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ABSTRACT 

Multispectral imaging devices currently being used in a vari-
ety of applications typically follow opto-mechanical designs. 
These designs often present the disadvantage of a bulky and 
heavy construction, limiting their applicability in new low-
altitude remote sensing applications deployed on acquisition 
systems with constrained weight and dimension require-
ments. This paper presents the design and construction of a 
simple optical system based on a transmission grating and 
a lightweight commercial camera for snapshot multispectral 
image acquisition. The system can be mounted on a small 
drone for low-altitude aerial remote sensing, and is capable of 
separating the spectral information from the spatial scene and 
generating multispectral HD images and 4K videos. In addi-
tion, we propose a fast algorithm for recovering multispectral 
scenes from their respective acquired spectral projections. 
Experimental results show similarity of the compared wave-
forms, and that the maximum peak of the reconstructed wave-
length varies up to 13nm from reference spectroradiometer 
data. 

Index Terms— Multispectral Imaging, Adaptive Optics, 
Relay Lens, Transmission Grating, Drone, Reconstruction 
Algorithm, Convolution 

1. INTRODUCTION 

Multispectral Imaging enables the non-invasive acquisition 
of images of a given target in a large number of individual 
spectral bands, and has numerous current applications such 
as crop field monitoring, ocean and earth topography, and 
biomedical imaging [1] [2]. In oceanography applications, 
spectral instrument readings are used to measure ocean color 
products. These products commonly include harmful algae 
blooms (HABs), oil spills and chlorophyll concentration. The 
main limitation of established spectral measuring instruments 
is that they have low spatial resolution. An example of which 
is LANDSAT 8, which has a spatial resolution of 30m [3]. 
The spectral irradiance of a given target is unique for every 
material. Spectrally-resolved measurements enable an user 

to identify and classify targets based on the intensity of each 
spectral band. Currently, there are various techniques for 
capturing multispectral images including: Whisk Broom [4], 
Push Broom [5] and Computer Tomography Imaging Spec-
trometer (CTIS)[6, 7]. While the Whisk broom and Push 
Broom techniques require opto-mechanical scanning of the 
image plane (which is costly, time consuming, and can in-
crease device cost and dimensions), CTIS only requires a 
single snapshot and minimum opto-mechanical components. 
This can be useful and more efficient when capturing transient 
phenomena. Commercially available multispectral imaging 
systems tend to be costly, with starting prices in the range of 
$8,000 − $100,000 [8]. However, the use of CTIS introduces 
the requirement of specialized algorithms for recovering the 
spectrally-resolved images. The information provided by 
such a device is thus dependent on the camera’s resolution 
and its native spectral sensitivity. 
The main contribution of this work is to present the results 
of building a low-cost, lightweight multispectral imager for 
UAV applications, together with CTIS-based algorithms to 
acquire spectral image data. The rest of the paper is organized 
as follows: section 3 describes the operation fundamentals 
of a CTIS device, section 3.1 describes the proposed fast 
convolutional approach for CTIS image recovery and sec-
tion 4 describes the design and construction of the optical 
device. Finally, section 5 presents our results, compared to 
commodity spectral measurement devices. 

2. RELATED WORK 

Previous work has shown that unmodified commercial RGB 
cameras can successfully capture multispectral images using 
a CTIS-based approach [6], thus preserving the advantages 
introduced by CTIS: avoiding opto-mechanical components, 
a simple optical path, and snapshot acquisition of the en-
tire scene. Alternatively, [8] presents a compact single-shot 
hyperspectral imaging method using a conventional DSLR 
camera equipped with an ordinary refractive prism. In this 
approach, the computational imaging method recovers the 
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spectral information of a scene from edge dispersion, with 
the added constraint of a time-consuming recovery algorithm 
that limits applications with imaging speed requirements. In 
addition, a novel 3D hyperspectral imaging system based 
on integration of compressive sensing and light-field imag-
ing was proposed [7]. The basic idea of this work is to use 
the recorded light rays to compute a final image, called a 
synthetic image. So the light-field computation develops hy-
perspectral imaging system using compressive sensing. They 
combine the directional information with the spatial infor-
mation supplied by the sub-aperture images which enables 
the reconstruction of a hyperspectral image in a new direc-
tion [9]. Finally, low-altitude hyperspectral observation sys-
tems using aerial observation with unmanned aerial vehicles 
(UAVs) have advantages over satellite systems with respect 
to frequency, accuracy, and spatial resolution [10]. These 
considerations make spectral imaging via a UAV an attractive 
solution for localized remote sensing applications[11, 12]. 
The currently exist commercial alternatives for the specific 
case of multispectral UAV imaging [13]. However, they 
typically present a multiple photo-detectors imagers, adding 
complexity to their design. 

3. CTIS RECONSTRUCTION THEORY 

The CTIS image recovery problem is formulated as a gener-
alized linear continuous to discrete system [14] described by 
Equation 1. Where g is the data acquired by the sensor, H is 
the transformation and f is the hyperspectral data cube. 

� 
gm = f(r)hm(r)dr (1) 

s 

Let f be a multi or hyperspectral image represented as a rank-
3 discrete tensor signal where X Y Λ are integers representing 
the spatial and spectral dimensionality. Conversely, let ZX , 
ZY and ZΛ be the set of {0, 1, . . . , X  − 1}, {0, 1, . . . , Y  − 
1} and {0, 1, . . . ,Λ − 1} respectively. ZXY  Λ be the set of 
{1, 2, . . . , 255}. The linear mapping of f is seen in Equation 
2. 

f : ZX × ZY × ZΛ → ZXY  Λ 
(2)

(x, y, λ) ∗→ f(x, y, λ) =  v 

Let g be an RGB image represented as a rank-2 discrete ten-
sor signal where M and N be integers representing the signal 
dimensionality and ZM and ZN be the set of {0, 1, . . . ,M  − 
1}, {0, 1, . . . , N  − 1} respectively. ZMN  be the set of 
{1, 2, . . . , 255}. The linear mapping of g is seen in Equa-
tion 3. 

g : ZM × ZN → ZMN  
(3)

(m,n) ∗→ g(m,n) =  c 

The definition of H is seen in Equation 4. H is a linear op-
erator acting on f to produce g which is defined in Equation 

3. g is the spatial and spectral information in the image plane 
acquired by the camera: 

H : l2(ZN × ZN × ZN ) → l2(ZN × ZN ) 

f ∗→ H{f} = g 
(4) 

where Ix×y is identity matrix and a(kp+1)×k is seen in Equa-
tion 5. k is the number of spectral bands and p the number of 
projections. 

H = {H ∈ R : H = Ix×y ⊗ a(kp+1)×k} (5) 

� T 
a(kp+1)×k = Jk×k Jk×k Uk Ik×k Ik×k (6) 

3.1. Convolutional Reconstruction of CTIS Images 

The proposed convolutional reconstruction algorithm recov-
ers multispectral CTIS images through the convolution be-
tween the image plane g[n1, n2] and the impulse response of 
the given spectral bands h[n1, n2]. In other words, the convo-
lution between the image containing the spatial and spectral 
information and the artificial image created with an impulse 
in the location of the projection of each spectral band. This 
operation produces a recovered multispectral image with the 
intensity of each spectral band. The 2-dimensional convolu-
tion operation is presented in Equation 7. 

F [n1, n2] =  g[k1, k2]h[n1 − k1, n2 − k2] (7) 
k1k2 

Thus, the recovery of the spectral cube using a convolution 
operation can be formulated as follows. Let h be the linear 
operator on g, as seen in Equation 8. This operation is equiv-
alent to a convolution, as shown in Equation 9: 

h : l2(ZN × ZN ) → l2(ZN × ZN ) 

g ∗→ h{g} = F 
(8) 

∗ : l2(ZN ) → l2(ZN ) 

(g, h) ∗ = F→ ∗{(g, h)} � g ∗ h 
(9) 

where h and g are as presented in Equations 10 and 11. The 
elements p1 p2 p3 p4 p0 are the projections of the target im-
age, including the order zero. The 2-dimensional convolution 
is seen in Equation 12 where S is p1 + p2 + p3 + p4 + p0 

constitute the intensity image in a given spectral band λk. 

h[n1, n2] =  ⎡ ⎤ 
01,1 . . .  01,j 11,j+1 01,j+2 . . .  01,n2   . . . . . ⎥   . . . . . ⎥. . . . .  ⎥  ⎥0i,1 . . .  0i,j 0i,j+1 0i,j+2 . . .  0i,n2  ⎥  ⎥1i+1,1 . . .  0i+1,j 1i+1,j+1 0i+1,j+2 . . .  1i+1,n2  ⎥  ⎥0i+2,1 . . .  0i+2,j 0i+2,j+1 0i+2,j+2 . . .  0i+2,n2  ⎥   . . . . . ⎥ ⎣ . . . . . ⎦. . . . . 
0n1,1 . . .  0n1,j 1n1,j+1 0n1,j+2 . . .  0n1,n2 

(10) 



 ⎡
0 p1 0 

g[n1, n2] =  ⎣p2 p0 p4 

⎤
(11) 

0 p3 0 

⎦
 ⎡

0 0 p1 0 0 
0 p1 + p2 p0 + p1 p1 + p4 0 

⎤
 

F [N1, N2] =

  
  p2 p2 + p0 S p4 + p0 p4 

⎥
 (12) ⎣ 0 p2 + p3 p0 + p3 p4 + p3 0 

⎥⎥
0 0 p3 0 0 

⎥⎦

4. CTIS-BASED SPECTRAL IMAGING DEVICE 

With the objective of designing a low-cost, portable mul-
tispectral imaging device, our design is based on a GoPro 
Hero 6 camera. This camera was further augmented using a 
fabricated attachment that enables the acquisition of spatio-
spectral CTIS images. This attachment mainly consists of 
an imaging lens, an iris, a collimating lens and a diffraction 
grating. For reference, an optical diagram of the attachment 
is shown in Figure 1, and the complete attachment in Figure 
2. 

Fig. 1. Diagram of optical system 

Fig. 2. Diagram of optical system 

Once the optical path and core components for the attach-
ment are determined, the tubing system in Figure 2 was 
constructed. The attachment was constructed using �2” 
lenses with a 40mm focal length for the imaging and col-
limating lenses, �2” adjustable length threaded tube and a 
ring-actuated �1mm - �25mm adjustable iris diaphragm 
from the Thorlabs SM2 family. Because the system is devel-
oped for low altitude scenarios, this allows the acquisition of 
.5m to 10m of spatial information. This is done to comple-
ment loss of spatial resolution from satellite data. A �2” lens 
with low focal length can be mounted on a drone camera. For 
the case of CTIS imaging, there exists a trade-off between 
the spatial information acquired and the overlapping between 

spectral bands in the spectral projections in the image plane. 
If the aperture is maximally opened, spectral bands overlap, 
which is detrimental to the spectral resolution of recovered 
images. Alternatively, a minimal aperture results in single 
pixel measurements with very detailed spectral information. 
Thus, the system aperture is set that the camera captures 
92mm for every meter of distance. Thus if, for instance, the 
drone flies at 10m, it can capture .920 m of spatial information 
without sacrificing spectral information. 

Fig. 3. Prototype system using a GoPro Karma Drone with a 
Hero 6 camera and the spectral imaging filter. 

A Rainbow Symphony film transmission grating with 532 
lines/mm is used on the setup. This allows the camera to cap-
ture the first order projection of the scene in the visible range. 
In order to capture these projections in two dimensions,two 
gratings were superimposed with a 90 degree rotational off-
set. 
The calibration procedure consists of determining the posi-
tion of each spectral band in the image plane with respect 
to the zero-order image. For this purpose, a Mercury-Argon 
lamp with known wavelengths (435.833nm, 546.074nm, and 
696.543nm) was used. This procedure is performed with a 
1mm aperture, and the distance from the zero order to each 
projection is measured. From these distance measurements, 
the rest of possible wavelengths is interpolated. 

5. RESULTS 

Following calibration, experiments were performed by cap-
turing an image with both 2 colors and multiple colors, and 
comparing the recovered spectral response with a calibrated 
SOC700 hyperspectral camera as ground truth. Figure 4 
presents and compares the reconstruction results using the 
proposed convolutional approach. It adequately preserves 
spatial resolution from a distance of 1m and a field of view 
of 4.563 cm. In addition, Figure 5 shows the comparison 
of spectral waveforms of different colors with the measure-
ments from a GER 1500 spectroradiometer, used as ground 
truth. With a reconstruction time of 56 seconds per data 
cube, the convolutional approach was able to reconstruct 8 



Fig. 4. Comparison of images acquired using a SOC700 hyperspectral camera (top row) and the proposed CTIS instrument 
(bottom row). Columns, from left to right: RGB composite, 600nm band, 520nm band, 460nm band, 400nm band. 

Table 1. MSE CTIS and GER1500 and SOC700 Table 2. Camera Parameters 
Color GER 1500 SOC 700 
Red 1 0.0586 0.0190 
Red 2 0.0335 0.0338 

Orange 0.0218 0.0416 
Yellow 0.0123 0.0230 
Green 1 0.0637 0.0146 
Green 2 0.0235 0.0304 
Blue 1 0.0433 0.1057 
Blue 2 0.0535 0.0385 

Parameter Values 
Spectral Range 400nm-600nm 

Resolution between bands 10nm 
Spectral Resolution 42nm 
Spatial Resolution 92mm per m 

AFOV 3.42 

multispectral data cubes making a total of 7 minutes and 28 
seconds. Each one with 41 spectral bands from 300 nm to 700 
nm. Results the comparison between the spectral data of the 
spectroradiometer and the camera have similar waveforms. 

Fig. 5. MSE graph comparing the GER 1500 spectroradiome-
ter with the CTIS instrument 

6. CONCLUSION 

A low-cost multispectral camera using simple optical compo-
nents and an unmodified consumer camera with a spectral res-
olution of 60nm was developed. In addition, a convolutional 
approach for CTIS image recovery was proposed, which pro-
duced fast and accurate results verified with calibrated devices 

as ground truth information. Our results indicate little to no 
discernible loss in both spatial and spectral resolution. The 
fast CTIS reconstruction time of this approach enables its use 
in applications with dynamic scenes and/or transient phenom-
ena. 
Future work includes the integration of a more complex opti-
cal design, and further optimizing the convolutional recovery 
algorithm for enhanced spectral resolution. In addition, the 
use of a camera with a wider spectral sensitivity can provide 
additional spectral data, and increase its viability for other ap-
plications. 
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