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ABSTRACT
In this paper we present a novel method for robust hyperspec-
tral image classification using context and rejection. Hyper-
spectral image classification is generally an ill-posed image
problem where pixels may belong to unknown classes, and
obtaining representative and complete training sets is costly.
Furthermore, the need for high classification accuracies isfre-
quently greater than the need to classify the entire image.

We approach this problem with a robust classification
method that combines classification with context with clas-
sification with rejection. A rejection field that will guide the
rejection is derived from the classification with contextual
information obtained by using the SegSALSA [1] algorithm.
We validate our method in real hyperspectral data and show
that the performance gains obtained from the rejection fields
are equivalent to an increase the dimension of the training
sets.

Index Terms— Hyperspectral image classification, hid-
den fields, robust classification, classification with rejection.

1. INTRODUCTION

Hyperspectral image classification is a challenging problem
in remote sensing [2]. Due to generally ill-posed nature of hy-
perspectral image segmentation and classification, spatial reg-
ularization is often used (e.g.by promoting piecewise smooth
classifications) which provides context to the classification.
However, context alone cannot deal with difficulties arising
from the existence of pixels belonging to unknown classes,
unrepresentative and incomplete training sets, or overlapping
classes. We propose a method that, combined with contextual
classification, mitigates these difficulties through the inclu-
sion of a reject option, thus achieving robust classification.
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In applications where classification performance is criti-
cal, performance gains can be obtained at the expense of not
classifying all the samples. This can be achieved by selec-
tively abstaining from classification in situations where mis-
classifications are expected. Classification with rejection was
firstly analyzed in [3], where a rejection rule for optimum
error-reject trade-off was designed for binary classification.
Whereas the design of systems for classification with rejec-
tion is a rich area (see [4] and references therein for state of
the art systems for classification with rejection), the applica-
tion of these systems is rare in pixelwise image classification
and in hyperspectral image classification.

In this paper we are interested in combining classification
with context with classification with rejection to obtain a ro-
bust classification scheme. This means combining the option
to reject when evidence for a classification is not enough (i.e.
reject when the classifier is likely to misclassify) with thecues
that arise from spatial context information (i.e. classification
under assumption of piecewise smooth labeling). By associ-
ating spatial context with rejection, context cues influence the
decision whether to reject or not (e.g. a sample is less likely
to be rejected if all the neighboring samples have the same
label) , and rejection cues influence the context (e.g. a sam-
ple is more likely to be rejected if all the neighboring sam-
ples are also rejected). The robust classification idea was ap-
plied to tissue classification in stained microscopy images[5],
where rejection is considered an extra class and Markov ran-
dom fields are used as spatial contextual prior, with signifi-
cant performance improvements. A major drawback of this
approach is its rigidity with regard to the relative importance
of rejection: if the amount of desired rejection is changed,the
context has to be recomputed.

We propose a robust classification scheme that computes
the rejection after the context, allowing us to change amount
of samples rejected on the fly. By using the hidden fields
resulting from segmentation via the constrained split aug-
mented Lagrangian shrinkage algorithm (SegSALSA) [1, 6],
we are able to infer a rejection field that reflects an orderingof
the image pixels according to the degree of confidence associ-
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ated with the contextual information, thus providing a simple
and effective way to classify with rejection and context.

The paper is organized as follows: Section 2 provides
the background on the contextual classification algorithm
(SegSALSA) and performance measures for classification
with rejection. Section 3 introduces the rejection field and
describes their construction and properties. Section 4 presents
experimental results and Section 5 concludes the paper.

2. BACKGROUND

SegSALSA The SegSALSA algorithm performs a marginal
maximuma posteriori (MMAP) segmentation through the
marginalization, on the discrete labels, of a hidden field driv-
ing the probabilities [7] and applies a vectorial total varia-
tion (VTV) prior [8, 9] on the hidden field. This results on
a convex segmentation formulation that is solved using the
constraint split augmented Lagrangian shrinkage algorithm
(SALSA) [10].

To describe the SegSALSA algorithm, we start by intro-
ducing notation. Letx ∈ R

d×n represent an-pixel hyper-
spectral image withd bands andxi ∈ R

d represent the fea-
ture vector of theith image pixel, withS = {1, . . . , n} a set
indexing the image pixels. LetL = {1, . . . ,K} denote the
set of possibleK labels, andy ∈ Ln a labeling of the image
with yi ∈ L the label of theith pixel.

Under a Bayesian perspective, the maximuma posteriori
(MAP) labelingŷ is given by

ŷ = arg max
y∈Ln

p(y|x) = arg max
y∈Ln

p(x|y)p(y), (1)

wherep(y|x) represents the posterior probability of the la-
belingy given the feature vectorsx, p(x|y) the observation
model, andp(y) the prior probability of the labelingy.

SegSALSA approaches the segmentation, or labeling,
problem by introducing a hidden field [7]z represented by
a K × n matrix that, for each pixeli ∈ S, contains the
hidden random vectorszi ∈ R

K . The joint probability of
labelsy and field z is defined asp(y, z) = p(y|z)p(z),
with p(y|z) =

∏
i∈S

p(yi|zi), allowing the expression of the
joint probability of the features, labels and fields(x,y, z) as
p(x,y, z) = p(x|y)p(y|z)p(z). With the hidden field and the
joint probability defined, the marginalization on the discrete
labels is now possible:

p(x, z) =
∏

i∈S

{ ∑

yi∈L

p(xi|yi)p(yi|zi)
}
p(z),

with the MMAP estimate beinĝzMMAP = argmin
z∈RK×n

p(x, z).

By modeling the conditional probabilityp(yi = k|zi) as
the kth component of theith random vector[zi]k, two con-
straints are introduced in the hidden fieldz: nonnegativity
constraint (i.e., [zi]k ≥ 0) and sum-to-one constraint (i.e.,
1TKzi = 1). As only the discriminative power of the condi-
tional probabilitiespi := [p(xi|yi = 1, . . . , p(xi|yi = K)]T

is relevant to the segmentation problem, we model them with
the multinomial logistic regression (MLR) and use the logis-
tic regression via splitting and augmented Lagrangian (LOR-
SAL) [11] algorithm to learn the regression weights.

By dealing with the MMAP problem instead of the MAP,
the prior is no longer applied on the discrete labelsy but on
the continuous hidden fieldz. A convex VTV prior [8, 9] is
applied on the hidden field leading to promote a smoothness
along the spatial dimensions of the field, and preservation and
alignment of discontinuities across the classes.

From the initial integer optimization problem in (1), the
contextual classification problem is now formulated as a con-
vex optimization problem

ẑMMAP = argmin
z∈RK×n

−
∑

i∈S

(
ln
(
pT
i zi

))
− ln p(z) (2)

subject to: z ≥ 0, 1T
Kz = 1T

n .

Based on̂zMMAP , p(y|ẑMMAP) provides a soft classification,
and its maximization with respect toy a hard classifica-
tion. The optimization (2) is solved with SALSA [10], an
instance of the alternating direction method of multipliers, in
O(Kn logn) time. 1

Performance measures for classification with rejection
To assess the performance of classification systems with re-
jection we use thenonrejected accuracyA, the fraction of
rejected samplesr, and theclassification qualityQ [12]. The
nonrejected accuracymeasures the accuracy on the subset of
samples that are not rejected, therejected fractionmeasures
how much rejection is performed, and theclassification qual-
ity jointly measures how accurate the classification on the
nonrejected samples is and how inaccurate are classification
on the rejected samples is.

ConsideringS the set of pixel indexes, letR denote the
set of rejected pixels (̄R the set of nonrejected samples) andC
the set of correctly classified samples (C̄ the set of incorrectly
classified samples). We define the nonrejected accuracyA as

A =
|C ∩ R̄|

|R̄|
.

This measure, combined with the respective fraction of re-
jected samples, cannot compare directly the behavior of two
classifiers with rejection with different rejected fractions.

Theclassification qualityQ is defined as

Q =
|C ∩ R̄|+ |C̄ ∩ R|

|S|
.

The classification quality measures the proportion of samples
that areeither correctly classified and not rejectedor incor-
rectly classified and rejected, relative to the total numberof
samples.



A classifier with rejection with a classification quality of
Q when rejecting a fraction of samplesr will be equivalent,
in terms of correct decisions performed, to a classifier withno
rejection and accuracy numerically equal toQ. The classifi-
cation quality allows us to directly compare the performance
of classification systems with rejection working at different
rejected fractions.

3. REJECTION FIELD

From the SegSALSA formulation and resulting hidden field
we can derive a contextual rejection scheme — the rejection
field. The hidden fieldz that results from the optimization
problem (2) provides an indication of the degree of confidence
associated with each label in each pixel. This is, if[zi]k >

[zj ]l, we are led to believe that the labell in thejth pixel has a
smaller degree of confidence associated with the classification
than the labelk in theith pixel.

Considering the following labeling

ŷ = arg max
y∈Ln

p(y|ẑMMAP),

and obtaining the associated maximum probabilities

[zŷ]i = p(ŷi|ẑMMAP), (3)

the probabilities associated with the MMAP labeling, we note
that the same line of thought of the components of the hidden
fields as an indication of confidence can be applied to the en-
tire labeling. If [zŷ]i > [zŷ]j , there is strong evidence that
a higher degree of confidence exists in the labeling of theith
pixel asŷi than in the labeling of thejth pixel asŷj .

We denote thezŷ field (3) associated with the labelingy
asrejection field. By sortingzŷ we obtain an ordering of the
samples according to their relative confidence. The selection
of a fraction of the lowest confidence samples to be rejected
yields a simple, yet very effective, scheme for rejection. This
method allows not only to define,a priori, specific values of
the rejected fraction, but also to change it instantly. Further-
more the optimal value of rejection (the rejected fraction that
maximizes the classification quality) can be estimated froma
subset of samples, a validation set.

The characteristics of the VTV prior used in SegSALSA
indirectly impose context on the rejection field. As it pro-
motes smooth hidden fields, preservation of discontinuities
and their alignment among classes, it preserves the disconti-
nuities on the maximum values of the hidden field, and con-
sequently promotes smoothness and preservation of disconti-
nuities on the rejection field.

The computation of a rejection field and its use as a re-
jection rule is an approximation to the problem of contextual
rejection approached in [5], where a joint optimization on the
labels and on the reject option is performed. We perform a se-
quential optimization: first an optimization on the labels and
then a binary optimization on the reject option through the use

Table 1. Classwise performance measures for classification
with rejection of the Indian Pines scene (Fig. 1, top row).OA

correspondes to the accuracy of the SegSALSA classification
method with no rejection (Fig. 1 b), andA corresponds to
nonrejected accuracy,Q to classification quality, andr to re-
jected fraction from classification with rejection (Fig. 1 c). n
Is the number of samples per class.

OA (%) A(%) Q(%) r(%) n

alfafa 71.74 0.00 26.09 97.83 46
corn no-till 66.67 76.57 79.06 13.94 1428
corn min-till 53.13 47.33 43.49 36.87 830
corn clean 100.00 100.00 96.62 3.38 237
grass past. 77.85 81.06 75.78 13.66 483
grass trees 90.55 90.83 90.00 1.37 730
grass mowed 0.00 0.00 0.00 0.00 28
hay 99.16 100.00 97.70 3.14 478
oats 0.00 0.00 100.00 100.00 20
soybean no-till 72.94 74.09 71.81 7.10 972
soybean min-till 72.38 88.54 89.53 19.67 2455
soybean clean 79.26 78.50 69.48 14.50 593
wheat 86.34 86.21 85.37 0.98 205
woods 74.55 81.56 82.29 9.96 1265
bldg. 66.06 80.70 84.20 18.13 386
stone 32.26 32.26 32.26 0.00 93

of a rejection field. Whereas the solution we obtain is an ap-
proximation to the contextual rejection problem (joint mini-
mization), the sequential optimization we perform has a clear
advantage over the joint optimization approach: the amount
of rejection can be changed on the fly, whereas on the joint
optimization approach the context has to be recomputed.

4. EXPERIMENTAL RESULTS

We illustrate the performance of our algorithm through the
robust classification of the AVIRIS Indian Pine scene, and the
ROSIS Pavia university scene. The Indian Pine scene was ac-
quired with the AVIRIS sensor in NorthWest Indiana (USA),
being a145 × 145 pixel hyperspectral image with200 spec-
tral bands (excluding water absorption bands) containing16
not mutually exclusive classes. The Pavia University scene
was acquired with the ROSIS sensor in Pavia (Italy), being a
610× 340 pixel hyperspectral image with103 spectral bands
containing9 not mutually exclusive classes. We model the
MLR weights with LORSAL and use the SegSALSA algo-
rithm to include context in the classification.

Figure 1 illustrates the performance gains obtained by
combining classification with context with classification with
rejection. Using the rejection field, we are able to change
the amount of rejected samples on the fly, without need to
recompute the context. Table 1 shows that the performance
gains are not equally distributed among all classes. The bulk
of the performance gains is achieved by increasing the per-



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. Top row: Robust classification of the Indian Pines scene. (a) Ground truth and (b) classification with15 training
samples per class using LORSAL and SegSALSA (73.5% accuracy), (c) classification with optimal rejected fraction (80.9%
nonrejected accuracy at a rejected fraction of14.7% with classification quality of79.2%), and (d) associated rejection fields. (e)
Nonrejected accuracy and classification quality variationwith rejected fraction (maximum classification quality in red). Bottom
row: Robust classification of the Pavia University scene. (f) Ground truth and (g) classification with15 training samples per
class using LORSAL and SegSALSA (69.8% accuracy), (h) classification with optimal rejected fraction (74.6% nonrejected
accuracy at a rejected fraction of12.9% with classification quality of73.0%), and (i) associated rejection fields. (j) Nonrejected
accuracy and classification quality variation with rejected fraction (maximum classification quality in red).

formance in highly populated classes. This is achieved either
by a minor drop in nonrejected accuracy in small number of
lesser populated classes, or by the entire rejection of lesser
populated class.

The performance gains obtained from the allocation of la-
beled samples to estimate the optimal rejected fraction (the re-
jected fraction that maximizes the classification quality)can
be larger than the gains obtained from using those samples
to extend the training set, retraining with LORSAL and clas-
sifying the image with SegSALSA. This effect is clearly il-
lustrated on table 2, where, in the Indian Pines scene, for an
initial training set of30 samples the class, the effect of either
estimating the optimal rejected fraction from50 randomly se-
lected samples or retraining the classifier with the extra50
samples is shown. Whereas it is clear that the increased per-
formance obtained by estimating the rejected fraction when
compared to retraining the classifier will not hold for smaller
training sets, for larger training sets it is a computationally
cheaper and performance-wise better alternative to retraining
the classifier.

Table 2. Effect of increasing the dimension of the training
set with new samplesvs. using the new samples as valida-
tion set to estimate the rejected fractionr in the Indian Pines
scene. Comparison of average performance (classification
quality Q, nonrejected accuracyA, and rejected fractionr)
over30 Monte Carlo runs.

r (%) Q (%) A (%)

initial – training set of480 samples with
no rejection

0.00 84.21 84.21

extended– training set of480 + 50 sam-
ples with no rejection

0.00 86.46 86.46

estimated – training set of480 samples,
with optimal rejected fraction estimated
from 50 samples

12.77 87.02 91.16

optimal – training set of480 samples,
with true optimal rejected fraction

12.49 88.37 91.53

5. CONCLUDING REMARKS

We presented a simple and effective scheme for robust hyper-
spectral image classification by combining classification with
context and classification with rejection by deriving a rejec-
tion field from the hidden fields that drive the contextual clas-



sification. We moved from the joint optimization problem of
context and rejection, to a faster separate optimization with-
out losing the contextual effect on the rejection. The perfor-
mance gains obtained by using robust classification are shown
to be equivalent to training the classifier with larger training
sets.
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