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ABSTRACT

The detection and characterization of physiological pro-
cesses in crop plants under water-limited conditions is essen-
tial for the selection of drought-tolerant genotypes and the
functional analysis of related genes. Close-range hyperspec-
tral imaging (HSI) is a promising, non-invasive technique for
sensing of plant traits, and has the potential to detect plant re-
sponses to water deficit stress at an early stage. The present
study describes a data analysis method to realize this poten-
tial. Reflectance spectra of plants in close-range imaging are
highly influenced by illumination effects. Standard normal
variate (SNV) was applied to reduce linear illumination ef-
fects, while non-linear effects were filtered by discarding the
affected pixels through a clustering procedure. Once the il-
lumination effects were eliminated, the remaining differences
in plant spectra were assumed to be related to changes in plant
traits. To quantify stress-related spectral dynamics, a spectral
analysis procedure was developed based on a supervised band
selection and a direct calculation of a spectral similarity mea-
sure against a reference. The proposed method was tested
on HSI data of maize plants acquired in a high-throughput
plant phenotyping platform for assessment of drought stress
responses and recovery after re-watering events. Results show
that the spectral analysis method successfully detected the
drought stress responses at an early stage and consistently re-
vealed the recovery effects shortly after the re-watering pe-
riod.

Index Terms— Drought stress , Close-range hyperspec-
tral imaging, Clustering, Spectral distance

1. INTRODUCTION

In recent years, close-range hyperspectral imaging (HSI) has
emerged as a promising tool for plant trait assessment in high-
throughput plant phenotyping platforms (HTPP) [1]. The goal
of HSI within the HTPP is the non-invasive measurement of
plant traits based upon reflectance spectra, which permits the
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assessment of plant performance over development and in re-
sponse to stress conditions, such as drought. This advance en-
courages studies to understand how plants respond to drought
stress, and to assess the plant’s capability to adapt and recover
from the stress. Knowledge gained in this area is crucial for
the further improvement of crop drought-tolerance in breed-
ing programs.

Drought stress leads to a wide range of physiological and
biochemical responses in plants. This includes the modifi-
cation in photosynthetic pigment composition, stomatal con-
ductance, surface and internal leaf structure which in turn al-
ter the leaf optical properties. A common approach for plant
trait estimation based upon spectral data is to utilize vegeta-
tion indices. These are formulated based on the combination
of a few single wavelengths, and associated with specific or
broad biological traits and processes in plants (reference on
review of VIs). However, the complex physiological effects
of drought stress cause changes in the reflectance in many
different spectral regions. The use of vegetation indices may
discard significant information which may lead to a decrease
in the discrimination accuracy [2].

Alternatively, data-driven methods have recently been in-
troduced. An important advantage of these methods is their
flexibility to easily adapt to any data as they implicitly de-
rive the underlying model distribution from a given dataset.
Within this framework, machine learning regression algo-
rithms are usually applied for retrieving plant biophysical
variables from the full-spectrum information [3]. Typically, a
flexible learning model is established from a training dataset
by optimizing the estimation error of the variables extracted.
While regression analysis reveals a statistical correlation be-
tween the spectral variables and biological information, it
cannot be applied if the required output variables for training
the model are not available. Due to this constraint, an un-
supervised data-driven method is preferred in this work as it
requires no prior information for making an explicit inference
on a given dataset.

In close-range settings, the reflectance from leaves are
highly influenced by the non-solid orientation of the plant



and the specific alignments of the imaging system. To reduce
these external effects, the plant spectra were normalized using
the standard normal variate (SNV) transformation. However,
this transformation does not handle non-linear effects induced
by multiple scattering and shading, effects which that are ex-
pected to become important in larger plants as the canopy
structure becomes more complex. To further filter this non-
biological variability, clustering was performed. Spectra
from clusters which are affected by this non-linearity (e.g.
shadowed and partially occluded areas) were discarded. To
quantify the dynamics of plant water-deficit stress, the whole
plant was characterized by the average normalized spectrum
calculated from all pixels belonging to the retained clusters.
A spectral distance function was defined using Euclidean
distance (ED) to allow for a relative comparison between
stressed and healthy plants. Further, a supervised band se-
lection procedure was applied to extract a small subset of
top-scoring variables with highest class separation to improve
the discrimination between healthy and stressed regimes. The
proposed analysis was tested on a series of HSI of maize
plants monitored during their whole vegetative period, where
the tested plants were divided into four groups: one group
was well-watered and the other three groups were treated
with different water stress conditions.

2. MATERIAL AND METHODS

2.1. Data acquisition

A batch of maize plants was grown in PHENOVISION, the
high-throughput plant phenotyping (HTPP) infrastructure lo-
cated at VIB, Ghent, Belgium. The plants were divided into
four groups with different watering treatments (Figure 1). All
treatments started at the seedling level. In the well-watered
(WW) treatment, seven plants were irrigated with sufficient
water to keep the soil water content at the optimal level of 2.4
(g H2O/g dry soil) throughout the entire developmental pe-
riod. In the progressive drought (PD) treatment, seven plants
received a WW treatment from the beginning (seedling) un-
til they reached the V5-stage (five leaves developed). At the
V5-stage, the plants were not irrigated for seven days after
which they were re-watered with a low amount of water to
maintain the soil water content at a deficit level of 1.4 (g
H2O/g dry soil) until the end of the developmental period. In
the severe drought (SD) treatment, four plants were irrigated
with a deficit soil water content throughout the developmen-
tal period. In the severe drought with early vegetation stage
re-watering (SD-RW) treatment, six plants received the SD
treatment from the beginning until they reached the V7-stage
(seven leaves developed). From this stage onward, the plants
were irrigated with the WW treatment until the end of the de-
velopmental period.

For all plants involved, hyperspectral images were ac-
quired daily (a 50-day time series) from growth stage V2

(two leaves developed), about 2 weeks after the start of the
water treatments using a line scan push-broom VNIR-HS
camera (ImSpector V10E, Spectral Imaging, Oulu, Finland),
which amounts to a total of 1200 hyperspectral images. The
acquired images have 510 × 328 pixels and a spectral sam-
pling of 3.1 nm which corresponds to 194 bands ranging
between 400-1000 nm. All images were radiometrically cali-
brated by subtracting a dark frame and calculating reflectance
relative to a white reference. Due to high noise levels below
500 nm and above 850 nm, the spectral range was limited
to 500-850 nm for further data processing, leading to 111
spectral bands. The plant pixels were segmented from the
background using the normalized difference index (NDVI)
with a threshold of 0.3. Due to the high sensitivity of the
reflectance spectra to illumination variability in close range
setting, Standard Normal Variate (SNV) normalization was
applied to reduce for external effects [4].

Fig. 1: Four different water treatments applied to maize
plants, showing the level of soil water content over the entire
developmental period indicated by the V-stage, which repre-
sents here the number of developed plant leaves.

2.2. Clustering

The SNV normalization method applied here only accounts
for linear effects. In larger plants in particular, non-linear ef-
fects may occur which can seriously affect the analysis. These
effect are strongly related to the plant canopy structure. To
reduce this unwanted variability, less relevant regions such
as (partially) occluded leaves and the areas at the leaf edges



which are prone to multiple scattering were discarded. For
this, clustering of all SNV normalized spectra from all plants
over all time instances was performed.

In previous work [4, 5], clustering of all the input spectra
was performed using the k-means clustering algorithm. How-
ever, when dealing with a large number of HSI, more than
hundreds of millions spectra are involved, which makes the
computation extremely heavy and may easily saturate system
memory.

In this work, a different clustering strategy is proposed.
It combines the k-means clustering algorithm with a super-
vised classifier, a Support Vector Machine (SVM) [6]. First,
the k-means clustering was performed on a small subset of
the time series of the HSI from plants of the healthy as well
as the stressed groups. The resulting centroids were arranged
in ascending order based on the Euclidean norm. Then, a lim-
ited number of spectra, relatively close to the centroids were
selected as the labeled instances for the training of the SVM.
Once the SVM was trained, all the unlabeled spectra from the
whole image collection were classified into k clusters. Based
on the obtained cluster map, less-informative clusters were
annotated and pixels from these regions were discarded. In
the next step, each plant was characterized by one SNV spec-
trum. This spectrum was obtained by averaging the normal-
ized spectra of all pixels belonging to the retained clusters.

2.3. Spectral similarity measure

To distinguish the stress-related phenomena from regular
plant process dynamics, a direct representation of a spec-
tral similarity measure was used for a relative comparison
between stressed and healthy plants. In this procedure, the
spectral distance between any two spectra q(λ) and r(λ) was
determined using the Euclidean distance (ED):

ED(q, r) =

√√√√ B∑
λ=1

(q(λ)− r(λ))2 (1)

where B is the number of bands. By applying the similarity
measure, the dynamics of a plant spectrum can be compared
against a reference spectrum (e.g. from well-watered plants).

To increase the discrimination accuracy between the two
spectra, a supervised band selection procedure was applied.
In this work, Fisher’s statistics criterion [7] was applied to
select a subset of top-scoring bands with high discriminative
power in such a way that the selected bands optimise the class
separability between two predefined classes (in our case well-
watered versus the three groups of stressed plants). The band
selection criterion was defined as:

ρ̃(λ) =

{
ρ(λ), if F (λ) ≥ T
0, else

(2)

where ρ̃(λ) is the selected spectral band, T is a threshold
value and F (λ) is the ratio of the between-class variance over

the within-class variance. The spectral similarity measure
was then applied by only using the selected bands.

3. RESULTS AND DISCUSSION

Figure 2 shows an example of a cluster map of a single maize
plant. This cluster map was obtained from a large maize plant
at developmental stage V13 (13 leaves developed). At this
stage, the canopy structure may lead to non-linear illumina-
tion effects, particularly due to multiple scattering. These
non-linearities cannot be corrected by the applied SNV nor-
malization as the method only reduces the linear effects (i.e.,
scaling and offset due to inclination and elevation variability).
From visual comparison of the cluster map with the RGB im-
age, one can notice that the lower clusters (1-3) are mostly
associated with pixels at regions that receive a low level of
illumination because of higher distance from the light source
and shading by partial-occluded leaves, and also some pixels
which are near the leaf edges. The spectra in these regions
are expected to be influenced by multiple scattering and were
therefore discarded from further analysis.

Fig. 2: RGB image and cluster map from a maize plant at the
V13 growing stage.

To quantify the drought-related effects, each plant was
characterized by a single SNV spectrum, by averaging over
the pixels from the retained clusters. By taking as a reference
spectrum, the average of the spectra of all the well-watered
plants at any particular day, any plant on the same day could
be evaluated against this reference by the proposed similar-
ity measure method. Figure 3 plots the spectral distances of
stressed plants against this reference during the whole experi-
ment. Each data point represents the average spectral distance



Fig. 3: Evolution of the spectral distance throughout the drought stress experiment. Plants grew from the V2 until the V18-stage.

obtained from all plants of each of the four treatments. Stan-
dard deviations of these average spectral distances over the
number of plants in each class are given as well. Note that
there were no measurements available on days 8, 32 and 33.

Figure 3(a) shows the results of the spectral comparison
between plants of classes WW and PD. The drought stress
was detected as early as the third day of the drought induction
(at T1, irrigation was fully stopped). The differences in spec-
tral distance between these two groups gradually increased as
the plants were withheld from water. At T2, the plants were
watered again albeit to a lower soil water content than the
well-watered treatment, after which the obtained spectral dis-
tance start to decrease and even stabilize again, as the plants
recovered. However, the stabilization did not persist until the
end of the developmental period, as after day 40, the spectral
distance start to deviate again. A possible explanation might
be that although plants adapted to the lower level of avail-
able water, at later developmental stages, they re-experienced
drought stress, meaning that adaptation was not complete.

Figure 3(b) presents the comparison between plants of
treatment SD and SD-RW, where the WW plants were used as
the reference. Since the irrigation was limited for both SD and
SD-RW plants from the start (i.e. two weeks earlier than the
start of the image acquisition), the effect of drought stress was
visible from the first day of observation. From that day on, the
spectral distance decreases monotonically, indicating that the
drought plants were adapting to the water stress environment

through various biological mechanisms. When the plants pro-
gressed towards a later developmental stage, a significant dis-
crimination between the two treatments was detected after
day 35, indicating an impairment in the plant development of
the SD group. As the SD-RW plants were fully well-watered
again at an early vegetation stage (T3), these plants were able
to fully recover and regain their optimal growth pattern. This
was not achieved by the plants in the SD group.

The discrimination between the healthy and drought-
stressed plants was achieved solely by determining differ-
ences in plant spectra. In this context, the obtained spectral
characterization is referred to as non-targeted determina-
tion, with no direct link between the spectra and specific
phenotypic traits. In order to obtain a possible biological
interpretation, the information from the band selection strat-
egy may provide useful indicators to correlate the spectral
variations with specific plant traits. The obtained top-scoring
bands with high discriminative power are shown in Figure 4.
The spectrum follows a systematic shape with several peaks
occurring in the 600-700 nm, 700-780 nm and 800-850 nm
spectral regions. This specific pattern may be linked to the
biological processes that change the biological properties of
the plant during the stress and recovery period, such as the
leaf biochemical composition, morphology of leaf surface
and the internal cell structure [8]. The changes of reflectance
in the visible and the red-edge regions are mainly related
to the modification of photosynthetic pigments, while in the



NIR, the changes are due to light scattering of the internal
properties of the cell structure related to leaf thickness and
plant dry matter [9].

Fig. 4: The F -value obtained from the band selection proce-
dure. The threshold was set at 70% of the maximum F value.

4. CONCLUSION

In this study, it was demonstrated that close-range HSI is a
promising rapid and nondestructive technique for detection
of drought stress responses of individual plants over time.
The proposed method uncovers biological-related traits from
spectral reflectance by a data-driven method that combines
clustering, band selection, and spectral similarity measures.
The analysis method was applied to detect plant responses
to drought and recovery after a re-watering period in maize
plants during the whole vegetative development. Experi-
mental results show that the method can clearly discriminate
plants under water-deficit stress from healthy plants at an
early stage of stress development. The method also clearly
reveals the recovery of plants after a re-watering period. This
demonstrates the usefulness of close-range HSI as a novel
technology for high-throughput phenotyping studies that may
boost the understanding of the genetics of drought tolerance
in breeding research. Further research and practical optimiza-
tion are however needed to fully realize its potential for the
phenotypic exploration of novel traits based upon prevail-
ing spectra in groups of genotypes, or differences in spectra
between genotypes.

5. REFERENCES

[1] Puneet Mishra, Mohd Shahrimie Mohd Asaari, Ana
Herrero-Langreo, Santosh Lohumi, Belén Diezma, and
Paul Scheunders, “Close range hyperspectral imaging of

plants: A review,” Biosystems Engineering, vol. 164, no.
Supplement C, pp. 49 – 67, 2017.
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Clevers, and José Moreno, “Optical remote sensing
and the retrieval of terrestrial vegetation bio-geophysical
properties–a review,” ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 108, pp. 273–290, 2015.

[4] Mohd Shahrimie Mohd Asaari, Puneet Mishra, Stien
Mertens, Stijn Dhondt, Dirk Inzé, Nathalie Wuyts, and
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