
THE K-LLE ALGORITHM FOR NONLINEAR DIMENSIONALITY RUDUCTION OF 

LARGE-SCALE HYPERSPECTRAL DATA 

Danfeng Hong a,b, Naoto Yokoya a,b,c, Xiao Xiang Zhu a,b 

 
a Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Germany, 

b Signal Processing in Earth Observation (SiPEO), Technical University of Munich, Germany 
c Research Center for Advanced Science and Technology, The University of Tokyo, Japan 

 

ABSTRACT 

 

This work addresses nonlinear dimensionality reduction by 

means of locally linear embedding (LLE) for large-scale 

hyperspectral data. The LLE algorithm depends on spectral 

decomposition to a great extent, resulting in computational 

complexity and storage-costing while calculating the 

embedding of the low-dimensional data, particularly for 

large-scale hyperspectral data. LLE is not applicable to 

dimensionality reduction of large-scale hyperspectral data 

using general personal computers. In this paper, we present a 

novel method named K-LLE which introduces K-means 

clustering into LLE to deal with this issue. We firstly utilize 

K-cluster centers to represent the manifold structure of data 

instead of all data points, and next regard the K-cluster 

centers as a bridge between the manifold structure and all 

data in order to obtain the low-dimensional representation 

for each data point without handling the complex spectral 

decomposition. Finally, classification is explored as a 

potential application to validate the proposed algorithm. 

Experimental results on two hyperspectral datasets 

demonstrate the effectiveness and superiority of the 

proposed algorithm. 

 

Index Terms— hyperspectral dimensionality reduction, 

large-scale, manifold learning, K-means clustering 

 

1. INTRODUCTION 

 

Recently, thanks to its very rich spectral information, 

hyperspectral imaging has been exploited for many remote 

sensing tasks, e.g., classification, detection. Rich spectral 

information provides the discriminative features; however, 

in the meantime brings the information redundancy. 

Therefore, as a common but necessary step, dimensionality 

reduction (DR) plays an important role in the hyperspectral 

data analysis.  

Generally, the DR methods can be mainly categorized into 

linear and nonlinear methods. Compared to the linear DR 

techniques such as principle component analysis (PCA), 

manifold learning is a typically nonlinear DR approach. It 

tries to extract an intrinsic low-dimensional manifold 

structure from high-dimensional data by means of 

unsupervised strategies. Manifold learning is capable of 

embedding nonconvex and nonlinear manifolds in 

hyperspectral data by preserving the manifold structure from 

high-dimensional data to low-dimensional data. In particular, 

local manifold learning, e.g., locally linear embedding 

(LLE), achieves nonlinear DR through preserving the local 

neighborhood relationship. Extensive research achievements 

based on LLE have been reported in the field of 

hyperspectral image processing [1-3], which shows its 

superiority and effectiveness. However, DR based LLE is 

limited by LLE itself, i.e., LLE hardly copes with large-scale 

hyperspectral data [4]. Since the computational complexity 

and storage-costing of spectral decomposition is decisively 

related with the scale of hyperspectral data, general personal 

computers (PCs) are not able to directly process such large 

spectral decomposition.  

This work aims at a general method to avoid calculating 

large-scale spectral decomposition, and in the meantime, 

embedding this idea into the LLE algorithm, enabling the 

algorithm to learn the underlying manifold structure from 

large-scale hyperspectral data. The novelty of our proposed 

K-LLE algorithm is: K cluster centers are used to represent 

the integral manifold of the original data, which means that 

the manifold structure can be learned only using K cluster 

centers rather than using all data points. More specifically, 

while computing the embedding of LLE algorithm, we 

preserve the local manifold structure between each point and 

K cluster centers in the low-dimensional space instead of 

considering local manifold structures of all points as in the 

original LLE algorithm. This leads to a significantly reduced 

demand on computational and storage-cost.  

 

2. METHODOLOGY 

 

2.1 The LLE Algorithm 

The proposed method is based on the LLE algorithm. LLE 

can be briefly explained as follows. Let D-dimensional data 
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X = [x ,x , ...,x ]  be represented by d-dimensional 

data [ , ,..., ] d N
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 Y y y y  (d<<D), where iy denotes a 

low dimensional representation of ix . The whole procedure 

of LLE can be summarized as the following three steps: 



- Step 1: Select the k neighbors for each data point 

,i i = 1,2,...,Nx by pairwise Euclidean distances. 

- Step 2: Utilize the neighbors of each data point to 

compute the linear coefficients (local manifold 

structure), denoted as 1 1[ ,..., ,..., ]  w
j k k

i i i iw w w . 

The objective function is  
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- Step 3: Reconstruct the linear coefficients (w) to obtain 

the embedding in the low-dimensional space. 
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From the aforementioned procedures, we can conclude that 

LLE mainly includes neighbors selection (similarity matrix), 

local manifold representation and calculation of embedding 

in the low-dimensional space (spectral decomposition), 

where construction of a similarity matrix and spectral 

decomposition are very time-consuming and difficult to be 

carried out with standard PCs due to its high demand 

memory and computational cost.  

 

2.2 The proposed K-LLE algorithm  

To overcome the aforementioned limits, we propose a new 

algorithm named K- LLE. K-means clustering is explored to 

avoid calculating such large similarity matrix and spectral 

decomposition, making the computation and storage 

consumption dramatically reduced. The detailed algorithm is 

described as follows: 

- Step 1: Let 
1 2[ , ,..., ] D K

K

 C C C C be K cluster 

centers with D-dimensional data obtained using K-

means clustering. Then, the whole manifold structure of 

the original data can be approximately represented by K 

cluster centers. The value of K usually depends on the 

data size. In this paper, we set the value of K around be 

2% of the total number of pixels. 

- Step 2: LLE is performed to obtain the d-dimensional 

representation of K cluster centers by Eq2. (1-2), 

namely 1 2[ , ,..., ] d K

C C C CK

 Y y y y . In this way, 

computational complexity and storage costing is 

dramatically reduced.  

- Step 3: We use K cluster centers to represent local 

manifold structures instead of all data points and utilize 

the manifold structure of K cluster centers to represent 

the whole manifold structure of all data points. As a 

result, we only need to preserve the local structure 

between each point and K cluster centers, which is again 

computationally efficient. Since manifold structure in 

high-dimensional space is basically consistent with its 

manifold structure in low-dimensional space [5], we can 

be assumed that the local manifold structure in the high-

dimensional space between a certain data point and K 

cluster centers is basically consistent with that in the 

low-dimensional space. Therefore, the low-dimensional 

representation for each point can be obtained by:  
i i i
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where i

cy  stands for the low-dimensional representation 

of i-th data point.   1
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i k

c c ckw w  is the linear 

coefficients (local manifold representation) using Eq. (1) 

between i-th data point and its k nearest cluster centers 

in the high-dimensional space and 
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 Y y y is the corresponding k d-

dimensional representation selected from 
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3. EXPERIMENTS 

 

To validate the proposed K-LLE algorithm, we explored 

classification as a potential application and evaluate the 

classification accuracy accordingly. One simple but very 

effective classifier – Nearest Neighbor (NN) based on 

Euclidean distance, is used for classification. In this paper, 

we tested the algorithm on two datasets, the AVIRIS Indian 

Pines dataset with a small size of 145 145 220  and data 

set from IEEE GRSS Data Fusion Contest 2013 (DFC) with 

a size of 349 1905 144  . In addition, we used the fixed 

train samples and test samples for two datasets given by [6] 

and [7], as shown in table 1 and 2, respectively. 

 
Table 1 The number of train samples and test samples for each 

class in Indian Pine dataset 

 
NO. Class Name Total Training Testing 

1 Corn-Notill 1434 50 1384 

2 Corn-Mintill 834 50 784 

3 Corn 234 50 184 

4 Grass-Pasture 497 50 447 

5 Grass-Trees 747 50 697 

6 Hay-Windrowed 489 50 439 

7 Soybean-Notill 968 50 918 

8 Soybean-Mintill 2468 50 2418 

9 Soybean-Clean 614 50 564 

10 Wheat 212 50 162 

11 Woods 1294 50 1244 

12 Bldg-Grass-Tree-Drives 380 50 330 

13 Stone-Steel-Towers 95 50 45 

14 Alfalfa 54 15 39 

15 Grass-Pasture-Mowed 26 15 11 

16 Oats 20 15 5 



Table 2 The number of train samples and test samples for each 

class in DFC dataset 

 
NO. Class Name Total Training Testing 

1 Healthy Grass 1251 198 1053 

2  Stressed Grass 1254 190 1064 

3 Synthetic Grass 697 192 505 

4 Tree 1244 188 1056 

5 Soil 1242 186 1056 

6 Water 325 182 143 

7 Residential 1268 196 1072 

8 Commercial  1244 191 1053 

9 Road 1252 193 1059 

10 Highway 1227 191 1036 

11 Railway 1235 181 1054 

12 Parking Lot-1 1233 192 1041 

13 Parking Lot-2 469 184 285 

14 Tennis Court 428 181 247 

15 Running Track 660 187 473 

 

Classification accuracies on the Indian Pine dataset using 

four methods (original spectral feature (OSF), PCA, LLE, 

LLE with K-means) under different parameters (the number 

of neighbors (k), the reduced dimensionality (d)) are shown 

in Figure 3. Figure 4 shows the classification maps using the 

optimal parameters. We can see clearly from Figure 3 that 

the performance of PCA is extremely similar with that of 

OSF. Significantly, the classification accuracy using K-LLE 

is superior to that using LLE, which indicates that the 

proposed method is feasible and effective. In addition, it 

should be also noticed that LLE and K-LLE outperform OSF 

and PCA, demonstrating the superiority of manifold learning. 

Importantly, the classification accuracy obtained by LLE 

with K-means is relatively stable with the setting of k and d, 

which implies its robustness. The better performance 

obtained using K-LLE w.r.t LLE results from that K cluster 

centers are able to robustly and approximately represent the 

whole manifold structure of all data points, and hence 

effectively reduce the influence of data redundancy and a 

high multicollinearity at each local structure.  

Further experiments are performed on the larger-scale 

hyperspectral dataset. Figure 5 shows the classification 

accuracies on the IEEE GRSS DFC 2013 dataset and Figure 

6 shows the corresponding classification maps under the 

condition of the best classification accuracies. It can be seen 

from Figure 5 that K-LLE clearly outperforms the other 

algorithms. Additionally, as shown in Figure 6, the 

classification map using K-LLE is relatively more legible 

than the other classification maps. 

 

 
(a)                                                                                 (b)                                                                               (c) 

 

Figure 3 Performance comparison: Classification accuracy as a function of data dimension on the Indian Pine dataset. (a)-(c) are the results 

using different number of neighbors (k=20, 50, 80) respectively. 

 

                
(a)                                                          (b)                                                           (c)                                                            (d) 

 

Figure 4 Classification maps using OSF, PCA, LLE, LLE with K-means respectively. (a)-(d) are the results using the optimal parameters 

for these different methods, respectively (PCA: d=30, LLE: k=50, d=40, K-LLE: k=80, d=90). 



 
(a)                                                                                 (b)                                                                               (c) 

 

Figure 5 Performance comparison: Classification accuracy as a function of data dimension on the DFC dataset. (a)-(c) are the results using 

different number of neighbors (k=20, 50, 80) respectively. 
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Figure 6 Classification maps using OSF, PCA, and K-LLE respectively. (a)-(c) are the results using the optimal parameters for these 

different methods, respectively (PCA: d=30, K- LLE: k=50, d=60). 

 

4. CONCLUSION 

 

In this work, we present a method that introduces K-means 

clustering into LLE to simplify the problem of large-scale 

spectral decomposition. The proposed K-LLE method 

enables unsupervised and nonlinear dimensionality reduction 

in the large-scale hyperspectral data. Experimental results 

indicate that K-LLE improves classification performance of 

the original LLE on the different datasets. Also both LLE 

based methods are superior to PCA and original spectral 

features. This demonstrates the effectiveness of the proposed 

strategy. The presented idea can be embedded into any 

framework that includes spectral decomposition, resulting in 

the decrease of computational complexity and storage 

costing. In our future research, we will develop a general 

framework based on the proposed idea to address the issue 

of large-scale data in dimensionality reduction, such as 

manifold learning or kernel learning.  



5. REFERENCES 

 
[1] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global 

geometric framework for nonlinear dimensionality reduction,” 

Science, vol. 290, pp. 2319–2323, Dec. 2000. 

[2] L. Ma, M. M. Crawford, J. W. Tian, “Local manifold learning-

based-k-nearest-neighbor for hyperspectral image classification,” 

IEEE Trans. Geosci. Remote Sensing, vol. 48, no. 11, pp.4099-

4109, Nov. 2010.  

[3] L. Ma, M. M. Crawford, X. Yang, Y. Guo, “Local-manifold-

learning-based graph construction for semisupervised 

hyperspectral image classification,” IEEE Trans. Geosci. Remote 

Sensing, vol. 53, no. 5, pp.2832-2844, May. 2015. 

[4] A. Talwalkar, S. Kumar, H. Rowley, “Large-scale manifold 

learning,” in IEEE Computer Society Conference on Computer 

Vison and Pattern Recognition (CVPR) , pp. 1-8, Jun. 2008. 

[5] S. Roweis, L. Saul, “Nonlinear dimensionality reduction by 

locally linear embedding,” Science, vol.290, no. 5550, pp.2323-

2326, Dec. 2000. 

[6] P. Ghamisi, J.A. Benediktsson, M. O. Ulfarsson, “Spectral-

spatial classification of hyperspectral images based on hidden 

markov random fields,” IEEE Trans. Geosci. Remote Sensing, vol. 

52, no. 5, pp.2565-2574, May. 2014. 

[7] Y. Zhang, H. L. Yang, S. Prasad, E. Pasolli, J. Jung, M. 

Crawford, “Ensemble multiple kernel active learning for 

classification of multisource remote sensing data,” IEEE J. Sel. 

Topics Appl. Earth Oberve. Romote Sens., vol. 8, no.2, pp.845-858, 

Feb. 2015. 


