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ABSTRACT 

 

Close-range hyperspectral imaging (HSI) of plants is now a 

potential tool for non-destructive extraction of plant 

functional traits. A major motivation is the plant 

phenotyping related applications where different plant 

genotypes are explored for different environmental 

conditions. HSI of Arabidopsis thaliana is of particular 

importance as it is a model organism in plant biology. In the 

present work, a portable HSI setup has been used for the 

monitoring of a set of 6 Arabidopsis thaliana plants. The 

plants were monitored under controlled watering conditions 

where 3 plants were watered as normal and the other 3 

plants were given 50% of the normal volume of water. The 

images were pre-processed utilising the standard normal 

variate (SNV) and changes over time were evaluated using 

unsupervised clustering over the time series. The results 

showed an early detection of stress from day 4 onwards 

compared to the commonly used normalised difference 

vegetation index (NDVI), which provided detection from 

day 9.  

 

Index Terms— visible-near infrared, phenotyping, digital, 

agriculture, automatic 

 

1. INTRODUCTION 

 

Imaging technologies are emerging as potential tools for the 

rapid non-destructive understanding of the functional traits 

of plants [1]. Further, HSI in particular, is becoming a key 

tool for studying the functional dynamics of plants. A reason 

for this is that HSI combines two complementary modalities 

i.e. imaging and spectroscopy. The imaging modality 

provides access to the structure of the plants whereas the 

spectroscopy provides insight into the chemical state of the 

plants. Visible and near-infrared spectroscopy (VNIRS 

(400-1000nm)) HSI is of particular interest as it provides 

access to the key chemical pigments, which can be directly 

relatable to the photosynthetic activity of plants as well as 

the moisture and internal structure of plant leaves [2]. 

There is significant interest in of utilising close range HSI 

for phenotyping applications where the growth of the plants 

belonging to a particular genotype is monitored with respect 

to its surrounding environment [3]. Monitoring the plant in 

such a way allows the physicochemical changes in the 

plants to be followed and quantified, assisting with the 

search for a target gene. In plant biology, Arabidopsis 

thaliana has emerged as the model plant to support such 

testing experiments [4]. There are different benefits 

associated with studying Arabidopsis thaliana as it 

develops, reproduces and responds to stress and diseases in 

much the same way as many crop plants. The knowledge 

developed on the Arabidopsis thaliana can be applied 

directly to other crop plants. Further, it is an easy and 

inexpensive plant with a rapid life cycle involving prolific 

seed production thus supporting large scale experiments 

involving thousands of plants [5]. 

Laboratory-scale phenotyping and plant biology 

experiments are usually performed in controlled 

environmental conditions such as greenhouses. In recent 

years, to automate the handling of large-scale experiments 

and measurements, the high-throughput plant phenotyping 

setups (HTPPS) have emerged [6]. HSI can also be 

integrated into HTPPS, which support the continuous 

monitoring of the plants. However, when HSI is integrated 

within HTPPS, its use is limited to large scale experiments 

and it cannot be used as a portable tool to explore the plants 

in small scale settings. Hence, this study aims to explore the 

potential of a portable HSI setup, which can be used with a 

wider range of experimental setups and is not restricted to 

HTPPS. 

The objective of this study is to utilise a portable HSI setup 

for imaging the stress responses in Arabidopsis thaliana. 

The study involved monitoring a set of Arabidopsis thaliana 

plants, where half of the plants were normally watered and 

the other half were given only 50% of the required water. 

The HS images were processed with unsupervised clustering 

to detect the stress symptoms as early as possible. The 

results were also compared with the standard NDVI to prove 

the potential of HSI over multispectral cameras.  

 



 

2. MATERIAL AND METHODS 

 

2.1. Image acquisition 

 

Images were recorded with an automatic portable HSI setup 

developed recently in the Screening Technology Department 

at Bayer AG. To record the images the setup utilises a push 

broom line-scan hyperspectral camera from Headwall 

Photonics, Massachusetts, USA. The camera recorded the 

image with a spectral range of 400-1000 nm recording 270 

spectral bands with 640 spatial pixels. The number of spatial 

pixels recorded in each scan was 1004  1004. The 

illumination was provided with two halogen bulbs aligned at 

45 to the field of view of the camera. Imaging of the plant 

was performed by keeping the plant still at the field of view 

(FOV) and moving the camera using a motorised stage to 

record the plant and the white reference standard 

(Spectralon).  

 

2.2. Samples description 

 

The study involved monitoring 6 different Arabidopsis 

thaliana plants. Out of the 6, half of the plants were well 

watered and the other half were given 50% of the required 

water. The study was performed in an indoor laboratory 

environment and all the samples were stored under similar 

conditions. The samples were monitored for 10 days over 

the period from 23rd July 2018 to 3rd August 2018.  

 

2.3. Data processing 

 

2.3.1. Radiometric calibration 

Variations in signal arising from illumination intensity, the 

detector sensitivity and the transmission properties of the 

optics were corrected by radiometric calibration utilising 

dark and white reference images. The correction was 

performed for every pixel in the hyperspectra (HS) image 

according to equation (1):  

𝐼𝑅(𝑖, 𝑗, 𝑘) =
𝐼𝑟𝑎𝑤(𝑖,𝑗,𝑘)−𝐼𝑑𝑎𝑟𝑘(𝑖,𝑗,𝑘)

𝐼𝑤ℎ𝑖𝑡𝑒(𝑖,𝑗,𝑘)−𝐼𝑑𝑎𝑟𝑘(𝑖,𝑗,𝑘)
               (1) 

where, IR is the calibrated reflectance, Iraw is the raw 

intensity measured from the test sample, Idark is the intensity 

of the dark response, Iwhite is the intensity of the uniform 

white reference, and i and j are spatial coordinates and k is 

the wavelength of the image.  

2.3.2. Normalisation and smoothing 

The spectral range of the hypercube was reduced to 450 – 

900 nm to remove the noisy part of the spectrum. Further, a 

moving window Savitzky-Golay filter [7] (15-point width 

and second order polynomial) was applied to each pixel of 

the image to remove random noise, e.g. spikes, from spectra. 

Further, to reduce light scattering effects arising from 

inhomogeneity of the leaf surface, the spectra were 

normalised using the standard normal variate (SNV) 

transformation [6, 8, 9].  

2.3.3. NDVI estimation 

NDVI was estimated for each image to benchmark the 

unsupervised methodology presented in this work. To 

represent an image a singles NDVI value was estimated as 

an average of the all NDVI values calculated for each pixel 

of the complete plant. The NDVI for the HS image of plants 

can be calculated using equation (2): 

𝑁𝐷𝑉𝐼(𝑖, 𝑗) =
𝐼𝑅(𝑖,𝑗,740)−𝐼𝑅(𝑖,𝑗,670)

𝐼𝑅(𝑖,𝑗,740)+𝐼𝑅(𝑖,𝑗,670)
   (2) 

where i and j are spatial coordinates and the values of 670 

and 740 are wavelengths (in nm). 

2.3.4. Clustering 

To extract the meaningful information from the HS image, 

the k-means clustering algorithm was used (without initial 

seeds), where the appropriate number of clusters k was 

estimated using the elbow method. The elbow method looks 

at the percentage of variance explained as a function of the 

number of clusters. The number of clusters chosen 

explained 90 % of the variance in the data. Clustering was 

performed on spectra that were extracted from a subset of 

images. The subset comprised two images, one from a 

drought plant and the other from a well-watered plant that 

was monitored each day over the 10 day time period. Based 

on the cluster centroids extracted the clusters were assigned 

to all other plants time series images utilising Euclidean 

distance. The cluster maps were later reshaped to the image 

size and the cluster proportions were then plotted and 

visualised. The cluster proportions were estimated by taking 

the ratio of pixels belonging to a particular cluster to that of 

the total number of pixels corresponding to the plant. 

 

3. RESULTS 

 

Figure 1 presents the elbow plot for the clustering 

performed on the spectra of plants acquired over the 10 day 

time period. The number of clusters was selected based on a 

threshold of 90% variance, which resulted in the selection of 

8 clusters for the k-means analysis.  

 

 Figure 2 presents the cluster centroids obtained from the 

clustering. It can be noted that the scale of cluster centroids 

is from -2 to 1.5 and not 0 to 1 as for typical reflectance 

measurement, a reason for this is that the clustering was 

performed on the normalised spectra. In previous work, 



spectral normalisation was shown to support the clustering 

of plant data by reducing the effects of variation in 

illumination conditions in images [6,9]. Figure 2 shows that 

the cluster centroids have variation over the complete 

spectral range however at particular regions such as 550 nm 

and 670 nm there is larger variation.  

 

A reason for these differences could be understood as the 

change in the concentration of photosynthetic pigments i.e. 

chlorophyll and anthocyanin. The spectral bands around 550 

nm and 670 nm arise from the anthocyanin and chlorophyll 

pigments and the concentrations of these pigments are 

affected by any stress that the plant may be suffering. In a 

typical response to stress, the chlorophyll pigments decrease 

and the anthocyanin increases, which results in the plant 

looking less green and more red or brown.  

 

 

Figure 1: Criterion for selection of the number of 

clusters to explain at least 90 % of the variance in the 

data. 

Figure 3 presents the reconstructed cluster maps obtained 

from the k-means clustering. The cluster maps from the last 

five days of the measurement are provided. It can be seen in 

Figure 3 that the plants that were given 50 % less water 

started to show the evolution of new clusters whereas the 
number of clusters in the normally watered plants remained 

constant. The number of pixels belonging to the new 

clusters increases with time owing to drought stress. The 

cluster proportions were quantified and the results for 

cluster 2 are presented in Figure 4.  

 
 

 

Figure 2: 8 cluster centroids from K-means. 

Cluster 2 was chosen as it was found to provide the earliest 

clear separation of the well-watered and the plant under 

drought stress. Figure 4 (a) presents the average NDVI 

values along with the standard deviation over the complete 

time period of the experiment. Figure 4(b), provides the 

evolution of the proportion of pixels belonging to cluster 2 

along with the standard deviation for the complete time 

series. In Figure 4(a) it can be noted that with NDVI a clear 

separation was only possible on day 9 after the stress 

induction whereas with the clustering approach it can be 

seen that the plant can be separated after the 4th day of stress 

induction, thus demonstrating the benefit of HSI for 

studying Arabidopsis thaliana plant. 

 

4. CONCLUSIONS 

 

The present work showed that HSI can be a potential tool to 

image the functional dynamics of Arabidopsis thaliana. The 

results showed that HSI provided early detection of drought 

stress compared to the standard NDVI. The clustering 

approach showed that an unsupervised data processing 

algorithm can be used to identify and localise the stress-

related changes in the plant. The changes can further be 

quantified and viewed as evolution plots to make the 

judgment on early stress detection. In future work, the 

methodology will be tested on different stress conditions for 

Arabidopsis thaliana. 

 

 

0 5 10 15 20

Number of clusters

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a

ri
a
n

c
e
 e

x
p

la
in

e
d

 c
u

m
u

la
ti

v
e

500 600 700 800 900

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

N
o

rm
a

li
s
e

d

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

Cluster6

Cluster7

Cluster8

500 600 700 800 900

Wavelength (nm)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

N
o

rm
a

li
s
e

d

Cluster1

Cluster2

Cluster3

Cluster4

Cluster5

Cluster6

Cluster7

Cluster8



 

Figure 3: Evolution of clusters in well-watered (100%) plants and plants given 50% of the normal volume of water.

 

Figure 4: Evolution of (a) NDVI and (b) the proportion of cluster 2 during the 10 days of measurements.
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