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Shadow-aware nonlinear spectral unmixing with

spatial regularization
Guichen Zhang, Paul Scheunders, Senior Member, IEEE, Daniele Cerra, Member, IEEE

Abstract—Current shadow-aware hyperspectral unmixing
methods often suffer from noisy abundance maps and inac-
curate abundance estimation of shadowed pixels, as these are
characterized by low reflectance values and signal-to-noise ratio.
In order to achieve a shadow-insensitive abundance estimation,
in this article we propose a novel spatial-spectral shadow-
aware mixing model (S3AM). The approach models shadows by
considering diffuse solar illumination and secondary illumination
from neighbouring pixels. Besides, spatial regularization using
shadow-aware weighted Total Variation is employed. Specifi-
cally, pixels in the local neighborhood of a target pixel take
simultaneously into account spectral similarity measures derived
from the imagery, elevation similarity measures derived from a
Digital Surface Model, and the impact of shadows. The sky view
factor F , needed as input for the model, is also derived from
available Digital Surface Models (DSM). The proposed approach
is extensively validated and compared to state-of-the-art methods
on two datasets. Results demonstrate that S3AM yields superior
abundance estimation maps for real scenarios, by decreasing the
noise in the results and achieving more accurate reconstructions
in the presence of shadows.

Index Terms—Spectral unmixing, spectral mixing model,
shadow-aware, spatial regularization, total variation, digital sur-
face model (DSM)

I. INTRODUCTION

S
PECTRAL unmixing is a fundamental hyperspectral im-

age analysis technique analyzing the composition of an

image element at sub-pixel level [1]–[3]. Given a spectrum

related to an image element, spectral unmixing decomposes

it into the spectra related to the pure materials which are

present (usually more than one), i.e., endmembers, and their

corresponding contributions, i.e., abundances [4]. In super-

vised unmixing, the endmembers present in the scene are

available after being extracted directly from the image using

endmember extraction algorithms, or collected in an external

spectral library [1]. Subsequently, only abundances need to

be estimated. In this paper, we exclusively discuss supervised

unmixing.

A spectral mixing model describes how an incoming light

ray from a given illumination source interacts with the targets

on ground, before it is scattered back to the spectrometer

[5]. One of the most important prerequisites to correctly
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carry out the spectral unmixing process is to have a spectral

mixing model at hand that properly represents the scenario

[2]. In the past decades, numerous spectral mixing models

with different physical assumptions have been proposed [6]–

[11]. The linear mixing model (LMM) [6] is one of the most

popular approaches, as it achieves a good balance between

simplicity and accuracy in the physical modelling of the scat-

tering process. Specifically, the LMM assumes that incoming

light interacts with ground materials only once before being

scattered back to the sensor. In recent years, nonlinear mixing

models have attracted attention, as nonlinear effects in optical

interactions are occasionally non-trivial and meaningful for

a correct interpretation of the resulting spectra [1], [2]. At

a macroscopic level, nonlinear effects often appear due to

height differences between ground objects, causing incoming

light rays to interact more than once with different objects

before being scattered back to the sensor. Nonlinear algorithms

model secondary optical reflections of a light ray using the

termwise product of the spectra related to the objects on its

path. Most methods regard nonlinearities up to the second

order, including the Nascimento model [7], the Fan model

[8], the post nonlinear mixing model (PPNM) [11], and the

generalized bilinear model (GBM) [9]. Recently, authors in

[10] presented the multilinear mixing (MLM) model to tackle

nonlinear effects of all orders of optical interaction based on

stochastic processes.

Another challenge for spectral unmixing is posed by shadow

effects. A given pixel can be fully or partly sunlit or shadowed,

with partial shadowing mainly related to shadow boundaries.

Most existing spectral mixing models assume all pixels to

be sunlit [1], [2]. However, different illumination conditions

apply for shadowed pixels [12]. Specifically, fully sunlit pixels

receive both direct and diffuse solar radiation, i.e., global solar

illumination, while fully shadowed pixels only receive diffuse

solar radiation, caused by atmospheric scattering [12]. For

those spectral mixing models that do not consider shadow

effects [6]–[11], the difference in solar illumination conditions

between sunlit and shadowed regions can lead to inaccu-

rate abundance estimation, as shadows considerably impact

the magnitude of the reflectance and introduce significant

wavelength-dependent spectral distortion [12]. Therefore, ad-

vanced spectral mixing models that consider shadow effects

are desirable. Unless otherwise stated, we will refer in this

manuscript to shadowed pixels as fully or partly shadowed

image elements, while sunlit pixels denote fully sunlit image

elements.

Several methods have been developed to address this issue.

Since shadowed pixels have lower reflectance values, one of
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the most straightforward ways to describe a shadowed pixel

is by scaling its measured spectrum. This is motivated by

the fact that a fully shadowed region does not receive direct

light from any light source, while fully sunlit areas receive

global solar illumination. In addition, partly shadowed areas

can be considered to be a mixture of fully sunlit and shadowed

pixels. Earlier works include an additional ”shade” endmember

whose spectral values are (nearly) zero, followed by abundance

estimation using the linear spectral unmixing model [13],

[14]. Equivalently, the shadow LMM (SLMM) [5] extends the

LMM by subtracting the ”shade” fraction from a pixel using a

parameter Q. In [5], the shadow fraction parameter Q has been

applied in the MLM model to jointly consider nonlinear and

shadow effects, resulting in the shadow MLM (SMLM) model.

This group of methods then relies on the shadow-related

parameter Q to remove shadows. Assuming that shadows

scale the spectral reflectance, the spectral angle is a shadow-

insensitive measure of spectral similarities. The strategy in [15]

is to conduct nonlinear spectral unmixing separately in sunlit

and shadowed regions, followed by matching endmembers in

shadowed areas with those in sunlit areas using the spectral

angle distance (SAD). The shadow removal is conducted using

pixel reconstruction while replacing shadowed endmembers

with their matched sunlit ones.

However, the above approaches ignore an essential illumi-

nation contribution in shadowed regions, namely the diffuse

solar illumination, which comes from the optical scattering of

the direct sunlight in the atmosphere [12]. This contribution

has a wavelength-dependent impact on shadows, which is

non-negligible and non-trivial for spectral modeling [12]. One

straightforward way of dealing with this wavelength-dependent

shadow effect is to develop physics-based mixing models

based on radiative transfer [12]. Specifically, those methods

include two major solar illumination sources, i.e., direct and

diffuse solar radiation, with any pixel receiving a combination

of both [16]–[19]. For example, authors in [16] proposed an

illumination-invariant spectral mixing model at radiance level

based on radiative transfer. In [17], the Fansky model was

proposed, that accounts for the shadow effects by incorpo-

rating direct and diffuse solar radiation, and that accounts

for nonlinear optical interactions by using the Fan model [8].

A shadow-compensated bilinear mixing model (SCBMM) in

[18] allows for different illumination conditions in a scene,

and estimates the diffuse solar radiation and abundances

simultaneously based on global Particle Swarm Optimization

[20]. Zhang et al. [19] introduced the extended shadow-aware

multilinear mixing (ESMLM) model, describing the spectrum

of a mixed pixel as the sum of the contributions from different

illumination sources.

Nevertheless, several shadow-related challenges remain.

Since the contribution from diffuse illumination is significantly

smaller with respect to global illumination, modeling shadows

with diffuse solar illumination terms may lead to over-fitting of

the optimization problem. Moreover, the signal-to-noise ratio

in shadowed pixels is much lower with respect to sunlit pixels.

These factors lead to inaccurate abundance estimations and

noisy abundance maps [19].

The above-mentioned problems may be solved by exploiting

the spatial information in shadow-aware spectral unmixing

methods. Spatial-spectral unmixing approaches consider the

spatial dependence in local and non-local neighborhoods. On

the one hand, in local neighborhoods, abundances at a specific

pixel are assumed to be strongly correlated to the ones of

neighboring pixels [21], [22]; on the other hand, in non-local

neighborhoods, similar patches in a larger region are assumed

to share similar texture [23], [24]. Earlier work [25] improved

the local homogeneity of abundance maps by iteratively reduc-

ing the spatial structure of residual maps. Later, a hierarchical

Bayesian model incorporated spatial information based on

Markov random fields for spectral unmixing [26]. Authors

in [27] account for the spatial-contextual information through

the convolutional operation and sequentially decompose the

hyperspectral image from local attention to global aggrega-

tion. Recently, convolutional neural networks (CNN) have

been incorporated into deep learning-based spectral unmixing

approaches [28] for the modeling of spatial information.

Moreover, a group of methods applies spatial regularization to

spectral mixing models. In the past decades, numerous works

have applied different spatial regularizers to abundances, such

as spatial autocorrelation [29], spatial-spectral coherence [30],

L2 norm [31], Total Variation (TV) [32], non-local TV [23],

and non-local HSI TV incorporating the spatial distribution

of the endmembers [24]. Specifically, the TV regularization

has attracted most attention, as it promotes piecewise smooth

abundance maps and better preserves edges [32], [33].

While TV assumes neighboring pixels to have an equal

influence to a target pixel, recently some works refined this

assumption by allowing different weighting factors at neigh-

boring pixels, resulting in weighted TV [33]–[35]. Neigh-

boring pixels with associated bigger weights are assumed to

have a larger impact on the underlying spectrum. Weights can

be derived from different measures as prior knowledge, such

as spectral distance, principal components, and abundance

distance [34], [35]. In addition to spectral information, weights

derived from elevation information can improve abundance

estimation considerably [33], because of the illumination-

insensitive characteristics of Digital Surface Models (DSM). In

general, the more accurately the weights describe the ground

features, the better the abundance estimation performance.

On the other hand, inaccurate weights can lead to imprecise

results. For example, since shadows introduce wavelength-

dependent spectral distortions, spectral similarity measures

can largely reduce performance at shadows boundaries, where

pixels composed of the same target material may exhibit

spectral differences when exposed to different illumination

conditions.

In order to partly resolve the above challenges, in this article

we propose a spectral unmixing method with shadow-aware

spatial constraints obtained from a hyperspectral image and a

corresponding DSM generated by multi-view stereo imagery.

• Inspired by our previous work in [19], the spectral

mixing model accounts for typical ground scenarios in

the presence of shadows and nonlinear optical effects

by considering multiple illumination sources: global solar

illumination, diffuse solar illumination, and secondary il-

lumination from neighbouring pixels. Specifically, global
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solar radiation is assumed to be the main illumination

source for sunlit pixels, while diffuse solar radiation dom-

inates in shadowed pixels. A ground pixel may receive

light from some or all of the illumination sources, cre-

ating flexible spectral modeling for pixels with different

illumination conditions.

• In order to alleviate the impact of shadows on the estima-

tion of abundances, we propose a weighted TV constraint

with shadow-insensitive weighting factors. Weighting fac-

tors are computed from the spectral angle and elevation

differences between a target pixel and its neighboring pix-

els. In addition, a pre-computed shadow-related parameter

is included in weighting factors in order to decrease the

contribution of shadowed neighboring image elements of

the target pixel.

• We inject elevation information from the DSM into the

model in two ways. First, the elevation data provide

illumination-insensitive TV weights, beneficial to the

abundance estimation in shadowed pixels. Second, rather

than being an additional model parameter, the sky view

factor (F ), required to calculate the contribution of dif-

fuse solar illumination, is previously obtained from the

elevation data, additionally decreasing the complexity of

the spectral mixing model.

• We extensively validate the proposed method on two real

hyperspectral images including shadows, both quantita-

tively and qualitatively. The proposed model significantly

decreases the noise level in abundance maps, shows

good robustness to shadow effects, and obtains more

homogeneous abundance maps.

The remainder of this article is organized as follows. In

section II we present the most popular spectral mixing model,

i.e., LMM, and the ESMLM model, a shadow-aware spectral

unmixing approach from our earlier works [19]. Section III

introduces the proposed spatial-spectral shadow-aware mixing

model with spatial constraints (S3AM). Section IV describes

the experimental setup, including datasets, compared meth-

ods, measures for quantitative evaluation, optimal parameter

settings, and computational resources. Section V and Section

VI report and assess experimental results on two real datasets.

Finally, we conclude our work and give prospects for future

developments in Section VII.

II. SPECTRAL MIXING MODELS

We first introduce the mathematical notations utilized in this

article. Denote a hyperspectral image with B spectral bands

and N pixels as X ∈ R
B×N , with X = [x1,x2, · · · ,xN ],

where pixel xj = (xj,1, xj,2, · · ·xj,B)
T ∈ R

B×1. An end-

member library E ∈ R
B×p consists of p endmembers, where

the i− th endmember is denoted as ei ∈ R
B×1. The averaged

spectrum in the first-order neighborhood of pixel xj is denoted

as χj ∈ R
B×1. Denote an abundance matrix related to E as

A = [a1,a2, · · · ,aN ], with aj ∈ R
p×1. In addition, four

pixel-wise parameters at pixel j are denotes as Pj , Qj , Kj ,

Fj , and their corresponding vector forms are denoted as P ,

Q, K, F .

Spectral mixing models can be constructed by a ray-

based description of the interaction of the incoming light

with the ground materials [5], [19]. Following some physical

assumptions, a light ray initiated from an illumination source

interacts with ground materials with given probabilities before

being scattered back to the sensor. In a simple scenario, we

assume that all pixels receive only global solar illumination,

i.e., direct sunlight, and that light rays interact only once

with the ground materials before being scattered back to the

sensor. Moreover, the probability of the optical interaction

within a single-resolution cell is assumed to be proportional

to the abundance of each material within the image element.

Following the above assumptions, the LMM is obtained as:

xj =

p∑

i=1

aj,iei (1)

where
∑p

i=1 aj,i = 1 and ∀i: aj,i ≥ 0.

The ESMLM model described in [19] is based on similar

ray-based descriptions. In order to account for shadows, the

ESMLM model allows various illumination conditions in

an image and accounts for typical scenarios related to the

types and distribution of ground materials. Specifically, the

ESMLM model considers three illumination sources: global

solar illumination, diffuse solar illumination, and secondary

illumination from neighbouring pixels. A light ray from each

illumination source follows certain physical assumptions. For

a given pixel xj , the ESMLM model sums up contributions of

possible light rays initiated from all three illumination sources,

as follows:

xj =(1−Qj)(1− Pj)

p∑

i=1

aj,iei +QjT (s0diff
)⊙

p∑

i=1

aj,iei

+ aj,ieiPj

p∑

i1=1

p∑

i2=1

aj,i1aj,i2ei1 ⊙ ei2

+ (1−Qj)(1− Pj)Kj

p∑

i=1

aj,iei ⊙ χj

(2)

where
∑p

i=1 aj,i = 1, ∀i: aj,i ≥ 0, and Pj , Qj ,Kj ∈ [0, 1].
We briefly remind the main concepts related to the ESMLM

model and its representation reported in Eq. (2). For further

details, the interested reader is referred to the extensive de-

scription in [19].

In this model, P is the probability that a light ray will

undergo a further interaction with the current pixel before

reaching the sensor, while Q denotes the shadowed fraction

of a pixel. The first term in Eq. (2) represents the linear

optical interactions of the incoming light from global solar

illumination. This term is re-scaled with (1 − Q), since the

shadowed part of a pixel does not have a direct line of sight

to the sun. Moreover, it is re-scaled with (1−P ), representing

the probability that it goes directly to the sensor after this

interaction. The second term is related to the linear interactions

of incoming light from diffuse solar illumination, contributing

to the shadowed fraction Q of a pixel. The operator T (s0diff
)

corresponding to the diffuse solar illumination is modeled

in Eq. (3). Furthermore, the third term describes second-

order optical reflections, appearing with probability P . The
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fourth term describes secondary interactions between first-

order neighboring pixels (described by spectrum χj) and the

target pixel with a strength factor K. By only retaining non-

linear effects up to the second order, only neighboring regions

with a direct line of sight to the sun can contribute to the

target pixel, resulting in a re-scaling factor of (1−Q)(1−P ).
Furthermore:

T (s0diff
) =

τ diff ⊙Es

τ dir ⊙El + τ diff ⊙Es
(3)

where
τdiff (λ)Es(λ)
τdir(λ)El(λ)

= F (k1λ
−k2 + k3) with k1, k2, k3 > 0.

This power function models the wavelength-dependent atmo-

spheric scattering, which is stronger at shorter wavelengths.

El and Es represent direct and diffuse solar radiation, re-

spectively, while τ dir and τ diff represent the transmittance of

direct and diffuse solar radiation, respectively. If a ground pixel

is not occluded, the diffuse radiation comes from all directions

of the sky. When occlusion occurs, the diffuse illumination

decreases by the sky view factor F ∈ [0, 1], representing the

fraction of sky that a ground pixel can ”see”.

The ESMLM model provides flexible nonlinear modeling

with four parameters (P , Q, K and F ) and accounts for

different illumination conditions in an image element. Such

flexibility brings challenges in solving the reverse problem due

to the non-convexity of the objective function. In particular,

the ESMLM model becomes tri-convex, making it rather chal-

lenging to acquire a satisfying solution through the ADMM

approach [36], [37].

III. PROPOSED METHOD

In this article, we propose a spatial-spectral shadow-aware

mixing (S3AM) model by embedding of spatial information.

In order to make our problem bi-convex for an improved

convergence ( [36], [37]) we simplified the ESMLM model

in two aspects. First, we set P = 0, because the inner-

pixel second-order optical interactions have been observed to

have minor impact on spectral unmixing results. Besides, we

assume that the neighboring pixels contribute equally to a

target pixel regardless of their illumination conditions, so that

the neighbor illumination term is re-scaled solely according to

parameter K.

The simplified model at pixel j is given by:

xj =(1−Qj)yj +Qjyj ⊙ f̃ j +Kjyj ⊙ χj

=(1B − 1BQj)⊙ yj + 1BQj ⊙ yj ⊙ f̃ j

+ 1BKjyj ⊙ χj

=E ⊙ (1B − 1BQj + 1BQj ⊙ f̃ j + 1BKj ⊙ χj)1
T
p aj

=Ẽjaj

(4)

where

f̃ j =
Fj · (k1λ

−k2 + k3)

1 + Fj · (k1λ
−k2 + k3)

(5)

yj = Eaj =

p∑

i=1

aj,iei (6)

Ẽj = E ⊙ ((1B − 1BQj + f̃ jQj + χjKj)1
T
p ) (7)

We construct the optimization problem in vector form as:

min
aj ,Qj ,Kj

1

2

N∑

j=1

∥Ẽjaj − xj∥
2
F (8)

The ANC (abundance non-negativity constraint) and ASC

(abundance sum-to-one constraint) are applied on the abun-

dances aj [5], [19]. Additionally, we assume Q and K ∈ [0, 1],
in order to maintain their physical meanings:

aj ≥ 0,

p∑

i=1

aj,i = 1, Q,K ∈ [0, 1] (9)

Inspired by existing works on weighted total variation

constraints for spectral unmixing ( [33], [34]), the following

spatial constraint on the abundances is proposed:

N∑

j=1

∑

m∈N (j)

Rj,m∥aj − am∥11 (10)

where N (j) denotes the first order neighborhood of the target

pixel j. Rj,m represents a weighting factor describing the

similarity between pixel j and m:

Rj,m =
1

Zj

(
Rhj,m

+Rxj,m

)
(11)

where Rhj,m
and Rxj,m

represent weighting factors related

to height and spectral information, respectively. Zj is the

normalizing constant value and constraints the summation of

weighting factors at pixel j to 1.

Rhj,m
is defined as:

Rhj,m
= exp

[
−

1

δ2h
(1 + ηQ′j,m)Thj,m

]
, (12)

where δ2h is a constant parameter controlling the weight range,

and η reduces the influence of shadowed neighboring pixels

on a target pixel using Q′j,m, the shadow fraction at the

neighboring pixel m for the target pixel j. In this article, Q′j,m
is pre-calculated using the SLMM method [5]. Finally, Thj,m

is a height similarity measure, given by the normalized height

difference between pixels j and m:

Thj,m
=

(hj − hm)2

(hj + hm)2
(13)

normalized surface height above the ellipsoid h is provided

by the DSM, which is illumination-insensitive and therefore

robust to shadow effects. Thus, neighboring pixels with larger

height similarities will have larger impact on the target pixel.

The weighting factor Rxj,m
corresponds to spectral infor-

mation:

Rxj,m
= exp

[
−

1

δ2x
(1 + ηQ′j,m)Txj,m

]
, (14)

where δ2x is a constant parameter controlling the weight range,

the shadow-related parameters η and Q′j,m are the same as in
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Eq. (12), and the spectral similarity measure Txj,m
is defined

by the spectral angle [38], [39]:

Txj,m
= max(arccos

xj · xm

∥xj∥∥xm∥
− 0.1, 0) (15)

Since shadow effects introduce spectral distortions [12],

[40], the spectral angle between sunlit and shadowed pixels

of the same material can be significantly larger than 0. We

found this difference empirically to be around 0.1. In order

to mitigate the impact of distortion in the spectral similarity

measure, a value of 0.1 is then subtracted from the spectral

angle in (15) up to a minimum value of 0.

Furthermore, as nonlinear effects typically do not depend

on spectral, height, and shadow conditions, we apply a non-

weighed total variation constraint on K:

N∑

j=1

∑

m∈N (j)

∥Kj −Km∥11 (16)

Hence, we define the optimization problem with spectral

and spatial constraints as:

min
A,Q,K

1

2

N∑

j=1

∥Ẽjaj − xj∥
2
F + λ∥AW 1∥1,1 + ℓC(A)+

ℓS(A) + ℓM(Q) + λ∥KW 2∥1,1 + ℓM(K)
(17)

where ℓC(A) = {A|A ≥ 0p×N}, ℓS(A) = {A|1T
p A = 1

T
N},

ℓM(Q) = {Q|Q ≥ 01×N ,Q ≤ 11×N} and ℓM(K) =
{K|K ≥ 01×N ,K ≤ 11×N}. The sparse matrix W 2 =
[W ↑

2W
↓
2W

←
2 W→

2 ] ∈ R
N×4N , where each element belongs

to the set {−1, 0, 1}, consists of differential operators in four

directions, i.e., up, down, left, and right. KW 2 computes the

difference in K in each direction in the first-order neighbor-

hood of each pixel. For instance, the difference in K in the

upward direction at pixel j can be written as Km↑ − Kj ,

where m↑ denotes the index of the neighboring pixel in

the upward direction of pixel j. Similarly, the sparse matrix

W 1 = [W ↑
1W

↓
1W

←
1 W→

1 ] ∈ R
N×4N consists of differential

operators in four directions weighted by the factor Rj,m.

AW 1 computes the difference in A in each direction in the

first order neighborhood of each pixel for each endmember,

weighted by the factor Rj,m. For instance, the abundance

difference in the upward direction at pixel j associated with

endmember i can be written as (am↑,i − aj,i)Rj,m↑ , where

m↑ denotes the index of the neighboring pixel in the upward

direction of pixel j.

The above optimization is a bi-convex problem, and it is

convex to A and {Q,K}, respectively. Following [36], [37],

we split the unknown variables into two groups and solve two

convex problems sequentially using the ADMM approach. In

the ADMM form, the optimization problem is given by:

min
A,Q,K,G,H

1

2

N∑

j=1

∥Ẽjaj − xj∥
2
F + λ∥G2∥1,1+

ℓC(G3) + ℓS(G4) + ℓM(H1) + λ∥H3∥1,1 + ℓM(H4)



G1 = A

G2 = G1W 1

G3 = A

G4 = A





H1 = Q

H2 = K

H3 = H2W 2

H4 = K

(18)

The updating sequence is reported in Algorithm 1, while

updating equations of primal and dual variables are derived

in the Appendix.

Algorithm 1: ADMM for the optimization problem of

Eq. (18)

Input : E, f̃ , X , χ̃, λ, k1, k2, k3
Output: A, Q, K

Initialize: t = 0, A(0), Q(0), K(0), G(0), H(0), U (0)

1 while the stopping criterion is not satisfied do

2 Given Q(t), K(t), G(t), U (t), update A(t+1) with

(24)

3 Given A(t+1), U (t), update G(t+1) with (25), (26),

(27), (28)

4 Given A(t+1), H(t), U (t), update Q(t+1) and

K(t+1) with (30), (31), (32)

5 Given Q(t+1), K(t+1), U (t), update H(t+1) with

(33), (34), (35), (36)

6 Given U (t), A(t+1), Q(t+1), K(t+1), G(t+1),

H(t+1), update U (t+1) with (37)

7 t = t + 1

8 end

IV. EXPERIMENTAL SETUP

We validate our proposed method on real data, relying on

the DLR HySU and the HySpex/4K datasets. The DLR HySU

benchmark dataset is used for quantitative and qualitative

validation. It contains hyperspectral imagery with reference

abundances available for ground materials. The original dataset

does not contain shadows and a DSM, so we additionally

simulated both in this article for validation purposes. Besides,

in order to demonstrate our proposed method on real shadows

and a real DSM, we employ the HySpex and 4K dataset. As

the abundances in the latter dataset are unknown, we solely

carry out a qualitative validation in this case.

A. Datasets

1) DLR HyperSpectral Unmixing (DLR HySU) benchmark

dataset: The image in Fig. 1 (a) was acquired over Ober-

phaffenhofen, Bavaria, Germany with a HySpex pushbroom

camera, resulting in a ground sampling distance of 0.7 meters.

The image comprises 135 spectral bands ranging from 417.4

nm to 902.8 nm. This dataset [41] contains five square ground
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(a) (b)

(c) (d)

Fig. 1. DLR HyperSpectral Unmixing (HySU) dataset with simulated
shadowed pixels: (a) Hyperspectral image as a true color composite including
five ground targets with side lengths of 3 meters; (b) hyperspectral image with
simulated shadowed pixels and additional random noise (SNR = 30); (c)
endmember library containing five targets (bitumen, red-painted metal sheets,
blue fabric, red fabric, and green fabric) and surrounding grass; (d) simulated
DSM.

targets with a side of 3 meters (bitumen, red-painted metal

sheets, blue fabric, red fabric, green fabric) and a background

material (grass), for a total of 6 known endmembers (Fig. 1

(c)). The fully constrained linear spectral unmixing method

[42] is applied to the shadow-free image, yielding pixel-wise

reference abundance maps. When using the ground target sizes

to evaluate abundance estimation errors [41], the reference

abundance maps have an average error of 2.3 % [41], which

is low enough to justify their use as ground truth in our

experiments.

A binary shadow map is drawn in order to shade a part of all

targets, followed by a Gaussian filter with size 3 ∗ 3 to create

a soft shadow mask Q (Fig. 1 (b)). Furthermore, a synthetic

height map is simulated through a piecewise homogeneous

distribution using the Potts Model [26], followed by Gaussian

filtering. Then, the synthetic height map is used to compute

the simulated sky view factor F , using the method in [43].

Given the shadow-free pixel yj , we simulate the pixel xj with

artificial shadows as:

xj = (1−Qj)yj +QjT (s0diff
)yj (19)

where atmospheric parameters k1, k2, k3 are set as detailed in

Section IV-D. Furthermore, we apply additional random noise

(SNR = 30) on the simulated image.

2) HySpex and 4K Dataset: This dataset consists of an

airborne hyperspectral image and a DSM, acquired at the

same time over Oberpfaffenhofen, Bavaria, Germany between

8:42 and 8:56 a.m. (Central European Summer Time (CEST))

on June 4th, 2018. The airborne hyperspectral image (Fig.

2 (a)) was acquired with a HySpex VNIR sensor and has

been atmospherically corrected using ATCOR [41], [44], [45].

After removing the water vapor bands, a total of 101 bands

have been kept for further processing. Moreover, endmembers

E have been extracted from the fully sunlit pixels using

(a) (b)

(c) (d)

Fig. 2. Hyperspectral dataset: (a) hyperspectral image as a true color com-
posite acquired by the HySpex sensor in the study area of Oberpfaffenhofen,
Bavaria, Germany; (b) endmember library, automatically extracted from (a);
(c) normalized DSM; (d) sky view factor map derived from the DSM in (c).

the method in [19], [46] (see Fig. 2 (b)). Multi-view stereo

imagery acquired with the 4K camera system was employed

to generate the DSM [47] in Fig. 2 (c), whose values represent

surface height above the ellipsoid. In addition, height values

were normalized within [0, 1] to retain the relative height of

the ground surface. After geometrical co-registration and re-

sampling, the DSM and images share the same geo-coordinates

and spatial resolution (i.e., 0.7 m). Given the height data, the

sky view factor F was computed using the software SAGA

[43] (see Fig. 2 (d)).

B. Methods in comparison

We compare the S3AM method to the following state-of-

the-art spectral mixing models.

• LMM [6]: a linear mixing model that does not take

shadows into account.

• SLMM [13]: a linear mixing model accounting for shad-

ows using a scaling factor while ignoring diffuse solar

illumination.

• SMLM [5]: a nonlinear mixing model accounting for

shadows using a scaling factor as in SLMM, along with

nonlinear interactions using the multilinear mixing model

[10].

• NUEM [15]: a shadow removal method based on non-

linear unmixing and endmember matching. This method

requires a shadow mask as input, which has been com-

puted by S3AM in the experiment.

• Fansky [17]: a nonlinear mixing model considering shad-

ows based on both direct and diffuse solar illumination,

along with nonlinear interactions using the Fan model [8].

• ESMLM [19]: an extended SMLM model incorporating

direct and diffuse solar illumination as well as nonlinear

interactions.

• SCBMM [18]: a nonlinear mixing model considering

shadows using both direct and diffuse solar illumina-
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tion and nonlinear interactions using the bilinear mixing

model (BMM) [7].

Moreover, we investigate the impact of different variations of

the spatial TV regularization in an ablation study.

C. Quantitative measures

Given the observed pixels xj and the reconstructed pixels

x̂j , the mean reconstruction error RE is defined as:

RE =
1

N

N∑

j=1

√√√√
B∑

λ=1

(xj,λ − x̂j,λ)2, (20)

while the mean abundance error (AE) is defined as:

AE =
1

pN

N∑

j=1

p∑

i=1

|aj,i − âj,i| (21)

D. Parameter settings

1) k1, k2, k3: Following our previous work in [19], k1,

k2, k3 are the parameters of a power function that models the

ratio of diffuse to global solar irradiance on the ground surface.

We assume that atmospheric conditions are consistent in the

entire image region, so these parameters are constant in our

experiments. In practice, we compute these parameters using

ten pairs of pixels that are selected in the scene. Specifically,

a pair of pixels contain a sunlit pixel and a fully shadowed

pixel near a shadow boundary, assumed to consist of the same

material. We avoid including vegetation during the selection in

order to avoid dealing with complex nonlinear effects. Then,

k1, k2 and k3 are solved by Eq. (4), with Kj = 0, Qj = 1
and p = 1. The obtained values are: k1 = 0.579; k2 = 6.974;

and k3 = 0.206.

2) λ and η: Fig. 3 presents AE as a function of λ

and η for the DLR HySU dataset. We calculate optimal

values of these parameters from the values λ ∈ {10−5, 5 ·
10−5, 10−4, 5 · 10−4, 10−3, 5 · 10−3, 0.01, 0.05, 0.1, 1} and

η ∈ {10−5, 10−4, 10−3, 0.01, 0.1, 1, 10, 100, 500, 1000} by

minimizing AE, resulting in λ = 10−3 and η = 10 for S3AM.

As ground truth abundances are not available for the HySpex

dataset, we empirically determine λ and η to be the same as for

the DLR HySU dataset. Additionally, we analyze the impact

of different values of λ on the abundance maps in Section VI.

3) δ2x and δ2h: These parameters represent the weight range

in the exponential functions of the height-related (Eq. (12)) and

spectral (Eq. (14)) weighting factors, respectively. In principle,

one can optimize the values of δ2x and δ2h in a similar way as

λ and η, by minimizing the optimization error. However, too

many free parameters can lead to over-fitting. In practice, more

than 99.9% of Tx and Th was found to lie within the range

[0, 0.5]. Hence, we set the weighting ranges within the same

span, and choose empirical values δ2x = δ2h = 0.1.

4) µ: The penalty parameter µ of the augmented La-

grangian (see Eq. (23)) was determined as in [32]. The initial

value is set to µ = 0.001, and is then updated iteratively

by keeping the ratio between primal and dual residual norms

within a positive value of 10, as suggested in [36].

Fig. 3. AE as a function of λ and η for the DLR HySU dataset, where
λ ∈ {10−5, 5 · 10−5, 10−4, 5 · 10−4, 10−3, 5 · 10−3, 0.01, 0.05, 0.1, 1}
and η ∈ {10−5, 10−4, 10−3, 0.01, 0.1, 1, 10, 100, 500, 1000}.

5) initialization and stopping criteria: A fully constrained

spectral unmixing method [42] based on the SLMM model

has been applied to initialize A and Q, while K and U are

initialized to zero. In addition, the algorithm stops when the

primal residual is less than 5 · 10−4 or the maximum number

of iterations, set as 100, is reached.

E. Computational resources

All algorithms were developed in a MATLAB environ-

ment and run on an Intel Core i7 −8650 U CPU, 1.90

GHz machine with 4 Cores and 8 Logical Processors. We

apply the MATLAB function FMINCON using the Sequential

Quadratic Programming algorithm to perform the (non)linear

optimization for LMM, SLMM, SMLM, NUEM, Fansky, and

ESMLM. The function and constraint tolerance are set to 10−6

and 10−5, respectively. In addition, for-loop iterations over all

pixels were running in parallel on workers in a parallel pool.

The Fansky and SCBMM have the highest computational

cost, depending on the number of pixels in the subset. Besides,

the nonlinear optimization implemented by FMINCON in

ESMLM, SMLM and SLMM requires more computational

resources with respect to the linear optimization in LMM.

The S3AM, solved by the ADMM approach has a short

computation time, as MATLAB efficiently computes closed-

form updates for this method.

TABLE I
RUNNING TIME OF COMPARED METHODS

Method
Running time (s)

HySU (208 pixel) subset1 (1148 pixel) subset 2 (1085 pixel)

LMM 0.47 2.56 2.27
SLMM 0.61 5.80 5.38
SMLM 0.70 9.42 8.33
NUEM 0.63 6.01 4.65
Fansky 7.42 112.75 109.20

ESMLM 2.59 26.66 25.47
SCBMM 11.43 42.25 40.43

S3AM 0.55 2.80 2.71
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(a)

(b)

Fig. 4. Comparison of mean abundance error AE in (a) and mean recon-
struction error RE in (b) for the DLR HySU dataset. Solid and dashed lines
represent results obtained using the input image with and without additional
noise (SNR = 30), respectively. Sunlit and (partly) shadowed pixels are
determined with Q ≤ 0.1 and Q > 0.1, respectively.

V. RESULTS: DLR HYSU BENCHMARK DATASET

A. Pixel reconstruction and abundance estimation

Fig. 4 shows the obtained AE and RE for all methods, from

sunlit, (partly) shadowed and all pixels, respectively. The AE

was obtained without taking grass into account. The reason for

this is that reference abundance values were derived by LMM.

In grass areas, nonlinear effects may be present, and this

class contains non-negligible intraclass variations with respect

to the spectrum selected as endmember. Therefore, reference

abundances for grass may be unreliable. In addition, NUEM

is not included in the comparison of RE, as this method

runs two unmixing processes followed by spectral matching.

Furthermore, we show AE and RE on a degraded image with

additive noise (SNR = 30), in order to evaluate the robustness

to noise of the compared methods.

All compared methods show satisfactory REs in sunlit

regions. In shadowed regions, the LMM obtains significantly

higher RE compared to other methods, indicating the impor-

tance of shadow-aware modeling. Nevertheless, smaller REs

do not necessarily imply a satisfactory abundance estimation.

Compared to REs, we observe significantly larger differences

of AEs among compared methods. In general, the better a

model accounts for shadows, the better the abundance estima-

tion. The LMM has the lowest performance, because shadow

effects are simply ignored. The NUEM is also characterized

by a large AE. Since shadow effects cause a wavelength-

dependent spectral distortion, it is quite challenging to per-

form spectral matching between sunlit and shadowed pixels.

Moreover, the SLMM and SMLM treat shadows as a scaling

effect, and perform better at abundance estimation in shadowed

regions. The performance improves further when including

the diffuse solar illumination as prior knowledge. Fansky,

ESMLM, and S3AM select pairs of pixels from the input

image as prior knowledge and estimate the ratio of diffuse and

global solar illumination through a power function. The pro-

posed approach, i.e., S3AM, clearly outperforms others thanks

to the applied spatial constraints. In addition, the ratio of

diffuse and global solar illuminations can be estimated along

with abundance values in the unmixing process, i.e., SCBMM.

Nevertheless, its AE appears higher than other methods.

The reason is that the SCBMM does not assume stronger

atmospheric scattering at shorter wavelengths [12]. Hence, its

estimated diffuse radiation may not correspond to the spectral

characteristics of shadows in practice. Furthermore, results in

Fig. 4 show that both REs and AEs increase considerably

as the image is degraded by noise. Despite better abundance

estimation, the Fansky and ESMLM are less robust to noise

compared to LMM, SLMM, SMLM, NUEM, and SCBMM.

Since the contribution of diffuse solar radiation is significantly

smaller relative to global radiation, the optimization problem

can be over-fitted and may lead to noisy abundance maps.

This sensitivity to noise can be significantly alleviated by the

proposed method S3AM, thanks to the spatial constraints.

A qualitative comparison of the abundance maps is dis-

played in Fig. 5. In order to assess the location of abundance

errors, we overlay the AE map in grayscale as a semi-

transparent layer over the optical image in Fig. 6. First of all,

it can be observed that abundance errors are mainly located

in shadowed regions. Compared to the LMM, the shadow-

aware unmixing methods therein display improved abundance

maps. While SLMM and SMLM treat shadow as a scaling

effect, the SMLM further considers nonlinear reflections. Since

the study region is a flat terrain with artificial materials,

multiple reflections appear minor. Thus, the abundance maps

of SLMM and SMLM are very similar. Unlike embedding a

shadow-related parameter in the model, the NUEM matches

spectra in shadowed areas with their corresponding ones in

sunlit regions. However, accurate spectral matching is rather

challenging due to spectral distortion caused by shadows. In

particular, this dataset contains some materials with similar

spectral information, making spectral matching more difficult.

For example, the NUEM easily confuses red-painted metal

sheets and red fabric.

Furthermore, we compare methods that take into account

diffuse solar illumination, i.e., SCBMM, Fansky, ESMLM,

and S3AM. The SCBMM may have the ability to estimate

abundance values in shadowed regions, such as bitumen, while

it seems challenging to estimate diffuse solar illumination

without prior knowledge. Fansky, ESMLM, and S3AM, on the

other hand, whose diffuse solar illumination is computed from

manually selected pixels in the input image, perform better in

abundance estimation.

However, without applying spatial constraints, abundance
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Fig. 5. Abundance maps for the HySU dataset. Left to right: bitumen, red metal sheets, blue fabric, red fabric, green fabric, and grass. Top to bottom:
reference, LMM, SLMM, SMLM, NUEM, Fansky, ESMLM, SCBMM, S3AM. The reference abundance maps are computed by applying fully constrained
least squares unmixing using the library of known endmembers on the shadow-free image.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3289570

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on July 25,2023 at 12:10:26 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES 10

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. DLR HySU imagery overlaid with pixel-wise mean abundance error
maps in grayscale: (a) LMM, (b) SLMM, (c) SMLM, (d) NUEM, (e) Fansky,
(f) ESMLM, (g) SCBMM, (h) S3AM, (i) reference image.

Fig. 7. Comparison of mean abundance error AE of S3AM with ablated
spatial constraints for the DLR HySU dataset. Solid and dashed lines represent
results obtained on the input image with and without additional noise
(SNR = 30), respectively.

maps show higher noise levels and confusion between similar

materials, such as red-painted metal sheets and red fabric. Such

distortions can be alleviated by injecting spatial information

into the analysis. By applying weighted TV constraints, S3AM

considerably improves the abundance estimation step. Firstly,

the noise level has been significantly reduced owing to the

spatial constraints. In addition, the abundance estimation at the

boundary pixels is significantly improved, due to the weighting

of the spectral and height information in the spatial constraints.

B. Ablation study

The S3AM method consists of a weighted TV constraint

term, where the weights are formed by spectral and height

features. In the ablation study, we investigate the individual

contribution from each feature.

We refer to the weighted TV (Eq. (10)) in the S3AM

method as wTVfull, where both height and spectral features

are included and computed by Eqs. (12) and (14). In the

ablation study, we regard height and spectral features one at

a time by setting Rhj,m
= 0 and Rxj,m

= 0 in Eq. (11),

respectively, resulting in the ablated TV forms wTVhei and

wTVspec. In addition, we set the weights Rhj,m
= Rxj,m

= 1
in Eq. (11), resulting in a classic non-weighted TV, labeled

as TV. Moreover, we ablate the spatial constraints entirely by

setting λ = 0 in Eq. (17), reducing the method to only the

spectral mixing model, labeled as ”none”.

Fig. 7 compares AE of wTVfull, wTVspec, wTVhei, TV,

and ”none” in the ablation study. Specifically, we investigate

AE in sunlit, (partly) shadowed, and all regions. Compared to

sunlit regions, where the spatial constraints play a minor role,

we observe considerable improvement in shadowed pixels by

embedding spatial constraints, with wTVfull achieving the best

abundance estimation, both with and without additional noise.

Figs. 8 and 9 show respectively abundance and abundance

error maps. When no spatial constraints are applied, i.e.,

”none”, resulting abundance maps are noisy. The ablation

study shows that differences in abundances mainly appear on

boundaries between different materials. Typically, TV over-

smooths the boundaries between different materials, since it

treats neighboring pixels equally. One example is visible at

the transition from bitumen to green fabric. When applying

weighted TV, the abundance estimation on the boundary pixels

is largely improved and wTVspec better preserves the shape

of the bitumen target with respect to wTVhei, because spectral

information can better separate the two materials on the

boundary between them. Since in our experiment the DSM is

randomly generated, the height information does not fully cor-

respond to the ground objects, leading to inaccurate abundance

estimations. In practice, spectral or height information alone

might not be sufficient to distinguish ground materials. The

configuration denoted as wTVfull, adopted by the proposed

method S3AM, jointly considers spectral and height features

and outperforms single-source weights both quantitatively and

qualitatively. Specifically, wTVfull constraints visibly improve

the abundance estimation on the boundary pixels, e.g., at the

right border of bitumen and the bottom side of green fabric.

C. Shadow-removed pixel reconstruction

Spectral mixing models considering shadows allow gener-

ating shadow-removed imagery through pixel reconstruction.

Specifically, in SLMM, SMLM, ESMLM, and S3AM, the

parameter Q represents the shadow fraction within a pixel.

By setting Q = 0, shadows are removed during pixel recon-

struction [19]. The NUEM, Fansky, and SCBMM methods

compute abundance values separately in sunlit and shadowed

groups. Then, shadow-removed pixels can be reconstructed

using summed-up abundance values in the two groups and

sunlit endmember spectra. Obviously, a better abundance es-

timation leads to better reconstruction and shadow removal.

Fig. 10 compares the shadow-removed images computed by

the different models. Despite confusion between bitumen and

green fabric, the SLMM achieves a satisfactory restoration in

shadowed areas, which is remarkable considering its simplic-

ity. The SMLM shows a similar abundance estimation as the

SLMM (see Fig. 5). However, some dark pixels appear in the
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Fig. 8. Abundance maps for the HySU dataset using S3AM with ablated spatial constraints. Left to right: bitumen, red metal sheets, blue fabric, red fabric,
green fabric, and grass. Top to bottom: reference, wTVfull, wTVspec, wTVhei, TV, and ”none”. The reference abundance maps are computed by applying
fully constrained least squares using the library of known endmembers on the shadow-free image.

(a) (b) (c)

(d) (e) (f)

Fig. 9. DLR HySU imagery overlaid with pixel-wise mean abundance error
maps in grayscale using S3AM with ablated spatial constraints: (a) wTVfull,
(b) wTVspec, (c) wTVhei, (d) TV, (e) ”none”, (f) reference image

reconstructed image of the SMLM, because of its incorrect

estimation of parameters P and Q [17]. Large areas of red-

painted metal sheets appear in the restored image of NUEM,

because of the mismatch between endmembers extracted in

sunlit and shadowed regions. For example, when minimizing

the spectral angle, the spectrum of shadowed red fabric is

associated with the red-painted metal sheets. In addition, the

spectrum of shadowed green fabric is associated with bitumen.

Moreover, Fansky, ESMLM, and SCBMM show material

confusion between different red materials. The material bound-

aries in shadowed areas also appear reddish due to incorrect

abundance estimation. Overall, the proposed method S3AM

achieves the best qualitative shadow-removed image, thanks

to its superior abundance estimation and spatial constraints.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 10. Restored images with removed shadows of the DLR HySU dataset
generated by (a) SLMM, (b) SMLM, (c) NUEM, (d) Fansky, (e) ESMLM,
(f) SCBMM, (g) S3AM, (h) reference image.

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 11. Subset 1 of the HySpex dataset: (a) true color composite, (b) DSM.
Abundance maps of roof using: (c) LMM, (d) SLMM, (e) SMLM, (f) NUEM,
(g) Fansky, (h) ESMLM, (i) SCBMM, (j) S3AM.

VI. RESULTS: HYSPEX AND 4K DATASET

A. Abundance estimation

Unlike for the DLR HySU dataset, we do not have ground-

truth abundances for the HySpex/4K dataset. Therefore, in this

section, we investigate and compare the methods qualitatively

on two image subsets (Figs. 11 and 12). Fig. 11 compares

the abundances of the roof material. The LMM seems to

perform satisfactorily in shadowed pixels. However, it is worth

noticing that LMM easily overestimates impervious surfaces,

as can be observed in subset 2, where many vegetation pixels

are incorrectly recognized as impervious surfaces (Fig. 12

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 12. Subset 2 of the HySpex dataset: (a) true color composite, (b) DSM.
Abundance maps of vegetation using: (c) LMM, (d) SLMM, (e) SMLM, (f)
NUEM, (g) Fansky, (h) ESMLM, (i) SCBMM, (j) S3AM.

(c)). Besides, the SLMM, SMLM, and NUEM show lower

abundances in shadowed pixels on the roof (Fig. 11 (d)-(f)).

Specifically, they confuse the spectra of the roof with other

impervious materials (see Fig. 15), since these two materials

contain similar spectral information. Therefore, in order to

distinguish between similar spectra in the presence of shadows,

it is essential to consider the diffuse solar radiation (see Figs.

11 (g)-(j)). In contrast, when determining materials with large

spectral differences, such as vegetation and road in subset 2

(Fig. 12), SLMM and SMLM can also achieve satisfactory re-

sults. Moreover, by considering the diffuse solar illumination,

Fansky, ESMLM, and SCBMM may achieve better abundance

estimation at higher noise levels. In particular, the SCBMM

shows a quite noisy abundance map in subset 1. Similar as

in the DLR HySU dataset, the SCBMM may show decreased

performance at some sunlit pixels (Fig. 12 (i)). In addition, the

Fansky method appears noisier compared to ESMLM, and can

only distinguish a part of the shadowed materials. Compared

to Fansky and SCBMM, the ESMLM performs consistently

better in both subsets.

The TV constraint further contributes to the abundance esti-

mation in two aspects. First, given the large spectral variability

in real hyperspectral imagery, the spectral unmixing methods

without the TV constraint can easily confuse similar mate-

rials, thus producing considerably noisier abundance maps,

while the spatial constraint promotes similar abundances in

local neighborhoods, significantly reducing noise. Second, the

abundance estimation is not as accurate in shadowed regions,

where pixels contain a lower signal-to-noise ratio. The spatial

constraint provides additional information to spectral models,

thus achieving better abundance estimations.

An ablation study has been conducted in subset 1, us-

ing spatial constraints wTVfull, wTVspec, wTVhei, TV, and

”none” in S3AM (see Fig. 13). As in the case of the HySU

dataset, differences in TV constraints mainly affect mixed

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3289570

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on July 25,2023 at 12:10:26 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES 13

(a) (b) (c) (d) (e) (f) (g)

Fig. 13. Subset 1 of the HySpex dataset: (a) true color composite, (b) DSM. Abundance maps of roof for ablation study using spatial constraints: (c) wTVfull,
(d) wTVspec, (e) wTVhei, (f) TV, (g) none.
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Fig. 14. Abundance maps of roof as a function of λ for subset 1 of the HySpex dataset using S3AM with ablated spatial constraints. Top to bottom:
TV,wTVspec, wTVhei, wTVfull. Left to right: λ = 10

−5, 10−4, 10−3, 10−2 and 10
−1.

sunlit/shadowed pixels in the HySpex dataset. Specifically, the

weighted TV methods, i.e., wTVspec, wTVhei, and wTVfull

lead to sharp edges, while the classic TV method oversmooths

transitions in boundary pixels. Examples can be spotted in the

regions between the two roofs in subset 1.

B. The impact of λ on abundance estimation

Since it is very challenging to select an optimal λ for the

HySpex dataset, due to the lack of ground truth, the sensitivity

of various TV constraints with respect to λ is evaluated in Fig.

14. In our experiments so far, we used the optimized values of

λ from the DLR HySU dataset on the HySpex dataset. How-

ever, a similar dataset with ground truth may be not available

at all in real-case scenarios. Fig. 14 compares abundances of

roof in subset 1 for λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1}. As

expected, the abundance maps become more homogeneous and

less noisy as λ increases. The abundance maps using λ = 10−3

present the best qualitative results. As discussed, the use of the

weighted TV leads to better abundance estimation on boundary

pixels, where the wTVfull achieves a balance between height

and spectral information. This characteristic becomes more

prominent with larger values of λ. Specifically, the TV con-

straint using spectral information only, i.e., wTVspec, largely

decreases the performance when λ ≥ 10−2, as the com-

puted weights do not match well with the ground materials.

Compared to TV and wTVspec, the wTVhei constraint leads

to better results, but it can suffer from height inaccuracies.

Despite some boundary pixels possibly being affected for

larger values of λ, the wTVfull constraint generally reaches a

more robust abundance estimation in a broader range of values

of λ.

C. Shadow-removed pixel reconstruction

Fig. 15 shows three examples of shadow removal results for

the HySpex dataset. The restored images appear very bright in

shadowed roof pixels when applying the SLMM, SMLM, and

NUEM approaches. This corresponds to the poor abundance

estimations in Fig. 11 (d)-(f). In addition, some dark pixels

appear in the restored image by the SMLM, because of the

incorrect estimation of the parameters P and Q. A similar
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input SLMM SMLM NUEM Fansky ESMLM SCBMM S3AM

Fig. 15. Three examples of shadow-removed results for the HySpex dataset. Left to right: input image, SLMM, SMLM, NUEM, Fansky, ESMLM, SCBMM,
and S3AM.

artifact can be observed in the DLR HySU dataset (Fig. 10

(b)). Furthermore it is worth noticing that, when spectral angle

distance successfully matches sunlit and shadowed pixels in

a scene, the NUEM can achieve good results, such as in the

second and third examples. However, this may work only in

simple scenarios. In addition, the NUEM highly depends on

the input shadow mask. Some artifacts appear when shadowed

areas are over- or underestimated (see examples 1 and 3 in

Fig. 15). Approaches considering the diffuse solar illumination

achieve in all cases better shadow-removed images, while the

results of SCBMM are much noisier. Despite the improvement,

shadow removal by Fansky and ESMLM in the first example

shows some spectral distortions. Finally, the reconstructed road

computed by ESMLM and SCBMM in the third example

appears noisy, with the line marking resulting almost invisible.

The advantages of S3AM compared to other methods

appear evident. First, S3AM improves the restoration result

in shadowed regions and retains spectral homogeneity. The

shaded roof area in the first example of Fig. 15 shows

that S3AM better reconstructs spectral features compared to

ESMLM. Moreover, S3AM considerably reduces the noise

in the shadow-removed imagery. This noise reduction can be

spotted not only in shadowed regions, such as regions shaded

by vegetation in the second example, but also in sunlit pixels,

such as the impervious surface in the third example.

VII. CONCLUSION

This article proposes a spatial-spectral shadow-aware mix-

ing (S3AM) model. The spectral modeling accounts for

shadows, following physical assumptions based on radiative

transfer theory. Specifically, a light path initiates from an

illumination source and interacts with endmembers before

being scattered back to the observer. The model considers

direct, diffuse, and neighboring illumination sources, where

direct solar radiation is the dominant source for sunlit pixels,

and diffuse solar radiation for shadowed pixels. A mixed pixel

is then resolved by summing up the spectral contribution of

all possible light paths.

S3AM embeds a DSM generated by multi-view stereo

images. The sky view factor F , which is essential to estimate

diffuse solar illumination in S3AM, can be conveniently

computed using the DSM, reducing the model complexity.

Moreover, we take into account the spatial relationship of

abundances through weighted TV constraints, derived by

spectral information from the hyperspectral imagery, height

information from the DSM, and shadow information. The

obtained optimization problem is bi-convex and is split into

two convex problems, separately solved by the ADMM (Al-

ternating Direction Method of Multiplier) approach iteratively.

The proposed method has been extensively evaluated using

two datasets, both quantitatively and qualitatively. Experiments

demonstrate that the proposed method significantly reduces the

noise level of abundance maps and improves the abundance

estimation. Moreover, an ablation study is performed in which

the proposed weighted TV constraint is compared to different

variations of the spatial TV regularization, or only considering

the spectral information.

Several open questions remain. First of all, in order to

quantitatively validate shadow-aware spectral unmixing meth-

ods in real scenarios, there is a lack of real datasets with

shadows for which ground-truth abundances are known. Fur-

thermore, although DSM derived by multi-view stereo imagery

offers shadow-insensitive height information, the performance

of S3AM can be degraded by noise and inaccurate values,

especially on boundary regions with large height variations,

causing imprecise TV weights and abundance estimation. In

particular, urban areas represent the ideal application for this

kind of analysis, as shadows are relevant and present across

the image. However, DSMs can lead to inconsistencies due

to occlusions, especially if the elevation model is derived by

stereo images rather than multi-view datasets. Thus, future

work should address spectral unmixing methods robust to

inconsistencies and missing data in the DSM.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Pablo d’Angelo and

Dr. Franz Kurz for providing the Digital Surface Models, the

OpAIRS Team with the Remote Sensing Technology Institute

(IMF) of German Aerospace Center (DLR) for providing and

pre-processing the HySpex dataset, Dr. Rudolf Richter for

assistance with the atmospheric correction of hyperspectral

images, and Dr. Bin Yang for sharing the SCBMM code.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3289570

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on July 25,2023 at 12:10:26 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES 15

The authors greatly appreciate anonymous reviewers for their

insightful comments and suggestions that greatly improved the

quality of this article.

APPENDIX

This section presents in detail the updating equations for

primal and dual variables in Algorithm 1.

A. Update A and G

Given Q, K, and H , the optimization problem in Eq. (18)

can be rewritten as:

min
A,G

1

2

N∑

j=1

∥Ẽjaj − xj∥
2
F + λ∥G2∥1,1 + ℓC(G3) + ℓS(G4)

s.t.





G1 = A

G2 = G1W 1

G3 = A

G4 = A

(22)

whose augmented Lagrangian is:

min
A,G

1

2

N∑

j=1

∥Ẽjaj − xj∥
2
F + λ∥G2∥1,1 + ℓC(G3) + ℓS(G4)

+
µ

2
∥A−G1 −U1∥

2
F +

µ

2
∥G1W 1 −G2 −U2∥

2
F

+
µ

2
∥A−G3 −U3∥

2
F +

µ

2
∥A−G4 −U4∥

2
F

(23)

Thus, we can derive the optimizations with respect to a
(t+1)
j :

a
(t+1)
j = (Ẽ

T

j Ẽj + 3µI)−1(Ẽ
T

j xj + µ(J
(t)
1j

+ J
(t)
3j

+ J
(t)
4j
)

(24)

where J
(t)
1j

= G
(t)
1j

+ U
(t)
1j

, J
(t)
3j

= G
(t)
3j

+ U
(t)
3j

, and J
(t)
4j

=

G
(t)
4j

+U
(t)
4j

.

Next, the optimizations with respect to G
(t+1)
1 , G

(t+1)
2 ,

G
(t+1)
3 , G

(t+1)
4 are written as:

G
(t+1)
1 =

[
A(t+1) −U

(t)
1 + (Gt

2 +U
(t)
2 )W T

1

][
I +W 1W

T
1

]−1

(25)

G
(t+1)
2 = soft

(
G

(t)
1 W 1 −U

(t)
2 ,

λ

µ

)
(26)

G
(t+1)
3 = max

(
A(t+1) −U

(t)
3 , 0

)
(27)

G
(t+1)
4 =

(
A(t+1) −U

(t)
4

)
+

1

p

[
1
T
N − 1

T
p

(
A(t+1) −U

(t)
4

)]
⊗1p

(28)

B. Update Q, K, and H

Given A and G, the optimization problem in Eq. (18) can

be rewritten as:

min
Q,K,H

1

2

N∑

j=1

∥Ẽjaj − xj∥
2
F + ℓM(H1) + λ∥H3∥1,1 + ℓM(H4)

s.t.





H1 = Q

H2 = K

H3 = H2W 2

H4 = K

(29)

whose augmented Lagrangian is:

min
Q,K,H

1

2

N∑

j=1

∥Ẽjaj − xj∥
2
F + ℓM(H1) + λ∥H3∥1,1+

ℓM(H4) +
µ

2
∥Q−H1 −U5∥

2
F +

µ

2
∥K1 −H2 −U6∥

2
F

+
µ

2
∥H2W 2 −H3 −U7∥

2
F +

µ

2
∥K −H4 −U8∥

2
F

The optimizations with respect to Q and K are solved pixel-

wise. For pixel j, we update Q
(t+1)
j and K

(t+1)
j using:

Q
(t+1)
j =

C3C4 − C2C5

C1C4 − C2
2

(30)

K
(t+1)
j =

C2C3 − C1C5

C2
2 − C1C4

(31)

where




C1 =
B∑

i=1

(f̃j,i − 1)2y2j,i + µ

C2 =

B∑

i=1

(f̃j,i − 1)χj,iy
2
j,i

C3 =
B∑

i=1

(f̃j,i − 1)yj,i(xj,i − yj,i) + µJ
(t)
5j

C4 =

B∑

i=1

χ2
j,iy

2
j,i + 2µ

C5 =

B∑

i=1

χj,iyj,i(xj,i − yj,i) + µ
(
J

(t)
6j

+ J
(t)
8j

)

(32)

with yj = Eja
(t+1)
j , J

(t)
5j

= H
(t)
1j

+U
(t)
5j

, J
(t)
6j

= H
(t)
2j

+U
(t)
6j

,

and J
(t)
8j

= H
(t)
4j

+U
(t)
8j

.

Next, we optimize the objective function with respect to

H
(t+1)
1 , H

(t+1)
2 , H

(t+1)
3 , and H

(t+1)
4 using Eqs. (33), (34),

(35), (36):

H
(t+1)
1 = min

(
max

(
Q(t+1) −U

(t)
5 , 0

)
, 1
)

(33)

H
(t+1)
2 =

[
K(t+1) −U

(t)
6 + (Ht

3 +U
(t)
7 )W T

2

][
I +W 2W

T
2

]−1

(34)
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H
(t+1)
3 = soft

(
H

(t)
2 W 2 −U

(t)
7 ,

λ

µ

)
(35)

H
(t+1)
4 = min

(
max

(
K(t+1) −U

(t)
8 , 0

)
, 1
)

(36)

C. Update U (t+1)





U
(t+1)
1 = U

(t)
1 −A(t+1) +G

(t+1)
1

U
(t+1)
2 = U

(t)
2 −G

(t+1)
1 W1 +G

(t+1)
2

U
(t+1)
3 = U

(t)
3 −A(t+1) +G

(t+1)
3

U
(t+1)
4 = U

(t)
4 −A(t+1) +G

(t+1)
4

U
(t+1)
5 = U

(t)
5 −Q(t+1) +H

(t+1)
1

U
(t+1)
6 = U

(t)
6 −K(t+1) +H

(t+1)
2

U
(t+1)
7 = U

(t)
7 −H

(t+1)
2 W 2 +H

(t+1)
3

U
(t+1)
8 = U

(t)
8 −K(t+1) +H

(t+1)
4

(37)
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Paristech University, France, 2010) and two M.Sc.

degrees in computer engineering and GIS (Roma Tre University, Italy,
2005, and Salamanca University, Spain, 2006). His research interests include
hyperspectral imaging, data fusion, and algorithmic information theory. He
won a total of 5 prizes (3 as first author) in the IEEE GRSS Data Fusion
Contests in the years 2013-2020. He won the DLR Science Slam contest in
2013 and coauthored the best paper in the IEEE Whispers 2019 conference. He
authored or co-authored more than 100 publications in peer-reviewed journals,
books, or international conferences.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3289570

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on July 25,2023 at 12:10:26 UTC from IEEE Xplore.  Restrictions apply. 


