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ABSTRACT
The linear mixing model is widely assumed when unmixing hy-
perspectral images, but it cannot account for endmembers spectral
variability. Thus, several workarounds have arisen in the hyperspec-
tral unmixing literature, such as the extended linear mixing model
(ELMM), which authorizes endmembers to vary pixelwise according
to scaling factors, or local spectral unmixing (LSU) where the unmix-
ing process is conducted locally within the image. In the latter case
however, results are difficult to interpret at the whole image scale. In
this work, we propose to analyze the local results of LSU within the
ELMM framework, and show that it not only allows to reconstruct
global endmembers and fractional abundances from the local ones,
but it also gives access to the scaling factors advocated by the ELMM.
Results obtained on a real hyperspectral image confirm the soundness
of the proposed methodology.

Index Terms— Local spectral unmixing, extended linear mixing
model, hyperspectral imagery

1. INTRODUCTION

Given a hyperspectral image (HSI), spectral unmixing is concerned
with the identification of a set of signatures corresponding to pure
macroscopic constituents, called endmembers and their respective
proportions, termed fractional abundances, for all pixel spectra in
the HSI. The linear mixing model (LMM) is a widely accepted as-
sumption in which each pixel spectrum can be described as a linear
combination of those endmembers and associated abundances [1].
The relative simplicity of the LMM has spawned numerous spectral
unmixing techniques [2]. However, in spite of its popularity, the
LMM suffers from several drawbacks. In real life scenarios, the
mixing process cannot always be modeled as linear (due to multiple
scattering or intimate mixing effects). Thus, nonlinear unmixing
methods have been proposed (see [3] for a review). Moreover, the
LMM implicitly assumes that each endmember can be properly repre-
sented by a single spectral signature, which is seldom true in practice
due to the topography of the imaged scene and other physical aspects,
including variable illumination conditions and the intrinsic variability
of the materials (e.g., the amount of chlorophyll in vegetation). This
endmember variability has received an increasing attention lately, and
two main strategies have arisen in the literature [4]. The first one mod-
els the endmember variability through some particular multivariate
probability distribution [5]. The second approach typically describes
the spectral variability of a given endmember as a set of different
instances of this endmember signature. Spectral bundles [6] are a
typical example of such strategy where the spectral variability is not
explicitly modeled. Lately, an extended linear mixing model (ELMM)
has been proposed to address endmember variability while preserving
the LMM framework [7], in which endmembers are allowed to vary

from one pixel to another according to scaling factors.
Local spectral unmixing (LSU) is a potential solution to alleviate this
spectral variability phenomenon. As a matter of fact, physical causes
inducing spectral variability can be assumed to be sufficiently mod-
erate locally in the image for the classical LMM to hold. In [8] for
instance, the original image is first divided into several overlapping
tiles, within which the spectral unmixing is locally conducted. To
avoid blocking effects, another strategy was proposed in [9], where
the LSU is performed on regions of a particular partition of the HSI.
However, the main limitation of LSU techniques is that the induced
endmembers and abundances are only defined locally in the image,
and must somehow be post-processed to be interpretable at the whole
image scale.
In this work, we propose to combine the LSU approach with the
ELMM framework and show that it allows to derive global endmem-
bers and abundances from their local counterparts, while providing
additional information related to the spectral variability. The rest of
this paper is organized as follow: section 2 presents more in details
the ELMM framework [7] and a LSU approach relying on a hierar-
chical representation of the HSI [9]. Section 3 describes the proposed
methodology to connect the previous two strategies in order to have
access to global endmembers, abundances, as well as spectral vari-
ability. Conducted experiments and results are presented in section 4,
while conclusion and perspectives are drawn in section 5.

2. SPECTRAL UNMIXING AND VARIABILITY

2.1. Extended Linear Mixing Model

Let X ∈ RNλ×Np be a HSI composed of Np pixels and compris-
ing Nλ spectral channels. Under the LMM assumption, each pixel
spectrum x ∈ RNλ can be written as a linear combination of d
endmember signatures ei, i ∈ {1, . . . , d} weighted by their corre-
sponding fractional abundances φx,i, plus some additive noise η:

x =
d∑
i=1

φx,iei + η , (1)

with the fractional abundances subject to positivity (φx,i ≥ 0 ∀i)
and sum-to-one (

∑d
i=1 φx,i = 1) constraints. The geometrical in-

terpretation of such model is that all data points x lie in a (d −
1)−dimensional simplex whose d vertices are the endmembers ei.
In the ELMM model [7, 10] on the other hand, the endmember sig-
natures ei are no longer constrained to be fixed, but can vary from
one pixel to another according to some non negative scaling factor λi
with respect to some reference signature e0i. Following, equation (1)
rewrites:

x =

d∑
i=1

φx,iλie0i + η . (2)



As described in [10], equation (2) states that each pixel lies on a
simplex given by a cross-section of the convex hypercone spanned by
the reference endmembers e0i, and those parameters are estimated
by solving an optimization procedure for all pixels of the HSI. The
physical rationale behind the ELMM is to model variability due to
illumination effects, but it also allows to recover information related
to intrinsic variability [10].
In any case, the quality of the unmixing process for a given pixel is
frequently evaluated by the root mean square error (RMSE) between
the true pixel spectrum x and the one reconstructed using the induced
endmembers and abundances x̂:

ε(x, x̂) =
1√
Nλ
‖x− x̂‖2 . (3)

2.2. Local Spectral Unmixing

In the LSU strategy, the spatial support sp(X) of the HSI X is first
divided in a set of regions {R ⊆ sp(X)} which may overlap or not,
but such that the LMM can be assumed to hold in each region R.
The unmixing of a pixel x belonging to a particular regionR is then
performed using only the information contained in this region:

x =

dR∑
i=1

φRx,ie
R
i + η , (4)

where the dR endmembers eRi and their associated fractional abun-
dances φRx,i have been induced using only the spectral information
contained in regionR.
The major challenge of LSU approaches concerns the definition of
a suited set of regions {R}. In this paper, we follow the work pre-
sented in [9] that makes use of a partition of the spatial support sp(X),
π = {Ri ⊆ sp(X)} such that sp(X) =

⋃
iRi andRi ∩Rj 6=i = ∅

extracted from a hierarchical representation of this HSI. More specif-
ically, the HSI is first decomposed in a set of regions organized
hierarchically (such that any two regions of this set are either disjoint
or nested). The main advantage of hierarchical image decompositions
is that they define regions at various scales ranging from very small
(close to the pixels) to very large (up to the whole image spatial sup-
port) regions. The selection of regions with ideal scale to compose the
resulting partition can then be formulated as an optimization problem
conducted on the hierarchical structure [11]. Here, we exploit the
idea presented in [12], where LSU is first performed over all regions
of the hierarchical representation, and its performance is assessed
by the local reconstruction errors of the regions. The final obtained
partition of the HSI is such that its overall reconstruction error is
minimal with respect to all the other possible partitions contained in
the hierarchical representation.

3. PROPOSED METHODOLOGY

As explained in the previous section 2.2, the starting point of the pro-
posed methodology is a partition π = {Ri} of the spatial support of
the HSI, where LSU procedures have been conducted on each region
Ri of the partition. Following [12], those regions have been designed
to have minimal reconstruction errors. Thus, dRi local endmembers
eRi1 , . . . , eRidRi

are available in each region Ri, as well as their as-

sociated local fractional abundances φRix =
[
φRix,1, . . . , φ

Ri
x,dRi

]
for

all pixel spectra x belonging toRi.

3.1. Endmember clustering

In a first step, all local endmembers are pooled together in a common
set Eπ = {eR∈πi }dπi=1 with dπ =

∑
R∈π dR being the total number

of local endmembers that have been generated by the LSU approach.
Then, this set Eπ is clustered into K clusters C1, . . . CK by means
of some clustering algorithm, with cluster Ck =

{
eRk,1, . . . e

R
k,dCk

}
being composed of dCk local endmembers, originating from various
regionsR of the partition π. Finally, the centroid ck of each cluster
Ck is retrieved

ck =
1

dCk

dCk∑
i=1

eRk,i , (5)

and defined as the global endmember representing the kth cluster Ck.
As opposed to all local endmembers ek,i belonging to this cluster, the
centroid ck is expected to properly describe the macroscopic material
associated with cluster Ck across the whole image.

3.2. Global abundance retrieval

Once the global endmembers c1, . . . , cK have been defined, their
associated global fractional abundances must be retrieved for all
pixels spectra of the HSI. In particular, let x be such a pixel spec-
trum contained in regionR of partition π, and let

[
φRx,1, . . . , φ

R
x,dR

]
and [ψx,1, . . . , ψx,K ] be its local and global fractional abundances,
respectively. Then, three possible cases may occur:

- No local endmember eRi has been clustered in Ck. Thus, the
kth macroscopic material represented by Ck is not contained
in x and ψx,k = 0.

- There is a single local endmember eRi0 belonging to cluster
Ck. Therefore, the proportion of this material shall not change
within x, hence ψx,k = φRx,i0 .

- There are several local endmembers eRin , n = 1, . . . , p
grouped in the same cluster Ck. In such situation, the material
is locally variable within the regionR (healthy and burnt grass
for instance), but all contributions sum up with respect to the
global instance of the material (being grass in the previous
example). Thus, ψx,k =

∑p
n=1 φ

R
x,in .

All previous cases can be summarized as follows:

ψx,k =

dR∑
i=1

1{eRi ∈Ck}
φRx,i , (6)

where 1{eRi ∈Ck} = 1 if eRi ∈ Ck and 0 otherwise. Doing so for all
pixels x of the HSI allows to reconstruct global fractional abundance
maps.

3.3. Estimation of spectral variability

In the ELMM framework, each endmember ei is authorized to vary
pixelwise with respect to some reference endmember e0i according
to some local scaling factor λi, as described by equation (2). Here,
we take advantage of this idea by considering cluster centroids ck to
be those reference endmembers and modeling all local endmembers
belonging to this cluster Ck as some scaled versions of ck:

eRi ∈ Ck ⇒ eRi = λick . (7)

The scaling factor λi associated with the local endmember eRi can
be recovered in practice by least square regression between eRi and



the centroid ck of cluster Ck it belongs to:

λi =
(
cTk ck

)−1

cTk e
R
i , (8)

with (·)T being the transpose operator. Besides, equation (8) guaran-
tees the local scaling factor λi to be non negative.
Plugging equation (7) into equation (4) yields

x =

dR∑
i=1

φRx,iλicki + η , (9)

where ki ∈ {1, . . . ,K} is the index of cluster eRi belongs to. Equa-
tion (9) can be rewritten as

x =

K∑
k=1

(
dR∑
i=1

φRx,iλi1{eRi ∈Ck}

)
ck + η . (10)

On the other hand, pixel x can also be decomposed with respect to
the global ELMM framework as described by equation (2), namely

x =

K∑
k=1

ψx,kρkck + η

=

K∑
k=1

(
dR∑
i=1

φRx,i1{eRi ∈Ck}

)
ρkck + η ,

(11)

with ρk being the global scaling factor associated with centroid ck.
Hence, it is possible to estimate the global scaling factor ρk for pixel
x as a weighted average of its local scaling factors λi and local
abundances φRx,i:

ρk =

∑dR
i=1 φ

R
x,iλi1{eRi ∈Ck}∑dR

i=1 φ
R
x,i1{eRi ∈Ck}

. (12)

Note that, in the case where there is a single local endmember eRi0
belonging to cluster Ck, then ρk = λi0 is constant for all pixels x
of region R. As a matter of fact, all pixels in R appear spatially
homogeneous with respect to the material represented by Ck. If there
are at least two local endmembers belong to the same cluster Ck on
the other hand, then the global scaling factor ρk varies pixelwise.
Finally, in the case where ψx,k =

∑dR
i=1 φ

R
x,i1{eRi ∈Ck}

= 0 (that is,

if pixel x does not contain the kth material), then ρk is set to 1.

4. EXPERIMENTS

4.1. Experimental methodology

We apply the proposed methodology to the HSI acquired over the
campus of the University of Houston in 2012 and described in [13].
This image is composed of 340 × 320 pixels in spatial dimension,
and comprises 144 bands. The study site features an urban area with a
stadium, buildings, parking lots and roads, and some portions of grass
and trees. A color composition of this HSI is presented by figure 1a.
The partition π, input of the proposed methodology, is obtained fol-
lowing the procedure described in [12]. First a spatial pre-processing
of the HSI is conducted in order to mitigate the effects of potential
outliers [14]. Then, a binary partition tree (BPT) representation [15] is
constructed using the spectral region model proposed in [12] (model-
ing all regions by their local endmembers) and the endmember-based
distance as merging criterion [16]. A LSU procedure is conducted

(a) (b)

Fig. 1: (a) RGB composition of the Houston hyperspectral data set,
and (b) resulting segmentation composed of 396 regions.

over each region of the BPT. The local intrinsic dimensionality dR
of each region is estimated using random matrix theory [17], as it
proved to be reliable when working over small regions [18]. Lo-
cal endmembers are estimated using the vertex component analysis
(VCA) algorithm [19] and their fractional abundances are retrieved by
non-negative sparse regression using a fractional semi-norm [20]. The
partition π extracted from the BPT structure is displayed by figure 1b
and composed of 396 regions. It achieves a trade-off between low
region-wise maximal reconstruction errors (penalizing large regions
with potential high reconstruction errors, which may be caused by the
invalidity of the LMM within the region) and simplicity (penalizing
partitions with too many regions) (see [12] for practical details).
All generated local endmembers are grouped in the set Eπ , even-
tually composed of 2957 individuals. This set Eπ is divided into
K = 12 clusters following a multivariate Gaussian mixing model
hypothesis, by application of the Expectation-Maximization algo-
rithm [21]. Note that the total number of clusters K has been set
empirically. According to the proposed methodology, all cluster
centroids ck, k = 1, . . . ,K are defined to be the ELMM reference
endmembers. The associated global abundances ψx,k and global scal-
ing factors ρk are retrieved for all pixel spectra x in the HSI following
the procedures exposed in section 3.2 and section 3.3, respectively.
In order to evaluate the performance of the proposed methodology,
we also unmix the image following the classical LMM scenario:
K “classical” endmembers and associated fractional abundances are
globally induced over the image, using the same set-up as the LSU
(namely VCA for the endmember induction and non-negative sparse
regression using fractional semi-norm for the abundances retrieval).
In both cases, the quality of the unmixing for pixel spectrum x is
evaluated by its reconstruction error (equation (3)).

4.2. Results

Figure 2 presents the obtained results for the semantic classes Asphalt,
Vegetation and Metallic roofs. The first row of figure 2 displays the
clusters obtained by the proposed strategy, where each blue spectrum
depicts a local endmember obtained by LSU, the red spectrum is the
cluster centroid, and the black spectrum is the corresponding end-
member induced using the classical global approach. The second and
third rows of figure 2 exhibit the fractional abundance maps for the
classical global approach, and the proposed approach, respectively
(with scales ranging from 0 (blue) to 1 (red). Finally, the bottom row
displays the global scaling factors obtained by the proposed approach.
Their values range from 0.5 (in blue) to 1.5 (in red). As remarked
in [22], scaling factors are only relevant if the associated fractional
abundances are high enough (greater than 0.3 in practice). In the
opposite situation, the contribution of the associated endmembers to
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Fig. 2: First row: obtained clusters (in blue) along with their centroids
(in red) and the classical global endmembers (in black). Second
and third rows: fractional abundance maps associated to the global
endmembers and the cluster centroids, respectively. Bottom row:
scaling factor maps obtained by the proposed methodology.

the pixel spectra cannot be considered significant enough to reliably
estimate their variability. In such case, scaling factors have been
rounded to 1 for visualization purposes.
As it can be seen on the top row, the obtained clusters are spec-
trally coherent in the sense that all local endmembers grouped in
the same cluster differ only from a scaling factor, which empirically
validates the ELMM base assumption. Cluster centroids and classi-
cal global endmembers are also similar, up to some scaling factor,
which confirms that the former can indeed be considered as global
endmember instances. Nevertheless, while the obtained fractional
abundance maps appear comparable for the Asphalt and Vegetation
classes, which are well present across the image, it is different for the
scarce Metallic roofs class. Several metallic roof endmembers have
been extracted thanks to the LSU approach and clustered together, al-
lowing to retrieve a clean abundance map, while the global approach
leads to an abundance map where other structures are visible. Finally,
the obtained scaling factor maps appear visually consistent, as the
observed variations can be linked to the different shades within the
parking lots for the Asphalt class for instance, or to the topography
of the scene, as it is the case for Vegetation class (where it is possible
to distinguish between trees with low scaling factors, and grass with
higher scaling factors). It is even clearer when looking at the scaling
factors associated to the Metallic roof class, as shown in figure 3.
While the abundances of the classical global approach show some

Fig. 3: Top row: crop of the RGB image, and global abundances
associated to the Metallic roof class. Bottom row: obtained scaling
factors and abundances for the Metallic roof class.

(a) (b) (c)

Fig. 4: Reconstruction map for (a) the proposed approach and (b) the
classical global approach (the scale is saturated between 0 (blue) and
0.1 (red)), and (c) binary comparison of the two.

variability due to the topography of the two red roofs, this variability
is clearly supported in our approach by the scaling factors, while the
abundances remain relatively pure.
Finally, figure 4 displays the reconstruction error maps of the pro-
posed (figure 4a) and classical global (figure 4b) approaches. As
demonstrated by figure 4c, the proposed approach globally yields
lower reconstruction errors (all white pixels in figure 4c) than the
classical approach. It confirms that processing LSU results within the
ELMM framework allows to take advantage of both the local validity
of the LMM and the global variability of endmembers to better model
the hyperspectral data set.

5. CONCLUSION

We presented here a novel methodology to interpret LSU results
within the framework defined by the ELMM. By clustering all local
endmembers provided by the LSU, and defining all cluster centroids
to be the ELMM reference endmembers, we showed that is was not
only possible to retrieve their associated global fractional abundances,
but also their scaling factors advocated by the ELMM and accounting
for the endmember spectral variability (which can be due to topo-
graphic or illumination effects). The proposed method was applied to
a real hyperspectral data set, and the obtained results confirmed the
soundness of combining the LSU to the ELMM framework.
Future work will be devoted to a exhaustive analysis of the proposed
methodology over synthetic data sets, where is it possible to manually
control the scaling factors and thus quantitatively assess the perfor-
mance of the method. Sensitivity to the crucial choice of a clustering
method will also be investigated.
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