ(C). In fact, we prove in Lemma 3 that the condition
number κ(C) of an r-by-r matrix C with tr(C) ≤ β and det(C) ≥ γ can be bounded above; see
Equation (4).

The lower bound for det(C) and the upper bound for tr(C) follow directly from results in [12].

Lemma 1. If X̃ = W + N where X satisfies Assumption 1 with m = r, then any α-approximate
solution C of (2) satisfies

det(C) ≥ α

(

1 +
ǫ

σmin(W )

)−2r

. (3)

Proof. In [12, Lemma 1], it was proved that the optimal solution C∗ of (2) satisfies

det(C∗) ≥
(

1 +
ǫ

σmin(W )

)−2r

.

Hence, the result follows directly from Definition 1.

Lemma 2. If X̃ = W +N where X satisfies Assumption 1 with m = r, and

ǫ ≤ σmin(W )

8r
√
r

,

then any feasible solution C of (2) satisfies tr(C) ≤ r + 1.

Proof. See Lemma 2 and proof of Lemma 3 in [13].

Lemma 3. The optimal value

κ∗ = max
λ∈Rr

λ1

λr
such that

r∑

i=1

λi ≤ β,

r∏

i=1

λi ≥ γ, and

λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0.

where β ≥ r and 0 < γ ≤ 1 is given by

κ∗ =
1 +

√

1− γ
(

r
β

)r

1−
√

1− γ
(

r
β

)r
. (4)
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Proof. The proof is given in Appendix A.

Theorem 3. If X̃ = X +N where X satisfies Assumption 1 with m = r ≥ 2 and maxj ||N(:, j)||2 ≤
ǫ ≤ σmin(W )

8r
√
r

, then

κ(C) ≤ 12

α
,

where C is an α-approximate solution of (2).

Proof. By Lemma 1, we have

det(C) ≥ α

(

1 +
ǫ

σmin(W )

)−2r

≥ α

(

1 +
1

8r
√
r

)−2r

≥ α

(

1 +
1

64

)−4

︸ ︷︷ ︸
=η

= αη,

where the third inequality above is obtained by the fact that
(

1 + 1
8r

√
r

)−2r
is increasing in r for

r ≥ 1. Also, by Lemma 2, we have tr(C) ≤ r+1. Combining these results with Lemma 3 (via setting
γ = ηα and β = r + 1) yields

κ(C) ≤
1 +

√

1− αη
(

r
r+1

)r

1−
√

1− αη
(

r
r+1

)r
≤

1 +
√

1− α
3

1−
√

1− α
3

,

where the second inequality above is obtained by the facts that
(

r
r+1

)r
is nonincreasing in r and its

limit is given by

lim
r→∞

(
r

r + 1

)r

= lim
r→∞

(

1− 1

r + 1

)r

=
1

e
= 0.3679,

and that η
e =

(1+ 1

64)
−4

e ≥ 1
3 . Finally, since the function 1+y

1−y is increasing for 0 ≤ y < 1 and
√
1− x ≤

1− x
2 for all 0 ≤ x ≤ 1, we have

1 +
√

1− α
3

1−
√

1− α
3

≤ 1 + 1− α
6

1− 1 + α
6

≤ 12

α
− 1.

2.2 Robustness of SPA Preconditioned with an Approximate SDP Solution

The upper bound on κ(C) (Theorem 3) proves that the preconditioning generates a well-conditioned
near-separable matrix for α sufficiently close to one. Hence any good approximation of (1) allows us
to obtain more robust near-separable NMF algorithms. In particular, we have the following result for
SPA.

Theorem 4. Let X̃ = X + N where X satisfies Assumption 1 with m = r, W has full rank and
the noise N satisfies maxj ||N(:, j)||2 ≤ ǫ. Let also Q ∈ R

r×r be such that A = QTQ where A is an
α-approximate solution of (1). If

ǫ ≤ O
(

min

(
1

r
, α3/2

)
σmin(W )√

r

)

,
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then SPA applied on matrix QX̃ identifies indices corresponding to the columns of W up to error

O
(

ǫκ(W )α−3/2
)

.

Proof. This follows from Corollary 1 and Theorem 3. Let Q be such that A = QTQ where A is an
α-approximate solution of (1). Since C = W TAW is an α-approximate solution of (2), we have that

(QW )TQW = W TQTQW = W TAW = C.

Using σi(QW ) =
√

λi(C) for all i, and by Theorem 3 for which we need to assume that ǫ ≤ O
(
σmin(W )

r
√
r

)

,

we further obtain
κ(QW ) ≤

√
12α−1 = 2

√
3α−1/2.

Applying the above bound to Corollary 1 leads to the desired result: ǫ ≤ O
(

σmin(W )
κ3(QW )

√
r

)

leads to an

error proportional to O
(
ǫκ(W )κ3(QW )

)
.

Theorem 4 shows that the SDP-based preconditioning does not require a high accuracy solution
of the SDP. For example, compared to the optimal solution, any 1

2 -approximate solution would not

change the upper bound on the noise level for r ≥ 3 (since 0.53/2 ≥ 1/3) while it would increase the
error by a factor smaller than three. This paves the way to the design of much faster preconditionings,
solving (1) only approximately: this is a topic for further research. Moreover, this analysis will
allow us to understand better two other preconditionings: pre-whitening (Section 3) and SPA-based
preconditioning (Section 4).

3 Pre-Whitening

Noise filtering and pre-whitening are standard techniques in blind source separation; see, e.g., [8].
They were used in [12] as a preconditioning for SPA. In this section, in light of the results from the
previous section, we analyze pre-whitening as a preconditioning. We bound the condition number of
κ(QW ) where Q is the preconditioner obtained from pre-whitening. In the worst case, κ(QW ) can
be large as it depends on the number of pixels n. However, under some standard generative model,
pre-whitening can be shown to be much more robust.

3.1 Description

Let (Ur,Σr, Vr) ∈ R
m×r × R

r×r × R
n×r be the rank-r truncated SVD of X̃ = X + N , so that

X̃r = UrΣrV
T
r is the best rank-r approximation of X̃ with respect to the Frobenius norm. Assuming

that the noiseless data matrix X lives in a r-dimensional linear space and assuming Gaussian noise,
replacing X̃ with X̃r allows noise filtering. Given X̃r, pre-whitening amounts to keeping only the
matrix Vr. Equivalently, it amounts to premultiplying X̃r (or X̃) with Q = Σ−1

r UT
r since

QX̃ =
(
Σ−1
r UT

r

) (
UΣV T

)
=
(
Σ−1
r UT

r

) (
UrΣrV

T
r

)
= QX̃r = V T

r ,

where (U,Σ, V ) is the full SVD of X̃ (recall U(:, 1:r) = Ur, and that the columns of U and V are
orthonormal); see Alg. NF-PW. In [12], Alg. NF-PW is used as an heuristic preconditioning, and
performs similarly as the SDP-based preconditioning. Alg. NF-PW requires O(mnr) operations to
compute the rank-r truncated SVD of X̃ .
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Algorithm NF-PW – Noise Filtering and Pre-Whitening

Input: Matrix X̃ = X +N with X satisfying Assumption 1, rank r.
Output: Preconditioner Q.

1: [Ur,Σr, Vr] = rank-r truncated SVD(X̃).

2: Q = Σ−1
r UT

r .

3.2 Link with the SDP-based Preconditioning

For simplicity, let us consider the case m = r (or, equivalently, assume that noise filtering has already
been applied to the data matrix). In that case, the preconditioner Q given by pre-whitening is

Q = Σ−1
r UT

r =
(

X̃X̃T
)−1/2

,

where (.)−1/2 denotes the inverse of the square root of a positive definite matrix, that is, Q =

S−1/2 ⇐⇒ S =
(
QTQ

)−1
(which is unique up to orthogonal transformations). In fact, for m = r,

X̃ = UrΣrV
T
r hence X̃X̃T = (UrΣr)(UrΣr)

T . We have the following well-known result:

Lemma 4. Let X̃ ∈ R
r×n be of rank r. Then B∗ =

(

X̃X̃T
)−1

is the optimal solution of

max
B∈Sr

+

det(B) such that

n∑

i=1

x̃Tj Bx̃j ≤ r. (5)

Moreover, B∗ satisfies x̃Tj B
∗x̃j ≤ 1 ∀ j.

Proof. Observing that the objective can be replaced with log det(B), and that the constraint will be
active at optimality (otherwise B can be multiplied by a scalar larger than one), any optimal solution
has to satisfy the following first-order optimality conditions:

B−1 = λ

n∑

i=1

x̃jx̃j
T = λX̃X̃T , and

n∑

i=1

x̃j
TBx̃j = r,

where λ ≥ 0 is the Lagrangian multiplier. This implies that B∗ = λ−1
(

X̃X̃T
)−1

. We have

n∑

i=1

x̃j
TB∗x̃j = λ−1

〈(

X̃X̃T
)−1

, X̃X̃T

〉

= λ−1tr

((

X̃X̃T
)−1

X̃X̃T

)

= λ−1tr(Ir) = rλ−1,

The above equation, together with the condition
∑n

i=1 x̃j
TBx̃j = r, imply λ = 1, which proves

B∗ = (X̃X̃T )−1.
Denoting X̃ = UΣV T the compact SVD of X̃ (V ∈ R

n×r), we obtain x̃j
TBx̃j = ||V (j, :)||22 ≤ 1

since V has orthogonal columns and n ≥ r.

A robustness analysis of pre-whitening follows directly from Theorem 4. In fact, by Lemma 4, the
matrix (X̃X̃T )−1 is a feasible solution of the minimum volume ellipsoid problem (1). Moreover, it is
optimal up to a factor r

n : by Lemma 4, the optimal solution of

max
D∈Sr

+

det(D) such that

n∑

i=1

x̃j
TDx̃j ≤ n.

10



is given by D∗ = n
rB

∗ while the optimal solution A∗ of (1) is a feasible solution of this problem (since
x̃j

TA∗x̃j ≤ 1 ∀j) so that

det(B∗) ≤ det(A∗) ≤ det(D∗) = det
(n

r
B∗
)

=
(n

r

)r
det(B∗)

and hence
det(B∗) ≥

( r

n

)r
det(A∗).

In other words, B∗ is a
(
r
n

)r
-approximate solution of (1). Combining this result with Theorem 4, we

obtain

Corollary 2. Let X̃ = X +N where X satisfies Assumption 1 with m = r, W is of full rank and the
noise N satisfies maxj ||N(:, j)||2 ≤ ǫ. If

ǫ ≤ O
(( r

n

) 3r
2 σmin(W )√

r

)

,

pre-whitened SPA identifies indices corresponding to the columns of W up to error O
(

ǫκ(W )
(
n
r

) 3r
2

)

.

This bound is rather bad as n is often large compared to r; for the hyperspectral unmixing
application, we typically have n ≥ 106 and r . 30. In the next subsections, we provide a tight
robustness analysis of pre-whitening, and analyze pre-whitening under a standard generative model.

3.3 Tight Robustness Analysis

In this subsection, we provide a better robustness analysis of pre-whitening. More precisely, we provide
a tight upper bound for κ(QW ). As before, we only consider the case m = r. Under Assumption 1,
we have

X̃ = X +N = W [Ir,H
′] +N = W

(
[Ir,H

′] +W−1N
)
= W

(
[Ir,H

′] +N ′) = WY,

where we denote N ′ = W−1N and Y = [Ir,H
′] + N ′. Recall that the conditioner Q given by pre-

whitening is Q = (X̃X̃T )−1/2. Hence, the condition number of QW will be equal to the square root
of the condition number of Y . In fact,

Q =
(

X̃X̃T
)−1/2

=
(
WY Y TW T

)−1/2
=
(
Y Y T

)−1/2
W−1,

so that κ(QW ) = κ
(
(Y Y T )−1/2

)
= κ (Y ). Therefore, to provide a robustness analysis of pre-

whintening, it is sufficient to bound κ (Y ). In the next lemma, we show that κ (Y ) ≤ O(
√
n− r + 1),

which implies κ(QW ) ≤ O(
√
n− r + 1) and will lead to an error bound that is much smaller than

that derived in the previous subsection.

Lemma 5. Let H ′ ∈ R
r×(n−r) be a nonnegative matrix with ||H ′(:, j)||1 ≤ 1 for all j, and let N ′ ∈ R

r×n

satisfy ||N ′||2 ≤ δ < 1. Then,

κ
(
[Ir,H

′] +N ′) ≤
√
1 + n− r + δ

1− δ
.

11



Proof. Let us first show that

σmin

(
[Ir,H

′]
)
≥ 1, and σmax

(
[Ir,H

′]
)
≤
√
1 + n− r.

We have
σp
(
[Ir,H

′]
)2

= λp

(
[Ir,H

′][Ir,H
′]T
)

where p = min or max, and note that

[Ir,H
′][Ir,H

′]T = Ir +H ′H ′T .

Using H ′H ′T � 0, one easily gets

λmin

(
Ir +H ′H ′T ) ≥ λmin (Ir) = 1.

Also, we have
λmax

(
Ir +H ′H ′T ) ≤ λmax(Ir) + λmax(H

′H ′T ) ≤ 1 + n− r,

as λmax(H
′H ′T ) ≤ tr(H ′H ′T ) and

tr(H ′H ′T ) = tr




∑

j

H ′(:, j)H ′(:, j)T



 =
∑

j

tr
(
H ′(:, j)H ′(:, j)T

)
=
∑

j

||H ′(:, j)||22 ≤ n− r,

since ||H ′(:, j)||2 ≤ ||H ′(:, j)||1 ≤ 1. Finally, using the singular value perturbation theorem (Weyl; see,
e.g., [14]), we have

σp([Ir,H
′)− ||N ||2 ≤ σp([Ir,H

′] +N) ≤ σp([Ir,H
′) + ||N ||2,

for p = min or max, and since ||N ||2 ≤ δ < 1, we obtain

κ
(
[Ir,H

′] +N
)
≤
√
1 + n− r + δ

1− δ
.

This bound allows us to provide a robustness analysis of pre-whitening.

Theorem 5. Let X̃ = X + N where X satisfies Assumption 1 with m = r, W has full rank and

the noise N satisfies maxj ||N(:, j)||2 ≤ ǫ. If ǫ < O
(

σmin(W )

(n−r+1)3/2
√
r

)

, pre-whitened SPA identifies the

columns of W up to error O
(
(n − r + 1)3/2ǫκ(W )

)
.

Proof. This follows from Corollary 1 and Lemma 5. We have

||N ′||2 = ||W−1N ||2 ≤
||N ||2

σmin(W )
≤
√
nmaxj ||N(:, j)||2

σmin(W )
≤ ǫ

√
n

σmin(W )
≤ O

(
1

n

)

,

and as a result Lemma 5 can be applied to obtain κ(QW ) ≤ O(
√
n− r + 1) for pre-whitening. By

plugging the above bound into Corollary 1, Theorem 5 is obtained.

12



The bounds of Theorem 5 are tight. In fact, if, except for the pure pixels, all pixels contain the
same endmember, say the kth, then all columns of H ′ are equal to the kth column of the identity
matrix, that is, H ′(:, j) = Ir(:, k) := ek for all j. Therefore,

κ (Y ) = κ
(
[Ir,H

′]
)
=
√
1 + n− r

since Y Y T = (Ir +H ′H ′T ) = Ir +(n− r)eke
T
k is a diagonal matrix with (Y Y T )ii = 1 for all i 6= k and

(Y Y T )kk = 1 + n− r.
This indicates that pre-whitening should perform the worse when one endmember contains most

pixels, as this matches the upper bound of Theorem 5. However, if the pixels are relatively well-spread
in the convex hull of the endmembers, then pre-whitening may perform well. This will be proven in
the next subsection, wherein the robustness of pre-whitening under a standard generative model is
analyzed.

3.4 Robustness under a Standard Generative Model

We continue our analysis by considering a standard generative model in hyperspectral unmixing. We
again consider m = r, and the generative model is described as follows.

Assumption 2. The near-separable matrix X̃ = WH +N is such that

(i) W is of full rank.

(ii) H(:, j) is i.i.d. following a Dirichlet distribution with parameter α = (α1, . . . , αr) > 0, for all j.
Also, without loss of generality, it will be assumed that α1 ≥ α2 ≥ · · · ≥ αr.

(iii) N(:, j) is i.i.d. with mean zero and covariance E
[
N(:, j)N(:, j)T

]
= σ2

NI, for all j (Gaussian
noise).

(iv) The number of samples goes to infinity, that is, n→∞.

Note that the assumption (ii), which models the abundances as being Dirichlet distributed, is a
popular assumption in the HU context; see the literature, e.g., [21]. In particular, the parameter
α characterizes how the pixels are spread. To describe this, let us consider a simplified case where
β := α1 = . . . = αr; i.e., symmetric Dirichlet distribution. We have the following phenomena: if
β = 1, then H(:, j)’s are uniformly distributed over the unit simplex; if β < 1 and β decreases, then
H(:, j)’s are more concentrated around the vertices (or pure pixels) of the simplex; if β > 1 and β
increases, then H(:, j)’s are more concentrated around the center of the simplex. In fact, β → 0
means that H(:, j)’s contain only pure pixels in the same proportions. It should also be noted that
we do not assume the separability or pure-pixel assumption, although the latter is implicitly implied
by Assumption 2. Specifically, under the assumptions (ii) and (iv), for every endmember there exists
pixels that are arbitrarily close to the pure pixel in a probability one sense.

Now, our task is to prove a bound on κ(QW ) under the above statistical assumptions, thereby
obtaining implications on how pre-whitened SPA may perform with respect to the abundances’ dis-
tribution (rather than in the worst-case scenario). To proceed, we formulate the pre-whitening pre-
conditioner as

Q = R−1/2 where R =
1

n
X̃X̃T =

1

n

n∑

j=1

X̃(:, j)X̃(:, j)T .

13



For n→∞, we have

R = E

[

X̃(:, j)X̃(:, j)T
]

.

Also, under Assumption 2, the above correlation matrix can be shown to be

E

[

X̃(:, j)X̃(:, j)T
]

= WΦW T + σ2
NI, where Φ = E

[
H(:, j)H(:, j)T

]
.

We have the following lemma.

Lemma 6. Under Assumption 2, the matrix Φ = E
[
H(:, j)H(:, j)T

]
is given by

Φ =
1

α0(α0 + 1)

(
D + ααT

)
, (6)

where D = Diag(α1, . . . , αr) and α0 =
∑r

i=1 αi. Also, the largest and smallest eigenvalues of Φ are
bounded by

λmax(Φ) ≤ u :=
α1 + ||α||22
α0(α0 + 1)

, and λmin(Φ) ≥ ℓ :=
αr

α0(α0 + 1)
,

respectively.

Proof. It is known that for a random vector x ∈ R
r following a Dirichlet distribution of parameter α,

its means and covariances are respectively given by

E[xi] =
αi

α0
, and cov[xi, xj ] =

{ − αiαj

α2
0
(α0+1)

if i 6= j,
αi(α0−αi)
α2
0
(α0+1)

if i = j.

From the above results, we get

Φii = E[x2i ] =

(
αi

α0

)2

+
αi(α0 − αi)

α2
0(α0 + 1)

=
α2
i + αi

α0(α0 + 1)
,

and for i 6= j,

Φij = E[xixj ] =
αiαj

α2
0

− αiαj

α2
0(α0 + 1)

=
αiαj

α0(α0 + 1)
,

which lead to (6). The bounds on the eigenvalues follows from the fact that for any A,B ∈ S
r,

λmax(A+B) ≤ λmax(A) + λmax(B) and λmin(A+B) ≥ λmin(A) + λmin(B).

From Lemma 6, we deduce the following result.

Theorem 6. Consider preconditioning via pre-whitening. Under Assumption 2, the condition number
of QW is bounded by

κ(QW ) ≤ κ(W )

√

uσ2
min(W ) + σ2

N

ℓ σ2
max(W ) + σ2

N

where

u =
α1 + ||α||22
α0(α0 + 1)

and ℓ =
αr

α0(α0 + 1)
.
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Proof. By Lemma 6, we have that ℓWW T + σ2
NI �WΦW T + σ2

NI � uWW T + σ2
NI. It follows that

(
uWW T + σ2

NI
)−1 �

(
WΦW T + σ2

NI
)−1 �

(
ℓWW T + σ2

NI
)−1

.

Consider W TQTQW = W T
(
WΦW T + σ2

NI
)−1

W . Letting W = UΣV T be the SVD of W , we obtain

W TQTQW �W T
(
ℓWW T + σ2

N I
)−1

W

= V ΣUT
(
U(ℓΣ2 + σ2

NI)UT
)−1

UΣV T

= V Σ
(
ℓΣ2 + σ2

NI
)−1

ΣV T

= V








. . .
σ2
i (W )

ℓσ2
i (W )+σ2

N

. . .








V T .

Hence σ2
max(W )

ℓσ2
max(W )+σ2

N
is an upper bound for the largest eigenvalue of W TQTQW . Using the same trick,

we obtain
σ2
min

(W )

uσ2
min

(W )+σ2
N

as a lower bound for the smallest eigenvalue of W TQTQW , which gives the

result.

Combining Corollary 1 with Theorem 6 implies robustness of pre-whitening combined with SPA
under the aforementioned generative model. It is particularly interesting to observe that, assuming
σmin(W )≫ σN , we have

κ(QW ) . κ(W )

√

uσ2
min(W )

ℓ σ2
max(W )

=

√
u

ℓ
=

√

α1 + ||α||22
αr

. (7)

As can be seen, the approximate bound above does not depend on the conditioning of W—which is
appealing when we plug it into Corollary 1 to obtain its provable SPA error bound. That said, one
should note that α, which characterizes how the abundances are spread, plays a role. To get more
insight, consider again the symmetric distribution case β := α1 = . . . = αr. Equation (7) reduces to

κ(QW ) .

√

β + rβ2

β
=
√

1 + rβ.

We see that fixing r, a smaller (respectively larger) β implies an improved (respectively degraded)
bound—which is quite natural since β controls the concentration of data points around the vertices
(or pure pixels). It is also interesting to look at the asymmetric distribution case. Specifically, consider
an extreme case where we fix α1, . . . , αr−1 and scale αr to a very small value. Physically, this means
one endmember is present in very small proportions in the data set—a scenario reminiscent of the
worst-case scenario identified by the tight robustness analysis in the last subsection. Then, from (7),
one can see that the bound worsens as αr decreases. In fact, as αr goes to zero, the rth endmember
progressively disappears from the data set and hence cannot be recovered: For αr → 0, (7) becomes
unbounded, which matches the result in Theorem 5 for n→∞ (in a worst-case scenario).

To conclude, SPA preconditioned by pre-whitening can yield good performance if the abundances
are more uniformly spread and a good population of them is close to the pure pixels. On the other
hand, one will expect deteriorated performance if one of the endmembers exhibits little contributions
in the data set, or if most of the pixels are heavily mixed.
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4 SPA-based Heuristic Preconditioning

As discussed previously, the intuition behind designing a good preconditioner is to find the left inverse
W † of W in the ideal case, or to efficiently approximate W † in practice. This reminds us that the
original SPA (or SPA without preconditioning) can extract W exactly in the noiseless case, and
approximately in the noisy case (Th. 1). Hence, a possible heuristic, which has been explored in [11],
is as follows:

1. Identify approximately the columns of W among the columns of X̃ using SPA, that is, identify
an index set K such that W ≈ X̃(:,K) (note that other pure-pixel search algorithms could be
used), and

2. Compute X̃(:,K)† =
(

X̃(:,K)T X̃(:,K)
)−1

X̃(:,K)T (this is pre-whitening of X̃(:,K)).

The computational cost is the one of SPA which requires 2mnr + O(mr2) operations [13], plus the
one of the SVD of X̃(:,K) which requires O(mr2) operations. Hence, this SPA-based preconditioning
is simple and computationally very efficient. Our interest with the SPA-based preconditioning is
fundamental. We will draw a connection between the SPA-based preconditioning and the (arguably
ideal) SDP-based preconditioning. Then, a robustness analysis will be given.

Note that, for m = r, the preconditioning is given by X̃(:,K)−1, while
(

X̃(:,K)X̃(:,K)T
)−1

is the

optimal solution of

P ∗ = argmaxP∈Sr+ det(P ) such that x̃j
TPx̃j ≤ 1 ∀ j ∈ K, (8)

see [12, Th.4] (this also follows from Lemma 4). Hence our heuristic can be seen as a relaxation of
the SDP (1) where we have selected a subset of the constraints using SPA. Moreover, by letting A∗

be the optimal solution of (1), we have

det(P ∗) ≥ det(A∗).

Therefore, we can easily provide an a posteriori robustness analysis, observing that

det(P ∗) ≥ det(A∗) ≥ det

(
P ∗

maxj x̃j
TP ∗x̃j

)

since P ∗

maxj x̃j
TP ∗x̃j

is a feasible solution of (1). Therefore, by denoting β = maxj x̃j
TP ∗x̃j , 1

βP
∗ is a

1
βr -approximate solution of SDP (1), and we can apply Theorem 4.

Remark 1. Note that the active set method for (1) proposed in [12] implicitly uses the above obser-
vation. In fact, the set of initial constraints were selected using SPA, and updated by adding the most
violated constraints at each step (that is the constraints corresponding to the largest x̃j

TP ∗x̃j).

We have observed that extracting more than r columns with SPA sometimes gives a better pre-
conditioning. Intuitively, extracting more columns allows to better assess the way the columns of X̃
are spread in space: at the limit, if all columns are extracted, this is exactly Alg. NF-PW. Hence we
have added a parameter r ≤ p ≤ min(m,n); see Alg. SPA-Prec. Note that SPA cannot extract more
than rank(X̃) indices. Therefore, in the noiseless case (rank(X̃) = r), the SPA-based preconditioning
performs perfectly for any p ≥ r.

SPA-Prec can be used to make pure-pixel search algorithms more robust, e.g., SPA. It is kind of
surprising: one can use SPA to precondition SPA and make it more robust.
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Algorithm SPA-Prec – SPA-based Preconditioning [11]

Input: Matrix X̃ = X +N with X satisfying Assumption 1, rank r, parameter r ≤ p ≤ min(m,n).
Output: Preconditioner Q.

1: K = SPA(X̃, p).

2: Q = NF-PW
(

X̃(:,K), r
)

.

4.1 Robustness Analysis

We can provide the following robustness results for SPA preconditioned with SPA.

Theorem 7. Let X̃ = X + N where X satisfies Assumption 1 with m = r, W has full rank and

the noise N satisfies maxj ||N(:, j)||2 ≤ ǫ. If ǫ ≤ O
(

σmin(W )√
rκ2(W )

)

, then SPA-based preconditioned SPA

identifies the columns of W up to error O (ǫ κ(W )).

Proof. Let us denote W̃ = X̃(:,K) ∈ R
r×r to be the matrix extracted by SPA so that the SPA-based

preconditioning is given by Q = W̃−1. Hence, using Corollary 1, it remains to prove that

κ (QW ) = κ
(

W̃−1W
)

= κ
(

W−1W̃
)

= O(1).

Let us assume without loss of generality that the columns of W̃ are properly permuted (this does not
affect the preconditioning) so that, by Theorem 1, we have

E = W − W̃ where max
j
||E(:, j)||2 ≤ O

(
ǫκ(W )2

)
≤ O

(
σmin(W )√

r

)

.

This implies that ||E||2 ≤ O (σmin(W )). By denoting (U,ΣW , V ) to be the SVD of W , we have

W−1W̃ = V Σ−1
W UT (UΣWV T + E) = Ir + V Σ−1

W UTE.

Denoting A = V Σ−1
W UTE, we also have

κ(W−1W̃ ) ≤ 1 + σmax(A)

1− σmax(A)
,

where ||V Σ−1
W UTE||2 ≤ ||Σ−1

W ||2||E||2 = σmin(W )−1||E||2 ≤ O(1) which gives the result. The above
bound on the condition number follows from the singular value perturbation theorem; see, e.g., [14,
Cor. 8.6.2] which states that, for any square matrix A = B −B′, we have |σi(B)− σi(B

′)| ≤ σmax(A)
for all i.

It is interesting to notice that

• SPA-based preconditioned SPA improves the error bound of SPA by a factor κ(W ).

• The theoretical result for SPA-based preconditioned SPA (Theorem 7) does not allow higher
noise levels than SPA. However, in practice, it will allow much higher noise levels; see the
numerical experiments in Section 5.
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• SPA-based preconditioned SPA has the same robustness as post-processed SPA [2] (see also [12]
for a discussion) although SPA-based preconditioned SPA is computationally slightly cheaper
(post-processed SPA requires r orthogonal projections onto (r−1)-dimensional subspaces). More-
over, post-processed SPA was shown to perform only slightly better than SPA [12] while SPA-
based preconditioned SPA will outperform SPA (in particular, this applies to the synthetic data
sets described in Section 5.2).

• The procedure can potentially be used recursively, that is, use the solution obtained by SPA
preconditioned with SPA to precondition SPA. However, we have not observed significant im-
provement in doing so, and the error bound that can be derived is asymptotically the same as
for a single-pass SPA-based preconditioning. In fact, Theorem 7 can be easily adapted: the only
difference in the proof is that the upper bound for ||E||2 would be better, from O (σmin(W )) to

O
(
σmin(W )
κ(W )

)

, which does not influence κ(W−1W̃ ) being in O(1).

5 Numerical Experiments

In this section, we compare the following algorithms:

• SPA. The successive projection algorithm; see Alg. SPA.

• SDP-SPA. Alg. SDP-Prec + SPA.

• PW-SPA. Alg. NF-PW + SPA.

• SPA-SPA. Alg. SPA-Prec (p = r) + SPA.

• VCA. Vertex component analysis (VCA) [20], available at http://www.lx.it.pt/~bioucas.

• XRAY. Fast conical hull algorithm, ‘max’ variant [16].

The Matlab code is available at https://sites.google.com/site/nicolasgillis/. All tests are
preformed using Matlab on a laptop with Intel CORE i5-3210M 2.5GHz CPU and with 6GB RAM.

5.1 Two-by-Three Near-Separable Matrix

In this subsection, we illustrate the effectiveness of the preconditionings on a small near-separable
matrix: Let

W =

(
k + 1 k
k k + 1

)

for some parameter k ≥ 0. We have that σmin(W ) = 1 and σmax(W ) = 2k + 1 hence κ(W ) = 2k + 1.
Let us also take

H =

(
1 0 0.5
0 1 0.5

)

, X̃ = WH +N with N = δ [−W (:, 1), −W (:, 2), WH(:, 3)]. (9)

Under the above setup, the following phenomena can be shown: For δ ≥ 1
8k2

, we have ||X̃(:, 1)||22 =

||X̃(:, 2)||22 < ||X̃(:, 3)||22. Subsequently, SPA will extract X̃(:, 3) as an endmember estimate, which is
wrong. To show this, note that

||X̃(:, 1)||2 = ||X̃(:, 2)||2 = (1− δ)
√

2k2 + 2k + 1 while ||X̃(:, 3)||2 = (1 + δ)

√

2k2 + 2k +
1

2
.
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By the above equations, the condition ||X̃(:, 1)||22 = ||X̃(:, 2)||22 < ||X̃(:, 3)||22 happens when

δ ≥ 1

8k2
>

√
2k2 + 2k + 1−

√

2k2 + 2k + 1
2

√
2k2 + 2k + 1 +

√

2k2 + 2k + 1
2

,

where the second inequality is obtained via

√

2k2 + 2k + 1 +

√

2k2 + 2k +
1

2
> 2k and

√

2k2 + 2k + 1−
√

2k2 + 2k +
1

2
<

1

4k
.

(The second inequality can be obtained by multiplying the left- and right-hand side by
√
2k2 + 2k + 1+

√

2k2 + 2k + 1
2 .) Also, it can be shown that, for any k, SDP-SPA will extract correctly the columns

of W , with error proportional to O(δk) for δ ≤ O(1). Figure 1 displays the fraction of columns of W
properly identified by the different algorithms for different value of δ: on the left for k = 10 and, on
the right, for k = 1000. As explained above, SPA fails to identify properly the two columns of W for
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Figure 1: Comparison of the different near-separable NMF algorithms on the matrix from Equation (9)
with k = 10 (left) and k = 1000 (right).

any δ ≤ O(k−2) while SDP-SPA works perfectly for δ ≤ O(1). It turns out that all preconditioned
variants perform the same, while XRAY performs the same as SPA. VCA is not deterministic and
different runs lead to different outputs. In fact, potentially any column of X̃ can be extracted by VCA
for δ > 0.

5.2 Middle Points Experiment

In this subsection, we use the so-called middle points experiment from [13], with m = 40, r = 20 and
n = 210. The input matrix satisfies Assumption 1 where each entry of W is generated uniformly at
random in [0,1] and H ′ contains only two non-zero entries equal to 0.5 (hence all data points are in
the middle of two columns of W ). The noise moves the middle points toward the outside of the convex
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hull of the columns of W with N(:, j) = δ (X(:, j) − w̄) where w̄ = 1
r

∑r
k=1W (:, k) and δ is the noise

parameter; see [13] for more details.
For each noise level (from 0 to 0.6 with step 0.01), we generate 25 such matrices and Figure 2 and

Table 1 report the numerical results. We observe that SPA-SPA is able to improve the performance
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Figure 2: Comparison of the different near-separable NMF algorithms on the ‘Middle Points’ experi-
ment.

Robustness Total time (s.)

SPA 0.08 4
SDP-SPA 0.45 3508
PW-SPA 0.45 34
SPA-SPA 0.39 31
VCA 0 841
XRAY 0.18 743

Table 1: Robustness (that is, largest value of δ for which all columns of W are correctly identified)
and total running time in seconds of the different near-separable NMF algorithms.

of SPA significantly: for example, for the noise level δ = 0.4, SPA correctly identifies about 20% of
the columns of W while SPA-SPA does for about 95%. Note that SPA-SPA is only slightly faster
than PW-SPA because (i) m is not much larger than r, and (2) as opposed to SPA-SPA, PW-SPA
actually does not need to compute the product QX̃ where Q is the preconditioning since QX̃ = V T

r .
For large m and n, SPA-SPA will be much faster (see the next section for an example). Note also that
PW-SPA performs very well (in fact, as well as SDP-SPA) because the data points are well spread in
the convex hull of the columns of W hence κ(H) is close to one (in fact, it is equal to 1.38 while the
average value of κ(W ) is around 22.5).
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5.3 Hubble Telescope

We use the simulated noisy Hubble telescope hyperspectral image from [22] (with m = 100 and
n = 16384) constituted of 8 endmembers (see Figure 3). Table 2 reports the running time and the
mean-removed spectral angle (MRSA) between the true endmembers (of the clean image) and the
extracted endmembers. Given two spectral signatures, x, y ∈ R

m, the MRSA is defined as

φ(x, y) =
100

π
arccos

(
(x− x̄)T (y − ȳ)

||x− x̄||2||y − ȳ||2

)

∈ [0, 100].

Figure 3 displays the abundance maps corresponding to the extracted columns of W .

SPA SDP-SPA PW-SPA SPA-SPA

Hon. side 6.51 6.94 6.94 6.15

Cop. Strip. 26.83 7.46 7.44 7.44

Green glue 2.09 2.03 2.03 2.03

Aluminum 1.71 1.80 1.80 1.80
Solar cell 4.96 5.48 5.48 4.96

Hon. top 2.34 2.30 2.30 2.30

Black edge 27.09 13.16 13.16 13.13

Bolts 2.65 2.65 2.65 2.70

Average 9.27 5.23 5.23 5.06

Time (s.) 0.05 4.74 2.18 0.37

Table 2: MRSA of the identified endmembers with the true endmembers, and running time in seconds
of the different preconditioned SPA algorithms.

All preconditioned variants are able to identify the 8 materials properly, as opposed to the original
SPA. SPA-SPA performs slightly better than the other pre-conditioned variants while being the fastest.
We do not show the results of VCA and XRAY as they perform very poorly [12].

6 Conclusion and Further Research

In this paper, we analyzed several preconditionings for making pure-pixel search algorithms more
robust to noise: an approximate SDP, pre-whitening and a simple and fast yet effective SPA-based
preconditioning. The analyses revealed that these preconditionings, which aim at low-complexity
implementation and are suboptimal compared to the ideal SDP preconditioning, actually have provably
good error bounds on pure-pixel identification performance.

Further research include the following:

• Evaluate the preconditionings on real-world hyperspectral images. We have performed prelimi-
nary numerical experiments on real-world hyperspectral images and did not observe significant
advantages when using the different preconditionings. A plausible explanation is that the noise
level in such images is usually rather large (in particular larger than the bounds derived in the
theorems) and these images contain outliers. Hence, to make preconditionings effective is such
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Figure 3: The abundance maps corresponding to the endmembers extracted by the different algo-
rithms. From top to bottom: SPA, SDP-SPA, PW-SPA, SPA-SPA. From left to right: Honeycomb
side, Copper Stripping, Green glue, Aluminum, Solar cell, Honeycomb top, Black rubber edge, and
bolts.

conditions, some pre-processing of the data would be necessary; in particular, outlier identifi-
cation since pure-pixel search algorithms are usually very sensitive to outliers (e.g., VCA, SPA,
and XRAY).

• Use the preconditioning to enhance other blind hyperspectral unmixing algorithms; for example
algorithms which do not require the pure-pixel assumption to hold, e.g., [17, 7, 4].

• Analyze theoretically and practically the influence of preconditioning on other pure-pixel search
algorithms. For example, the results of this paper directly apply to the successive nonnegative
projection algorithm (SNPA) which is more robust and applies to a broader class of matrices
(W does not need to be full rank) than SPA [9].
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A Proof for Lemma 3

We have to prove that κ∗ =
1+

√

1−γ
(

r
β

)r

1−
√

1−γ
(

r
β

)r
satisfies

κ∗ = max
λ∈Rr

λ1

λr
such that

∑

i

λi ≤ β,
∏

i

λi ≥ γ, and λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0,

where β ≥ r and 0 < γ ≤ 1. Note first that the problem is feasible taking λi = 1 for all i.
At optimality, the constraint

∑

i λi ≤ β must be active (otherwise λ1 can be increased to generate
a strictly better solution), the constraint

∏

i λi ≥ γ must also be active (otherwise λr can be decreased
to obtain a strictly better solution), and λi > 0 for all i (otherwise the solution is infeasible since
γ > 0).

The feasible domain is compact and the objective function is continuous and bounded above: in
fact, λi ≤ β and λi ≥ γ

βr−1 for all i hence κ∗ ≤ βr

γ . Therefore, the maximum must be attained (extreme

value theorem). Let λ∗ be an optimal solution.

For r = 2, λ∗ must satisfy λ∗
1 + λ∗

2 = β, λ∗
1λ

∗
2 = γ and λ∗

1 ≥ λ∗
2, hence λ∗

1 =
β
2

(

1 +
√

1− γ 4
β2

)

and

λ∗
2 =

β
2

(

1−
√

1− γ 4
β2

)

which gives the result.

For r ≥ 3, let us show that λ∗
i = λ∗

i+1 for all 2 ≤ i ≤ r−2. Assume λ∗
i > λ∗

i+1 for some 2 ≤ i ≤ r−2.
Replacing λ∗

i and λ∗
i+1 by their average will keep their sum constant while strictly increasing their

product hence this generates another optimal solution, a contradiction since the constraint
∏

i λi ≥ γ
must be active at optimality. Therefore, the above optimization problem is equivalent to

κ∗ = max
x∈R3

x1
x3

such that x1 + (r − 2)x2 + x3 = β,

x1x
r−2
2 x3 = γ, and

x1 ≥ x2 ≥ x3 ≥ 0.

(10)
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Let us consider a relaxation of the above problem by dropping the constraint x1 ≥ x2 ≥ x3 ≥ 0; it
will be shown that the solution of the relaxed problem satisfies the constraints automatically. The
first-order optimality conditions of the relaxed problem are given by

1

x3
= λ+ µxr−2

2 x3 = λ+ µ
γ

x1
,

0 = λ(r − 2) + µ(r − 2)xr−3
2 x1x3 = λ(r − 2) + µ(r − 2)

γ

x2
,

−x1
x23

= λ+ µxr−2
2 x1 = λ+ µ

γ

x3
,

where λ and µ are the Lagrangian multipliers for the first and second constraint of (10), respectively.
Multiplying the first equality by x1 and the third by x3 and summing them up gives

x1 + x3 =
−2µγ
λ

.

Multiplying the second equality by x2 gives x2 =
−µγ
λ hence x2 =

x1+x3

2 . This gives x1+(r−2)x1+x3

2 +

x3 = β hence x1+x3 = 2β
r , which combined with x1

(
x1+x3

2

)r−2
x3 = γ gives x1x3 = γ

(
r
β

)r−2
. Finally,

the solution is given by

x∗1 =
β

r

(

1 +

√

1− γ

(
r

β

)r
)

, x∗3 =
β

r

(

1−
√

1− γ

(
r

β

)r
)

and x∗2 =
x∗1 + x∗3

2
.

It can be seen that for β ≥ γ and 0 < γ ≤ 1, we have x∗1 ≥ x∗2 ≥ x∗3 ≥ 0, which satisfies the third
constraint of (10) automatically. Hence, the (x∗1, x

∗
2, x

∗
3) above is the optimal solution of (10).
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