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ABSTRACT In applications where classification performance is criti-

In this paper we present a novel method for robust hyperspeé€al, performance gains can be obtained at the expense of not
tral image classification using context and rejection. Hype classifying all the samples. This can be achieved by selec-
spectral image classification is generally an ill-posedgena tively abstaining from classification in situations wheresm
problem where pixels may belong to unknown classes, anélassifications are expected. Classification with rejectvas
obtaining representative and complete training sets iycos firstly analyzed in[[8], where a rejection rule for optimum
Furthermore, the need for high classification accuracifegis ~ error-reject trade-off was designed for binary classiitrat
quently greater than the need to classify the entire image. Whereas the design of systems for classification with rejec-

We approach this problem with a robust classificatiortion is a rich area (seel[4] and references therein for state o
method that combines classification with context with clasthe art systems for classification with rejection), the aapl
sification with rejection. A rejection field that will guide¢  tion of these systems is rare in pixelwise image classiboati
rejection is derived from the classification with contextua and in hyperspectral image classification.

information obtained by using the SegSALSA [1] algorithm. |, this paper we are interested in combining classification
We validate our method in real hyperspectral data and shoyjith context with classification with rejection to obtaina r
that the performance gains obtained from the rejectiondieldy s classification scheme. This means combining the option
are equivalent to an increase the dimension of the training, reject when evidence for a classification is not enoiigh (
sets. reject when the classifier is likely to misclassify) with thees
Index Terms— Hyperspectral image classification, hid- that arise from spatial context informatione{ classification

den fields, robust classification, classification with réggc ~ under assumption of piecewise smooth labeling). By associ-
ating spatial context with rejection, context cues influetie

1. INTRODUCTION decision. wheth_er to reject or ncﬂ._g. a sample is less likely
to be rejected if all the neighboring samples have the same

Hyperspectral image classification is a challenging proble !2bel) , and rejection cues influence the contexg(a sam-
in remote sensin@[2]. Due to generally ill-posed naturefh Ple is more likely to be rejected if all the neighboring sam-
perspectralimage segmentation and classification, $pegia  PIes are also rejected). The robust classification idea pas a
ularization is often usea(g.by promoting piecewise smooth Plied to tissue classification in stained microscopy imdgs
classifications) which provides context to the classifisati Where rejection is considered an extra class and Markov ran-
However, context alone cannot deal with difficulties agsin dom fields are used as spatial contextual prior, with signifi-
from the existence of pixels belonging to unknown classestant performance improvements. A major drawback of this
unrepresentative and incomplete training sets, or ovpirap approach is its rigidity with regard to the relative importa
classes. We propose a method that, combined with contextu@l rejection: if the amount of desired rejection is chandbs,
classification, mitigates these difficulties through thelin ~ context has to be recomputed.
sion of a reject option, thus achieving robust classificatio We propose a robust classification scheme that computes
This paper was submitted to IEEE WHISPERS 2018:Workshop on the rejection after the context, allowing us to change arhoun
Hyperspectral Image and Signal Processing: Evolution and®e Sensing.  Of samples rejected on the fly. By using the hidden fields
Thehautrors grategully ackn?jwledge SUppoﬂf/rom/;/h%gggﬂgaS;iegfe and resulting from segmentation via the constrained split aug-
Tl Foitn ot UDIEEASOUBE®IOCEEL et Lagrangian shinkage algorim (SegSALSATL, o]
the CMU-Portugal (ICTI) program under grant SFRH/BD/51@8a1, NSF~ We are able to infer a rejection field that reflects an ordesing
through award 1017278, and the CMU CIT Infrastructure Award the image pixels according to the degree of confidence associ
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ated with the contextual information, thus providing a dienp is relevant to the segmentation problem, we model them with
and effective way to classify with rejection and context. the multinomial logistic regression (MLR) and use the legis

The paper is organized as follows: Sectidn 2 providesic regression via splitting and augmented Lagrangian (LOR
the background on the contextual classification algorithnSAL) [11] algorithm to learn the regression weights.
(SegSALSA) and performance measures for classification By dealing with the MMAP problem instead of the MAP,
with rejection. Sectiol]3 introduces the rejection field andhe prior is no longer applied on the discrete labelsut on
describes their construction and properties. SeEliongepts  the continuous hidden fielel A convex VTV prior [8,9] is
experimental results and Sect[dn 5 concludes the paper.  applied on the hidden field leading to promote a smoothness

along the spatial dimensions of the field, and preservatidn a
2. BACKGROUND alignment of discontinuities across the classes.
From the initial integer optimization problem inl (1), the

SegSALSA The SegSALSA algorithm performs a marginal contextual classification problem is now formulated as a con
maximuma posteriori (MMAP) segmentation through the vex optimization problem
marginalization, on the discrete labels, of a hidden field-dr
ing the probabilities[[[7] and applies a vectorial total wari = _ . T\ _
tion (VTV) prior [8, 9] on the hidden field. This results on FMMAP argelﬂ%}g” Z (m (pz Zl)) np(z) (@)
a convex segmentation formulation that is solved using the
constraint split augmented Lagrangian shrinkage algorith

(SALSA) [10]. Based o ~ . .
; . . mmar, D(¥|Zmmap ) provides a soft classification,
To describe the SegSALSA algorithm, we start by INT0-4nd its maximization with respect tp a hard classifica-

. . dxn :
ducing ln_otatlon. _Lh(?’; edR ) dzepresgnt a-pixel hﬁ/p?r- tion. The optimization[{R) is solved with SALSAT10], an
spectral image W't -bands and; € R represent the fea- jnance of the alternating direction method of multifgien
ture vector of theth image pixel, withS = {1,...,n} a set O(Knlogn) time. 1

indexing the image pixels. Lef = {1,..., K} denote the
set of possibles labels, andy € £ a labeling of the image

ics
subjectto: z >0, 1%z =17,

with y; € £ the label of theth pixel. Performance measures for classification with rejection
Under a Bayesian perspective, the maximaposteriori 10 assess the performance of classification systems with re-
(MAP) labelingy is given by jection we use theronrejected accuracy, the fraction of

rejected samples, and theclassification qualityp [12]. The
y = arg g}ggg p(ylx) = arg )I}é%X p(x|y)p(y), (1) nonrejected accuracyeasures the accuracy on the subset of
samples that are not rejected, tlegected fractiormeasures
wherep(y|x) represents the posterior probability of the la- how much rejection is performed, and ttassification qual-
belingy given the feature vectors, p(x|y) the observation ity jointly measures how accurate the classification on the
model, ancp(y) the prior probability of the labeling. nonrejected samples is and how inaccurate are classificatio
SegSALSA approaches the segmentation, or labelingn the rejected samples is.
problem by introducing a hidden field![Z] represented by ConsideringS the set of pixel indexes, |6® denote the
a K x n matrix that, for each pixel € S, contains the set of rejected pixelsR the set of nonrejected samples) @hd
hidden random vectors; € R¥. The joint probability of  the set of correctly classified sampléstie set of incorrectly

labelsy and fieldz is defined asp(y,z) = p(y|z)p(z), classified samples). We define the nonrejected accutay
with p(y|z) = [];cs p(vilz:), allowing the expression of the

joint probability of the features, labels and fields y, z) as = ICNR

p(x,y,2z) = p(x|y)p(y|z)p(z). With the hidden field and the TR

joint probability defined, the marginalization on the deter

labels is now possible: This measure, combined with the respective fraction of re-
jected samples, cannot compare directly the behavior of two

p(x,2) = [[{ D pilvi)p(yilzi) }p(2), classifiers with rejection with different rejected fractio
€S yieL Theclassification quality) is defined as
with the MMAP estimate beinguwap = ar;ger]g}(nmp(x, z). CAR|+ICAR|
By modeling the conditional probabiliy(y; = k|z;) as Q= S| ‘

the kth component of théth random vectofz;|;, two con-

straints are introduced in the hidden fiedd nonnegativity = The classification quality measures the proportion of saspl
constraint (e, [z;]x > 0) and sum-to-one constrainte.,,  that areeither correctly classified and not rejected incor-
1%z, = 1). As only the discriminative power of the condi- rectly classified and rejected, relative to the total nunufer
tional probabilitiep; := [p(xily; = 1,...,p(x;ly; = K)]T  samples.



A classifier with rejection with a classification quality of
@ when rejecting a fraction of sampleswill be equivalent,
in terms of correct decisions performed, to a classifier with
rejection and accuracy numerically equalo The classifi-
cation quality allows us to directly compare the performeanc
of classification systems with rejection working at diffetre
rejected fractions.

Table 1. Classwise performance measures for classification
with rejection of the Indian Pines scene (Hi). 1, top ro@}
correspondes to the accuracy of the SegSALSA classification
method with no rejection (Figl]1 b), and corresponds to
nonrejected accuracg) to classification quality, and to re-
jected fraction from classification with rejection (Fid. 1L e
Is the number of samples per class.

OA (%)  A%) Q%) (%) n

3. REJECTION FIELD

alfafa 71.74 0.00 26.09 97.83 46

. : : . corn no-till 66.67 76.57  79.06 13.94 1428

From the S_egSALSA formulalt|on. and resulting h|dden_ f|e!d corn min-til £313 4733 4349 3687 830
we can derlv_e a cor_1textua| rejection scheme — t_he_ rejgctloncom clean 10000 10000  96.62 338 937
field. The hldde_n fieldz _tha_lt re_sults from the opt|m|za_t|on grass past. 7785 81.06 7578 13.66 483
problem[2) provides an indication of the degree of configenc 55 trees 9055  90.83  90.00 1.37 730
associated with each label in each pixel. This igzif; > grass mowed 0.00 0.00 0.00 0.00 28
[z;];, we are led to believe that the laldéh the jth pixelhasa  hay 99.16  100.00  97.70 3.14 478
smaller degree of confidence associated with the classificat oats 0.00 0.00 100.00 100.00 20
than the labek in theith pixel. soybean no-till 72.94 7409  71.81 7.10 972
Considering the fo”owing |abe|ing Soybean min-till 72.38 88.54 89.53 19.67 2455
soybean clean 79.26 78.50 69.48 14.50 593

y = arg max p(y|Zmmap), wheat 86.34  86.21  85.37 0.98 205

yeLr woods 7455  81.56  82.29 9.96 1265

and obtaining the associated maximum probabilities bldg. 66.06 ~ 80.70 8420  18.13 386
stone 32,26  32.26  32.26 0.00 93

[zg]i = p(TilZmmap), (3)

the probabilities associated with the MMAP labeling, weanot of 5 rejection field. Whereas the solution we obtain is an ap-
that the same line of thought of the components of the hiddeproximation to the contextual rejection problem (joint iin
fields as an indication of confidence can be applied to the eMnization), the sequential optimization we perform has arcle
tire labeling. If(zg]; > [z5];, there is strong evidence that gagvantage over the joint optimization approach: the amount
a higher degree of confidence exists in the labeling oftiie  of rejection can be changed on the fly, whereas on the joint

pixel asy; than in the labeling of thgth pixel asy . _ optimization approach the context has to be recomputed.
We denote they field (3) associated with the labeling

asrejection field By sortingzy we obtain an ordering of the
samples according to their relative confidence. The selecti 4. EXPERIMENTAL RESULTS
of a fraction of the lowest confidence samples to be rejected
yields a simple, yet very effective, scheme for rejectionisT We illustrate the performance of our algorithm through the
method allows not only to defina, priori, specific values of robust classification of the AVIRIS Indian Pine scene, ared th
the rejected fraction, but also to change it instantly. ket ROSIS Pavia university scene. The Indian Pine scene was ac-
more the optimal value of rejection (the rejected fractioatt quired with the AVIRIS sensor in NorthWest Indiana (USA),
maximizes the classification quality) can be estimated faom being al45 x 145 pixel hyperspectral image witk00 spec-
subset of samples, a validation set. tral bands (excluding water absorption bands) containihg
The characteristics of the VTV prior used in SegSALSAnot mutually exclusive classes. The Pavia University scene
indirectly impose context on the rejection field. As it pro- was acquired with the ROSIS sensor in Pavia (Italy), being a
motes smooth hidden fields, preservation of discontiraitie610 x 340 pixel hyperspectral image witth3 spectral bands
and their alignment among classes, it preserves the discontontaining9 not mutually exclusive classes. We model the
nuities on the maximum values of the hidden field, and conMLR weights with LORSAL and use the SegSALSA algo-
sequently promotes smoothness and preservation of discontithm to include context in the classification.
nuities on the rejection field. Figure[1 illustrates the performance gains obtained by
The computation of a rejection field and its use as a reeombining classification with context with classificatiofttw
jection rule is an approximation to the problem of contektuarejection. Using the rejection field, we are able to change
rejection approached inl[5], where a joint optimizationba t the amount of rejected samples on the fly, without need to
labels and on the reject option is performed. We perform a seecompute the context. Taldlé 1 shows that the performance
guential optimization: first an optimization on the labetgla gains are not equally distributed among all classes. The bul
then a binary optimization on the reject option through tbe u of the performance gains is achieved by increasing the per-
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Fig. 1. Top row: Robust classification of the Indian Pines sceng.Gfaund truth and (b) classification witth training
samples per class using LORSAL and SegSALS2A 1% accuracy), (c) classification with optimal rejected franti80.9%
nonrejected accuracy at a rejected fractioisot % with classification quality 079.2%), and (d) associated rejection fields. (e)
Nonrejected accuracy and classification quality variatith rejected fraction (maximum classification quality éd). Bottom
row: Robust classification of the Pavia University sceng Gffound truth and (g) classification wift¥ training samples per
class using LORSAL and SegSALSAY8% accuracy), (h) classification with optimal rejected frant{74.6% nonrejected

accuracy at a rejected fraction f.9% with classification quality o73.0%), and (i) associated rejection fields. (j) Nonrejected
accuracy and classification quality variation with rejedi@ction (maximum classification quality in red).

formance in highly populated classes. This is achieveekeith
by a minor drop in nonrejected accuracy in small number o
lesser populated classes, or by the entire rejection oéless
populated class.

lll'able 2. Effect of increasing the dimension of the training
set with new samplegs using the new samples as valida-
tion set to estimate the rejected fractiom the Indian Pines
scene. Comparison of average performance (classification
quality @, nonrejected accuracy, and rejected fractiom)

over30 Monte Carlo runs.

r(%) Q%) A%)
The performance gains obtained from the allocation of Ialr?(')t'f;je;ttiﬁmng set ofig0 samples with - 0.00 8421 84.21
beled samples to estimate the optimal rejected fracti@r@h  extended- training set ofi80 + 50 sam-  0.00  86.46  86.46
jected fraction that maximizes the classification qualigih  ples with no rejection
be larger than the gains obtained from using those sampl&§timated— training set ofi80 samples, 12.77 87.02 91.16
to extend the training set, retraining with LORSAL and clas-}’;'g:n ggtgrilplreefcmd fraction estimated
sifying the image with SegSALSA. This effect is clearly il- optimal — training set of480 samples, 12.49 88.37  91.53
lustrated on tablel2, where, in the Indian Pines scene, for aith true optimal rejected fraction
initial training set of30 samples the class, the effect of either
estimating the optimal rejected fraction fraitirandomly se-
lected samples or retraining the classifier with the eXtra
samples is shown. Whereas it is clear that the increased per- 5. CONCLUDING REMARKS
formance obtained by estimating the rejected fraction when
compared to retraining the classifier will not hold for sraall We presented a simple and effective scheme for robust hyper-
training sets, for larger training sets it is a computatiyna spectral image classification by combining classificatidti w
cheaper and performance-wise better alternative to ntiai  context and classification with rejection by deriving a ceje

the classifier. tion field from the hidden fields that drive the contextuakela




sification. We moved from the joint optimization problem of [9] L. Sun, Z. Wul, J. Liu, and Z. Wei, “Supervised hy-
context and rejection, to a faster separate optimizatidh-wi
out losing the contextual effect on the rejection. The perfo
mance gains obtained by using robust classification arershow
to be equivalent to training the classifier with larger tiain

sets.

(10]
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