
AN APPROXIMATE MESSAGE PASSING APPROACH FOR COMPRESSIVE
HYPERSPECTRAL IMAGING USING A SIMULTANEOUS LOW-RANK AND

JOINT-SPARSITY PRIOR

Yangqing Li?, Saurabh Prasad†, Wei Chen ′, Changchuan Yin?, and Zhu Han†

? Beijing Laboratory of Advanced Information Network, Beijing University of Posts and Telecommunications, Beijing, China
† Electrical and Computer Engineering Department, University of Houston, USA

′ State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China

ABSTRACT

This paper considers a compressive sensing (CS) approach
for hyperspectral data acquisition, which results in a practical
compression ratio substantially higher than the state-of-the-
art. Applying simultaneous low-rank and joint-sparse (L&S)
model to the hyperspectral data, we propose a novel algorithm
to joint reconstruction of hyperspectral data based on loopy
belief propagation that enables the exploitation of both struc-
tured sparsity and amplitude correlations in the data. Exper-
imental results with real hyperspectral datasets demonstrate
that the proposed algorithm outperforms the state-of-the-art
CS-based solutions with substantial reductions in reconstruc-
tion error.

Index Terms— Compressive hyperspectral imaging, low-
rank and joint-sparse, compressive sensing, approximate mes-
sage passing

1. INTRODUCTION
Unlike traditional imaging systems, hyperspectral imag-

ing (HSI) sensors [1], [2] acquire a scene with several mil-
lions of pixels in up to hundreds of contiguous wavelengths.
Such high resolution spatio-spectral hyperspectral data, i.e.,
three-dimensional (3D) datacube organized in the spatial and
spectral domain, has an extremely large data size and enor-
mous redundancy, which makes compressive sensing (CS) [3]
a promising solution for hyperspectral data acquisition.

To date, most existing designs for CS-based hyperspectral
imagers can be grouped into frame-based acquisition in the
spatial direction [4–7] and pixel-based acquisition in the spec-
tral direction [8–10]. While a lot of reconstruction approaches
for these two acquisition schemes have been proposed, most
existing algorithms can only take advantage of the spatial and
spectral information of hyperspectral data from the aspect of
sparsity (or joint-sparsity). Because the foundation of these
algorithms is built on conventional CS, which reconstructs the
signals by solving a convex programming and proceeds with-
out exploiting additional information (aside from sparsity or
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compressibility) [3]. For hyperspectral data, the spatial and
spectral correlations, which not only reflect in the correlation
between the sparse structure of the data (i.e., structured spar-
sity), but also in the correlation between the amplitudes of
the data, can be used to provide helpful prior information in
the reconstruction processed and assist on increasing the com-
pression ratios.

In this paper, the structured sparsity and the amplitude
correlations are considered jointly by assuming that spatially
and spectrally correlated data satisfies simultaneous low-rank
and joint-sparse (L&S) structure. Using a structured L&S
factorization, we propose an iterative approximate message
passing (AMP) algorithm [11], [12], in order to enable joint
reconstruction of the data with the practical compression ratio
that is substantially higher than the state-of-the-art. Specifi-
cally, in section 2, we introduce the structured factorization
representation of the L&S model. In section 3, we propose
a novel AMP-based approach, called L&S-approximate mes-
sage passing (L&S-AMP), that decouples the global inference
problem into two sub-problems. One sub-problem consid-
ers the linear inverse problem of recovering the signal matrix
from its compressed measurements. Another sub-problem ex-
ploits the L&S structure of the signal matrix. Then a recently
proposed “turbo AMP” framework [13] is used to enable mes-
sages to pass between these two phases efficiently. Section 4
presents simulation results with real hyperspectral data that
support the potential of the approach to considerably reduce
the reconstruction error. In section 5, we conclude the paper.

2. PROBLEM SETUP

In this section, we first present the problem for compres-
sive hyperspectral imaging. Then, we propose a structured
L&S factorization model for the signal matrix, which will be
later exploited to acquire any HSI with very few measure-
ments, via a novel joint reconstruction approach.

2.1. Data Acquisition Model
Owing to the inherent 3D structure present in the hyper-

spectral datacube and the two-dimensional nature of optical
sensing hardware, CS-based hyperspectral imagers generally
capture a group of linear measurements across either the 2D
spatial extent of the scene for a spectral band or the spectral
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extent for a spatial (pixel) location at a time, i.e., ft ∈ RN , t ∈
[1, ..., T ]. Then, the compressed measurements y1, y2, ..., yT

are sent to a fusion station that will recover the original 3D
datacube by utilizing a CS reconstruction algorithm.

By taking the highly correlated hyperspectral data vec-
tors f1, f2, · · · , fT to admit a sparse representation in some
orthonormal basis, e.g., DCT basis or wavelet basis, we have,

ft = Ψxt, t = 1, . . . , T, (1)
where sparse signal vectors xt ∈ RN ,∀t. Ψ ∈ RN×N is a
certain orthonormal basis matrix. Then we obtain the typical
CS formulation as follows

yt = Atxt + wt = zt + wt, t = 1, . . . , T, (2)

where At = ΦtΨ = [amn] ∈ RMt×N , zt ∈ RMt is the
measurement output vector, and wt is an additive noise vector
with unknown variance τωt .

2.2. Structured L&S factorization for signal matrix
As mentioned in the introduction, while the original hy-

perspectral data can be reconstructed by using conventional
CS recovery algorithms, it is possible to achieve a much bet-
ter recovery performance by applying the L&S model to fur-
ther exploit the structural dependencies between the values
and locations of the coefficients of the sparse signal vectors
xt,∀t. The main reason that we consider X as a L&S ma-
trix is two-fold. First, images from different spectral bands
enjoy similar natural image statistics, and hence can be joint-
sparse in a wavelet/DCT basis [6]; second, a limited number
of unique materials in a scenes implies that spectral signatures
across pixels can be stacked to form a matrix that is often low-
rank [14].

To precisely achieve the benefits of the L&S model and
reconstruct the original hyperspectral data from a Bayesian
point of view, here we propose an accurate probabilistic
model by performing a structured L&S factorization for X as

X , SΘ , SHL , GL, (3)

where the diagonal matrix S = diag(s1, s2, · · · , sN ) is the
sparsity pattern matrix of the signals with the support indi-
cates sn ∈ {0, 1} , ∀n. We refer to K =

∑N
n=1 sn�N as

the sparsity level of X. H = [hnr] ∈ RN×R and L = [lrt] ∈
RR×T are obtained from the low-rank matrix factorization of
Θ ∈ RN×T , which is the amplitude matrix of X. For a joint-
sparse matrix G and an arbitrary matrix L, this factorization
implies that X is a simultaneous low-rank (R ≤ K � N )
and joint-sparse matrix with rank R ≤ min(K,T ), where all
sparse signal vectors x1, x2, · · · , xT share a common support
with sparsity level K.

Assuming independent entries for S, H, and L, the separa-
ble probability density functions (PDFs) of G and L become

p(G)=
∏

n,r
p(gnr)=

∏
n

(
p(sn)

∏
r
N (hnr; ĝ0, ν

g
0 )
)
, (4)

p(L) =
∏

r,t
p(lrt) =

∏
r,t
N (lrt; 0, 1), (5)
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Fig. 1. The factor graph for the L&S structure model with
N = 4, T = 3, R = 2, and M = 3.

where both {hnr}∀n,r and {lrt}∀r,t are assumed to be i.i.d.
Gaussian with unknown mean ĝ0 and variance νg0 . In par-
ticular, we assume {lrt}∀r,t follow i.i.d. Gaussian distribu-
tion with zero mean and unit variance, i.e., N (0, 1), to avoid
ambiguity and the unnecessary model parameters update. As
{sn}∀n are treated as i.i.d. Bernoulli random variables with
Pr(sn = 1)

∆
= λ, ∀n, the sparse coefficients, {gnr}∀n,r, be-

come i.i.d. Bernoulli-Gaussian (BG), i.e., the marginal PDF

p(gnr) = (1− λ)δ(gnr) + λN (gnr; ĝ0, ν
g
0 ), ∀n, r, (6)

where δ(·) is the Dirac delta function. Furthermore, due to the
assumption of adaptive Gaussian noise in (2), the likelihood
function of Z = {zt}∀t is known and separable, i.e.,

p(Y |Z )=

T∏
t=1

Mt∏
m=1

p (ymt |zmt )=

T∏
t=1

Mt∏
m=1

N (ymt; zmt, τ
ω
t ),

(7)
where the measurement Y = {yt}∀t.

3. THE L&S-AMP ALGORITHM

With the problem formulation in (2) and (3), our proposed
method is to maximize the posterior joint distribution, i.e.,

p(S,H,L |Y ) = p(Y |S,H,L)p(S,H,L)/p(Y)
∝
∏

t
p(yt |Atxt )p(S)p(H)p(L)

=

T∏
t=1

Mt∏
m=1

p

(
ymt

∣∣∣∣∣
N∑

n=1

amnsn

R∑
r=1

hnrlrt

)
×

N∏
n=1

p(sn)

×
N∏

n=1

R∏
r=1

p(hnr)×
R∏

r=1

T∏
t=1

p(lrt), (8)

where ∝ denotes equality up to a normalizing constant scale
factor. This posterior distribution can be represented with a
factor graph shown in Fig. 1, where circles denote random
variables and squares denote posterior factors based on be-
lief propagation [15]. Each factor node represents the con-
ditional probability distribution between all variable nodes it
connected. T vertical planes (parallel to Y and Z axes) ex-
ploit the linear measurement structure zt = Atxt,∀t (detailed
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Fig. 2. The factor subgraphs for the M-GAMP phase with
N = 4, T = 3, R = 2, and M = 3.

in Fig. 2), while the remaining part of Fig. 1 further exploits
the L&S structure X = SHL.

To bypass the intractable inference problem of marginal-
izing (8), we propose to solve an alternative problem that
consists of two sub-problems that mainly require local in-
formation to complete their tasks [13]. Correspondingly, our
proposed algorithm is divided into two phases: I) the mul-
tiple generalized approximate message passing (M-GAMP)
phase; II) the low-rankness and sparsity pattern decoding
(L&SPD) phase. Owing to this, an efficient “turbo AMP”
iterative framework [13] is used, that iteratively updates one
of the phases’ beliefs, and passes the beliefs to another phase,
and vice versa, repeating until both phases converge.

3.1. M-GAMP Phase
In each frame t = 1, ..., T of the M-GAMP phase, we

apply the generalized approximate message passing (GAMP)
approach [12] in parallel for the linear inference problem: es-
timate the vector xt from the observation yt, as shown in Fig.
2. Specifically, the GAMP computes the approximated poste-
riors on {xnt}∀n as [11], [12]

∆xnt
= p(xnt)

∏
m

∆zmt→xnt

∝ p(xnt|
∑

r
gnrlrt)N (xnt; ûnt, ν

u
nt), (9)

where ∆A→B denotes a message passed from node A to the
adjacent node p(B) in the factor graph. The parameters ûnt,
and νunt are obtained after the GAMP iteration converges. For
the prior distribution of xnt, i.e., p(xnt|

∑
r gnrlrt) used in

(9), we can assume BG prior PDF

p(xnt|
∑

r
gnrlrt)=(1−λ)δ(xnt)+λN (xnt; q̂nt, ν

q
nt), (10)

where q̂nt and νqnt are the active-coefficient mean and the
active-coefficient variance, respectively, of the variable xnt.
It is worth mentioning that the prior parameters {q̂nt}∀n,t and
{νqnt}∀n,t, are only initialized to agnostic values at the be-
ginning of the L&S-AMP algorithm (e.g., q̂nt = 0, νqnt =
1,∀n, t), then iteratively updated according to the message
passed from the L&SPD phase. This process will be detailed
in next subsection. Then the minimum-mean-squared error

(MMSE) estimation of {xnt}∀n,t is facilitated by the follow-
ing prior-dependent integrals

x̂nt(j) =

∫
xnt∆xnt

dxnt. (11)

3.2. L&SPD Phase
In the L&SPD phase, to exploit the L&S structure, we em-

ploy the recently proposed bilinear generalized approximate
message passing (BiG-AMP) approach [16] to a variant of the
PCA problem: estimate the matrices G and X from an obser-
vation X̂ = [x̂nt] ∈ RN×T which is the posterior estimation
of their product X = GL obtained form the M-GAMP phase
in (10). In particular, the BiG-AMP [16] obtains the approxi-
mately Gaussian posterior messages {∆x′

nt
}∀n,t as

∆x′
nt

= p(x′nt)

∫
{gnr,lrt}∀r

[∏
r

∆x′
nt←gnr

×
∏

r
∆x′

nt←lrt

]
∝ p(x′nt|yt)N (x′nt; q̂nt, ν

q
nt), (12)

where the parameters q̂nt and νqnt are obtained after the BiG-
AMP iteration converges. The prior distribution of x′nt, i.e.,
p(x′nt|yt) used in (12), comes from the posterior message of
xnt given the observation yt in the M-GAMP phase. The
prior distribution of p(xnt|

∑
r gnrlrt) used in (9) comes from

the posterior message of xnt given the matrix factorization
xnt =

∑
r gnrlrt in the L&SPD phase.

To enable effective implementation of “turbo AMP” iter-
ation, given the construction of the factor graph in Fig. 1, the
sum-product algorithm (SPA) [15] implies that,

p(x′nt|yt) ∝
∏

m
∆zmt→xnt

(xnt), (13)

p(xnt|
∑
r

gnrlrt) ∝
∫
{gnr,lrt}∀r

[∏
r

∆x′
nt←gnr

(gnr)

×
∏

r
∆x′

nt←lrt(lrt)
]
. (14)

Comparing (13) and (14) with (9) and (12), respectively, we
have

p(x′nt|yt) ≈ N (x′nt; ûnt, ν
u
nt), (15)

p(xnt|
∑

r
gnrlrt) ≈ N (xnt; q̂nt, ν

q
nt). (16)

Thus, the parameters ûnt(j), νunt(j) computed during the fi-
nal iteration of the M-GAMP phase, are treated as the prior
parameters of X in the L&SPD phase. Conversely, the param-
eters q̂nt(j′) and νqnt(j

′) computed during the final iteration
of the L&SPD phase are in turn used as the prior parameters
of X in the M-GAMP phase in (10).

In addition, to further exploiting the joint-sparsity of
{xnt}∀n,t, we use the local support estimate

↼

λnt instead of
the common sparsity rate λ in (10). Then, by applying the
SPA in the M-GAMP phase, we get

↼

λnt =
λ
∏

t′ 6=t

⇀

λnt′

λ
∏

t′ 6=t

⇀

λnt′ + (1− λ)
∏

t′ 6=t (1−
⇀

λnt′)
, (17)

where the posterior local support probability
⇀

λnt =

(
1 +

N (0; ûnt, ν
u
nt)

N (ûnt; q̂nt, ν
q
nt + νunt)

)−1

. (18)



3.3. Algorithm Summary
Beginning at the initial inter-phase iteration index, i = 1,

the L&S-AMP algorithm first performs the M-GAMP phase

with the initial prior parameters q̂nt = 0, νqnt = 1,
↼

λnt =
0.5, ∀n, t in (10). Then the converged outgoing messages
{ûnt}∀n,t, {νunt}∀n,t are treated as prior parameters in the
L&SPD phase. Then the converged messages {q̂nt}∀n,t and
{νqnt}∀n,t obtained from the L&SPD phase, along with the

updated beliefs {
↼

λnt}∀n,t in (17), are used for the M-GAMP
phase at inter-phase iteration i = 2. This procedure continues
until either a stopping condition or a maximum number of
allowable iterations is reached. Then we obtain the posterior
mean estimates {x̂nt}∀n,t computed in (11).

Furthermore, we tune our prior and likelihood parameters
{λ, ĝ0, ν

g
0 , {τωt }∀t} using expectation-maximization [17],

[18], and estimate the rank R using a rank selection strategy
based on the penalized log-likelihood maximization in [16].
In addition, we recommend initializing L&S-AMP using
λ = 0.5, ĝ0 = 0, νg0 = 1, and τωt = 100,∀t.

4. NUMERICAL RESULTS
In this section, we present real data results to compare the

performance of the proposed L&S-AMP algorithm with prior
state-of-art PPXA [6], RA-ORMP [19], SA-MUSIC [20], and
T-MSBL [21] algorithms. We evaluate the performance of
the algorithms on two real hyperspectral datasets: 1) An ur-
ban dataset acquired over the University of Houston, with 144
spectral bands, 340 × 740 pixels, and a spatial resolution of
4m. 2) An agricultural dataset acquired over the Salinas val-
ley in California. The dataset has a spatial resolution of 3.7m
and consists of N = 224 spectral bands with each band cor-
responding to an image with 512× 217 pixels.

We assume that the L&S signal matrix X ∈ RN×T is
obtained using pixel-based acquisition, so that T denotes
the number of pixels and N denotes the number of spectral
band. The DCT matrix is used as the sparsifying matrix
Ψ, and Gaussian noise is added to achieve SNR = 25 dB.
It is worth noting that, for the sake of comparion, different
random Gaussian measurement matrices A1,A2, ...,AT are
used. Also note that T-MSBL, RA-ORMP, and SA-MUSIC
are derived only for the common measurement matrix case.

Fig. 3 plots the column-averaged normalized MSE (CN-
MSE) versus the compressive ratio M/N on the two real
datasets. The CNMSE is defined as CNMSE(X, X̂) =
1
T

∑
t

(
‖xt − x̂t‖22

/
‖xt‖22

)
, where X̂ is an estimate of X.

From the figure, we observe that the proposed algorithm out-
performs all the other algorithms in terms of CNMSE, e.g.,
in Fig. 3.(b), we note that L&S-AMP achieves nearly 3dB re-
construction gain than the other algorithms atM/N = 0.3. In
addition, a plus-minus sign (±) is used (i.e., L&S-AMP±) to
denote the case of using random ±1 measurement matrices,
which are easy to implement in DMD, and can significantly
reduce the burden of storage.
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Fig. 3. CNMSE versus M/N for the recovery of the urban
dataset (left) and agriculture-oriented dataset (right).
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Fig. 4. Visual quality comparison of the recovered images for
the urban dataset. From left to right and top to bottom: origi-
nal image, the recovered images by SA-MUSIC, RA-ORMP,
T-MSBL, PPXA, and the proposed algorithm. M/N is fixed
to 0.243, and other simulation parameters remain unchanged.
The whole scene is partitioned into a sequence of sub-scenes
to enable parallel processing.

Some visual results of the recovered hyperspectral images
by using different algorithms are presented in Fig. 4. As ex-
pected, our proposed algorithm preserves more fine details
and much sharper edges, and shows much clearer and better
visual results than the other competing methods.

5. CONCLUSION
In this paper, we studied joint CS reconstruction of spa-

tially and spectrally correlated hyperspectral data acquired,
assuming that the hyperspectral signal matrix satisfies the
joint-sparse model with a lower rank than the sparsity level,
i.e., the L&S model. We proposed an AMP-based algorithm
for recovering the signal matrix with the L&S model while
exploiting the structured sparsity and the amplitude corre-
lation of the data. The numerical results were presented to
confirm the performance advantage of our algorithm.
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